Neutrino physics and nuclear astrophysics:

Size: px
Start display at page:

Download "Neutrino physics and nuclear astrophysics:"

Transcription

1 Neutrino physics and nuclear astrophysics: the LUNA MV project at Gran Sasso Sandra Zavatarelli, INFN - Genoa - Italy On behalf of the Luna Collaboration HEP-EPS 2017, Venice (Italy)

2 Nuclear Astrophysics Observational Astronomy Cosmology Nuclear astrophysics Nuclear Physics Neutrino Physics Stellar models

3 Neutrino production in the Sun p + p 2 H + e + + ν p + e - + p 2 H + e + + ν 3 He + p 4 He + e + + ν 7 Be + e - 7 Li + ν 8 B 8 Be + e + + ν 13 N 13 C + e + + ν 15 O 15 N + e + + ν 17 F 17 O + e + + ν p-p chain CNO cycle A. Serenelli, Eur. Phys. J. A (2016) 52: 78 Neutrino flux from the Sun can be used to study: Solar interior composition Neutrino properties only if the cross sections of the involved reactions are known with enough accuracy

4 Nuclear cross sections & stellar models S [MeV b ] Davids1968 Bair1973 Kellogg1989 Drotleff1993 Harrissopulos2005 Heil fits/theory Hale1987 Kubono2003 Heil C(α,n)16O Ec.m.[MeV] Many key reactions for stellar modelling are still lacking precision data!!

5 Underground nuclear astrophysics: Why? Sun: kt = 1 kev E C MeV E kev for reactions of H burning kt but also E 0 << E C!! 1 σ(e) = exp(-31.29z 1Z2 E Cross sections in the range of pb-fb at stellar energies µ/e) S(E) Astrophysical factor with typical laboratory conditions reaction rate R can be as low as few events per month

6 Laboratory for Underground Nuclear LUNA site Astrophysics LUNA 1 ( ) 50 kv LUNA MV (2015->...) LUNA 2 (2000à ) 400 kv Radiation LNGS/surface Muons Neutrons

7 LUNA 50 kv accelerator detectors

8 LUNA kV accelerator LUNA kv accelerator E beam kev I max 500 µa protons I max 250 µa alphas Energy spread 70 ev Long term stability 5eV/h

9 LUNA MV accelerator (3.5 MV) A new 3.5 MV accelerator will be installed in 2018 the north part of Hall B at Gran Sasso which is now being cleared

10 LUNA : background reduction 1,00E+00 1,00E+00 1,00E-01 1,00E-02 HPGe 1,00E-01 1,00E-02 HPGe counts 1,00E-03 1,00E-04 counts 1,00E-03 1,00E-04 1,00E-05 1,00E-05 1,00E E γ [kev] 1,00E E γ [kev] 3MeV < Eγ < 8MeV: 0.5 Counts/s 3MeV < Eγ < 8MeV: Counts/s E γ >3MeV: reduction of a factor 2000 simply going underground E γ <3MeV passive shielding Underground passive shielding is more effective since µ flux, that create secondary γ s in the shield, is suppressed. Cu Pb Shielding µ HPGe A background reduction of 5 o.o.m. was obtained at E < 3 MeV

11 25 LUNA : H burning 4p 4 He + 2e + + 2ν e MeV CNO cycle Ne-Na cycle Mg-Al cycle Reactions of interest for neutrino physics LUNA: 3 He( 3 He,2p) 4 He 3 He( 4 He,γ) 7 Be 14 N(p,γ) 15 O

12 First milestone: 3He+3He at solar energies p + p d + e+ + νe d + p 3He + γ 84.7 % 3He +3He α + 2p PP-I 3He 13.8 % +4He 7Be + γ 0.02 % % 7Be+e- 7Li 7Li + γ +νe +p α + α 7Be PP-II + p 8B + γ 8B 2α + e++ νe Suppression of 7Be and 8B νe due to a resonance? 3He+3He è p + p + 4He Q-value = MeV Neutrino less branch

13 First milestone: 3He+3He at solar energies Luna 50 kv accelerator detectors Detectors : Si array 3He+3He è p + p + 4He

14 First milestone: 3 He+ 3 He at solar energies σ min ~ 20 fb 2 events/month No resonance at the Gamow peak R. Bonetti et al., Phys. Rev. Lett. 82, (1999) 2700 J.N. Bahcall : A thrill that I had never believed possible..

15 3 He( 4 He,γ) 7 LUNA 400 kv Solar neutrinos: 7 Be, 8 B p + p d + e + + ν e PP-I d + p 3 He + γ 84.7 % 13.8 % 3 He + 3 He α + 2p 3 He + 4 He 7 Be + γ % 0.02 % 7 Be+e - 7 Li + γ +ν e 7 Be + p 8 B + γ PP-II 7 Li + p α + α 8 B 2α + e + + ν e Cross section from prompt gamma down to 90 kev (CM energy) using 4 He beam on 3 He target Off-line radioactive decay measurements of the 7 Be atoms collected in the beam catcher Before LUNA the results from the two techniques showed a 9% discrepancy

16 3 He( 4 He,γ) 7 LUNA 400 kv 3 He recirculating gas target HpGe detector in close geometry for online γ detection Removable calorimeter cap for offline 7 Be counting Si-monitor for target density measurements (beam heating effect) 0.3 m 3 Pb-Cu shield around detector chamber in OFC to reduce background on the detector Hp-Ge

17 3 He( 4 He,γ) 7 LUNA 400 kv F. Confortola et al., Phys. Rev. C 75 (2007) <S a -S p >=-0.014±0.042 Uncertainty due to S 34 on neutrinos flux: Φ( 8 B) 7.5% 4.3% Φ( 7 Be) 8% 4.6% S(E)=0.560±0.017 kev barn

18 14 N(p,γ) 15 O at LUNA 400 kv Bottle neck of CNO cycle: - 13 N and 15 O ν fluxes σ 14 ; - Globular Clusters turn-off age.

19 14 N(p,γ) 15 O at LUNA 400 kv N+p /2 + 7/2 + 5/2 + 3/2 + 3/2 - High energy: solid target + HpGe Low" energy: gas target + BGO / / O 0 1/2 - gamma spectrum of 14 N(p,γ) 15 O at Ep=140 kev

20 14 N(p,γ) 15 O at LUNA 400 kv S 1,14 (0)=1.66±0.12 kev b For a review : A. Formicola et al., Eur. Phys. J. A (2016) M. Marta et al, Phys.Rev C. 78, (R) 2008 * ½ν cno from the Sun * Globular Cluster age +0.7Gy

21 Solar metallicity and cross sections A. Serenelli, Eur. Phys. J. A (2016) 52: 78 Dominant sources of theoretical errors for solar ν fluxes. The cross section of the 14 N(p,γ) 15 O reaction is one of the main contributor in the global uncertainty on the SSM model prediction for CNO ν fluxes; Φ ν (CNO) depends on S 1,14 and (C+N) abundance in the core; Φ ν 3% => (C+N) abundance at 11% (uncertainty dominated by nucl. cross sections)

22 14 N(p,γ) 15 O at LUNA In 2016 measured by Li et al. also over a wide energy range Still a complete and clear picture is not available: A low background measurement over a wide energy range is highly desirable to reduce the present uncertainty of 7.5% on the S factor New effort : benchmark LUNA - MV Q. Li et al., Phys. Rev.C 93 (2016)

23 LUNA 400kV accelerator The LUNA-MV accelerator In-line Cockcroft Walton accelerator In the energy range MeV H + beam: eµa He + beam: eµa C + beam: eµa C ++ beam: 100 eµa Beam energy reproducibility : 10-4 * TV or 50 V The accelerator hall will be shielded by 80 cm thick concrete walls: no perturbation of the LNGS natural neutron flux

24 The scientific program for the first 14 N(p,γ) 15 O: the bottleneck reaction of the CNO cycle in connection with the solar abundance problem. Also commissioning measurement for the LUNA MV facility 12 C+ 12 C: energy production and nucleosynthesis in Carbon burning. Global chemical evolution of the Universe 13 C(α,n) 16 O and 22 Ne(α,n) 25 Mg : neutron sources for the s-process (nucleosynthesis beyond Fe) Later on 12 C(α,γ) 16 O: key reaction of Helium burning: determines C/O ratio and stellar evolution.. 5 years ( )..from H to He, and C burning

25 12C+12C 400kV impact accelerator :LUNA astrophysical Trigger of C burning 12C+12Cà 20Ne + α+ γ Q = 4.62 MeV 12C+12Cà 23Na + p + γ Q = 2.24 MeV Coulomb barrier: EC= 6.7 MeV Its rate determines the value of Mup : If Mstar>Mup: quiescent Carbon burningà core-collapse type II supernovae, neutron stars, stellar mass black holes If Mstar<Mup: no Carbon burningà white dwarfs, nova, type Ia supernovae The reaction produces protons and alphas in a hot environmentà nucleosynthesis in massive stars

26 12 C+ 12 C : measurement strategy T. Spillane PRL 2007 Several resonances spaced by kev Typical width Γ 10keV Factor 100 uncertainty in the cross section at low energy energies!!! LUNA will be able to explore the Gamow peak down to MeV Total time needed 2.5 y

27 Conclusions Nuclear astrophysics play a fundamental role in the understanding of stellar evolution, neutrino generation, supernova engine mechanism and the Big Bang The LUNA Collaboration has demontrated in 25 years of activity that the unique low background conditions of Gran Sasso is the perfect blend for the study of most of the proton capture reactions involved in the H burning; A new accelerator facility (LUNA-MV) will be installed in the Hall B of LNGS starting from 2018 and it will be devoted to the study of the key reactions of He and C burning that determine the evolution of massive stars and the nucleosythesis of most of the elements in the Universe; Thank to new facility we will be able to improve our knowledge of key reactions of H burning and of importance for solar neutrinos. Huge work in front of us but very important!!

28 LUNA 400kV accelerator Thank you for your attention!!! The LUNA Collaboration A. Boeltzig*, G.F. Ciani*, L. Csedreki, A. Formicola, I. Kochanek, M. Junker INFN LNGS /*GSSI, Italy D. Bemmerer, K. Stoeckel, M. Takacs, HZDR Dresden, Germany C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti Università di Padova and INFN Padova, Italy C. Gustavino INFN Roma1, Italy Z. Elekes, Zs. Fülöp, Gy. Gyurky,T. Szucs MTA-ATOMKI Debrecen, Hungary M. Lugaro Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary O. Straniero INAF Osservatorio Astronomico di Collurania, Teramo, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli Università di Genova and INFN Genova, Italy A. Guglielmetti, D. Trezzi Università di Milano and INFN Milano, Italy A. Best, A. Di Leva, G. Imbriani, Università di Napoli and INFN Napoli, Italy G. Gervino Università di Torino and INFN Torino, Italy M. Aliotta, C. Bruno, T. Davinson University of Edinburgh, United Kingdom G. D Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino*, L. Schiavulli, A. Valentini Università di Bari and INFN Bari/*Lecce, Italy

29 Backup

30 The neutron source reactions for the s-process: 13 C(α,n) 16 O and 22 Ne(α,n) 25 Mg Nucleosynthesis of half of the elements heavier than Fe Main s-process ~90<A<210 Weak s-process A<~90 TP-AGB stars shell H-burning He-flash T 9 ~ 0.1 K 0.25 T 9 ~ 0.4 K cm cm C(α,n) 16 O 22 Ne(α,n) 25 Mg massive stars > 10 M Sun core He-burning shell C-burning K ~10 9 K 10 6 cm cm Ne(α,n) 25 Mg 13 C(α,n) 22 Ne(α,n)

31 LUNA 400kV accelerator The 13 C(α,n) 16 O reaction S [ M e V b ] E = kev (T = K) Davids1968 Bair1973 Kellogg1989 Drotleff1993 Harrissopulos2005 Heil2008 fits/theory Hale1987 Kubono2003 Heil2008 large statistical uncertainties at low energies large scatter in absolute values (normalization problem) unknown systematic uncertainties uncertainties in detection efficiencies contribution from sub-threshold state (E=6.356 MeV in 17 O) contribution from electron screening E c.m. [MeV] LUNA400 range No data at low energy because of high neutron background in surface laboratories. Extrapolations differ by a factor ~4 (10% accuracy would be required).

32 LUNA 400kV accelerator The 13 C(α,n) 16 O reaction at LUNA-400 and LUNA MV Direct kinematics ( 4 He beam on 13 C target): 210 kev<e cm <300 kev (275 kev<e beam <400 kev) at LUNA 400 kv 240 kev<e cm <1060 kev (300 kev<e beam <1.4 MeV) at LUNA MV 13 CH 4 gas target (drawbacks: limit on the density, possible molecule cracking). With typical conditions: atoms/cm 2 13 C enriched solid target (drawbacks: degradation, possible carbon deposition). Typically atoms/cm 2 Beam induced background: (α,n) reaction on impurities ( 10 B, 11 B, 17 O, 18 O) in the target and beam line E n = MeV 3 He counters embedded in a polyethylene matrix Inverse kinematics ( 13 C beam on 4 He target): only possible at LUNA MV 4 He gas target atoms/cm 2 Beam induced background: 13 C induced reaction on 2 H, 6 Li, 7 Li, 10 B, 11 B, 16 O, 19 F E n = MeV: same detector as above

33 LUNA 400kV accelerator 12 C+ 12 C : astrophysical impact 12 C+ 12 Cà 20 Ne + α Q = 4.62 MeV 12 C+ 12 Cà 23 Na + p Q = 2.24 MeV 12 C+ 12 Cà 24 Mg + γ Q = MeV negligible 12 C+ 12 Cà 23 Mg + n Q = MeV endothermic for low energies 12 C+ 12 Cà 16 O + 2α Q = MeV three particlesà reduced prob. 12 C+ 12 Cà 16 O + 8 Be Q= MeV higher Coulomb barrier Coulomb barrier: E C = 6.7 MeV Its rate determines the value of M up : If M star >M up : quiescent Carbon burningà core-collapse Type II supernovae, neutron stars, stellar mass black holes If M star <M up : no Carbon burningà white dwarfs, nova, type Ia supernovae The reaction produces protons and alphas in a hot environmentà nucleosynthesis in massive stars

34 12 C+ 12 C : measurement strategy Quiescent carbon burning: 0.9 MeV<E CM <3.4 MeV Type Ia supernovae: E CM 0.7 MeV 12 C+ 12 Cà 20 Ne + α i + γ i E γ = 440 kev 12 C+ 12 Cà 23 Na + p i + γ i E γ = 1634 kev Particle detection: Si or ΔE/E telescopes Gamma detection: HpGe At LUNA MV the γ natural background can be reduced by 5 o.o.m.

35 LUNA 400kV accelerator The 22 Ne(a,n) 25 Mg reaction E th = 0.57 MeV Level scheme of 26 Mg is very complex The lowest well studied resonance at E α =832 kev dominates the rate The influence of a possible resonance at 635 kev has been ruled out because of parity conservation Only upper limits (~10 pb) at: 570<E α <800 kev (energy region of interest for AGB stars) Extrapolations may be affected by unknown resonances At T 9 < 0.18 the competing reaction 22 Ne(α,γ) 26 Mg (Q=10.6 MeV) should become dominant (now measured at LUNA 400 kv) At LUNA MV: 22 Ne windowless gas target + 3 He counters inside moderator To fully exploit LNGS low background: shielded detector, selected tubes, pulse shape discrimination, remove 11 B (because of 11 B(α,n) 14 N) to reach the level of ~10 n/day.

36 LUNA 400kV accelerator The LUNA-MV time schedule Action Date Beginning of the clearing works in Hall B February 2017 Beginning of the construction works in Hall B September 2017 Beginning of the construction of the plants in the LUNA-MV building December 2017 Completion of the new LUNA-MV building and plants April 2018 LUNA-MV accelerator delivering at LNGS May 2018 Conclusion of the commissioning phase December 2018 Beginning First Experiment January 2019

37 LUNA 400kV accelerator LUNA and the others Bck. Acceler. Beam intensity Program Expected start Notes LUNA LNGS LUNA 400 JUNA ~ 2 OoM better 400 kv ECR ~300 µa 13 C(α,n) et al., 10 ma! 25 Mg(p,γ) 13 C(α,n) 12 C(α,γ) CASPAR ~ LUNA Old 1 MV 150 µa 14 N(p,γ)? 13 C(α,n) 22 Ne(α,n) LUNA MV LNGS 3.5 MV + ECR 1 ma 14 N(p,γ)? 13 C(α,n) 22 Ne(α,n) 12 C(α,γ) 12 C + 12 C 2017 Solid target Mid Gas target + 3 He tubes in liq. Scint. Mid 2016?? 2019???? Gas target + 3 He tubes

38 14 N(p,γ) 15 O & Sun metallicity

at Gran Sasso Laboratories, Italy

at Gran Sasso Laboratories, Italy Underground Nuclear Astrophysics at Gran Sasso Laboratories, Italy Francesca Cavanna Università di Genova and INFN Genova, Italy Helmholtz Zentrum Dresden Rossendorf, Germany Laboratory Underground Nuclear

More information

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016 The 22Ne(p,γ)23Na reaction studies at LUNA Denise Piatti for LUNA collaboration University of Padua and INFN of Padua «Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June

More information

Hydrogen & Helium Burning in Stars

Hydrogen & Helium Burning in Stars Hydrogen & Helium Burning in Stars What remains to be done and how to do it! Hydrogen Burning: 4 He, 14 N Helium Burning: 12 C, 16 O, 22 Ne, n, s-nuclei Alba Formicola (on behalf of LUNA collaboration)

More information

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso I.N.F.N., Sezione di Genova, Italy Via Dodecanneso, 16146 Genoa (Italy) E-mail: sandra.zavatarelli@ge.infn.it Solar neutrinos

More information

PoS(FRAPWS2016)005. LUNA: hydrogen, helium and carbon burning under Gran Sasso. Carlo Broggini. INFN-Sezione di Padova

PoS(FRAPWS2016)005. LUNA: hydrogen, helium and carbon burning under Gran Sasso. Carlo Broggini. INFN-Sezione di Padova LUNA: hydrogen, helium and carbon burning under Gran Sasso INFN-Sezione di Padova E-mail: broggini@pd.infn.it One of the main ingredients of nuclear astrophysics is the cross section of the thermonuclear

More information

Experimental setup. Alpha beam. Deuterium exhaust. - Germanium detector close to the beam line to. increase the detection efficiency

Experimental setup. Alpha beam. Deuterium exhaust. - Germanium detector close to the beam line to. increase the detection efficiency Experimental setup Silicon Detector Radon Box (N flushing) Deuterium inlet Alpha beam Ge Detector HPGe Detector Deuterium exhaust Calorimeter Pipe Crown Lead shield - Germanium detector close to the beam

More information

Cross section measurements of fusion reactions at astrophysically relevant energies: the LUNA experiment

Cross section measurements of fusion reactions at astrophysically relevant energies: the LUNA experiment Cross section measurements of fusion reactions at astrophysically relevant energies: the LUNA experiment Alba Formicola (on behalf of LUNA collaboration) Laboratory Underground Nuclear Astrophysics relative

More information

Reaction rates for nucleosynthesys of light and intermediate-mass isotopes

Reaction rates for nucleosynthesys of light and intermediate-mass isotopes Reaction rates for nucleosynthesys of light and intermediate-mass isotopes Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN)

More information

Latest results from LUNA

Latest results from LUNA Journal of Physics: Conference Series PAPER OPEN ACCESS Latest results from LUNA To cite this article: Rosanna Depalo and LUNA collaboration 2018 J. Phys.: Conf. Ser. 940 012026 View the article online

More information

The LUNA experiment at the Gran Sasso Laboratory

The LUNA experiment at the Gran Sasso Laboratory The LUNA experiment at the Gran Sasso Laboratory Roberto Menegazzo for the LUNA Collaboration XCIX Congresso Nazionale SIF - Trieste 23-27 september 2013 outlook LUNA: Why going underground to measure

More information

Nuclear Astrophysics Underground Status & Future

Nuclear Astrophysics Underground Status & Future Nuclear Astrophysics Underground Status & Future Frank Strieder South Dakota School of Mines & Technology XV International Symposium on Nuclei in the Cosmos Laboratori Nazionali del Gran Sasso, Assergi,

More information

Direct measurement of the 2H(α,γ)6Li cross section at energies of astrophysical interest

Direct measurement of the 2H(α,γ)6Li cross section at energies of astrophysical interest Direct measurement of the 2H(α,γ)6Li cross section at energies of astrophysical interest NPA V April 3-8, 2011 Eilat, Israel Laboratory Underground Nuclear Astrophysics Alessandro Bellini INFN Genova,

More information

Ness LUNA II facility. INFN underground Gran Sasso Laboratories. P. Corvisiero INFN - Italy

Ness LUNA II facility. INFN underground Gran Sasso Laboratories. P. Corvisiero INFN - Italy Ness 2002 LUNA II facility INFN underground Gran Sasso Laboratories P. Corvisiero INFN - Italy the pp chain p + p d + e + + + ν e e d + p 3 3 He He + γγ 84.7 % 13.8 % 3 3 He He + 3 3 He He α + 2p 3 2p

More information

Underground nuclear astrophysics and the Sun

Underground nuclear astrophysics and the Sun Carlo Broggini (the LUNA Collaboration) Istituto Nazionale di Fisica Nucleare Sezione di Padova I-35131 Padova, ITALY 1 Introduction Thermonuclear reactions that generate energy and synthesize elements

More information

The LUNA - MV project at the Gran Sasso Laboratory

The LUNA - MV project at the Gran Sasso Laboratory The LUNA - MV project at the Gran Sasso Laboratory Roberto Menegazzo for the LUNA Collaboration 3ème Andromède Workshop - Orsay, 9 Juillet 2014 outlook LUNA: Why going underground to measure nuclear fusion

More information

Nuclear astrophysics at Gran Sasso Laboratory: LUNA experiment

Nuclear astrophysics at Gran Sasso Laboratory: LUNA experiment Nuclear astrophysics at Gran Sasso Laboratory: LUNA experiment the Francesca Cavanna 1, (on behalf of the LUNA collaboration) 1 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova Abstract.

More information

LUNA-400 and LUNA-MV: present and future of Nuclear Astrophysics at LNGS

LUNA-400 and LUNA-MV: present and future of Nuclear Astrophysics at LNGS LUNA-400 and LUNA-MV: present and future of Nuclear Astrophysics at LNGS Carlo Gustavino INFN-ROMA E-mail: carlo.gustavino@roma1.infn.it The understanding of our universe depends on the knowledge of the

More information

arxiv: v1 [nucl-ex] 4 Feb 2009

arxiv: v1 [nucl-ex] 4 Feb 2009 Direct measurement of the 15 N(p,γ) 16 O total cross section at novae energies arxiv:0902.0783v1 [nucl-ex] 4 Feb 2009 D Bemmerer 1, A Caciolli 2,3, R Bonetti 4, C Broggini 2, F Confortola 5, P Corvisiero

More information

Recent results and status of the

Recent results and status of the Laboratory Underground Nuclear Astrophysics Recent results and status of the 14 N(p,γ) 15 O measurement at LUNA Heide Costantini Dipartimento di Fisica and INFN, Genova (Italy) Laboratory for Underground

More information

Perspectives on Nuclear Astrophysics

Perspectives on Nuclear Astrophysics Perspectives on Nuclear Astrophysics and the role of DUSEL Nuclear Astrophysics is a broad field that needs facilities from 1keV-100GeV A low energy accelerator DIANA a DUSEL is a unique instrument for

More information

Primer: Nuclear reactions in Stellar Burning

Primer: Nuclear reactions in Stellar Burning Primer: Nuclear reactions in Stellar Burning Michael Wiescher University of Notre Dame The difficulty with low temperature reaction rates CNO reactions in massive main sequence stars He burning reactions

More information

Experimental study of the 14 N(p,γ) 15 O reaction

Experimental study of the 14 N(p,γ) 15 O reaction Experimental study of the 14 N(p,γ) 15 O reaction Michele Marta FZ Dresden - Rossendorf Institute for Radiation Physics Nuclear Physics Division International School of Nuclear Physics (32nd Course) Erice

More information

arxiv: v1 [nucl-ex] 3 Oct 2016

arxiv: v1 [nucl-ex] 3 Oct 2016 Improved direct measurement of the 64.5 kev resonance strength in the 17 O(p,α) 14 N reaction at LUNA arxiv:1610.00483v1 [nucl-ex] 3 Oct 2016 C.G. Bruno, 1, D.A. Scott, 1 M. Aliotta, 1, A. Formicola, 2

More information

Lifetime measurement of the MeV state in 15O with the AGATA Demonstrator

Lifetime measurement of the MeV state in 15O with the AGATA Demonstrator WE Heraeus-Seminar on Astrophysics with small-scale accelerators 6-10 February 2012 - Physikzentrum Bad Honnef - Germany Lifetime measurement of the 6.792 MeV state in 15O with the AGATA Demonstrator R.

More information

Astrofisica Nucleare: una sfida interdisciplinare per la comunità italiana

Astrofisica Nucleare: una sfida interdisciplinare per la comunità italiana Astrofisica Nucleare: una sfida interdisciplinare per la comunità italiana Alessandra Guglielmetti Università degli Studi di Milano e INFN Milano Perché occuparsi di astrofisica nucleare: gioie e dolori

More information

Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA

Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA SUPA, School of Physics and Astronomy, the University of Edinburgh E-mail: carlo.bruno@ed.ac.uk LUNA collaboration

More information

arxiv: v1 [nucl-ex] 12 Feb 2018

arxiv: v1 [nucl-ex] 12 Feb 2018 EPJ manuscript No. (will be inserted by the editor) A high-efficiency gas target setup for underground experiments, and redetermination of the branching ratio of the 189.5 kev Ne(p, γ) Na resonance arxiv:180.04164v1

More information

new LUNA rate for 22 Ne(p,γ) 23 Na

new LUNA rate for 22 Ne(p,γ) 23 Na Helmholtz-Zentrum Dresden-Rossendorf (HZDR) 22 Ne and 23 Na ejecta from intermediate-mass stars: The impact of the new LUNA rate for 22 Ne(p,γ) 23 Na Slemer, A.; Marigo, P.; Piatti, D.; Aliotta, M.; Bemmerer,

More information

arxiv: v1 [nucl-ex] 17 Nov 2015

arxiv: v1 [nucl-ex] 17 Nov 2015 Three new low-energy resonances in the 22 Ne(p,γ) 23 Na reaction arxiv:1511.05329v1 [nucl-ex] 17 Nov 2015 F. Cavanna, 1 R. Depalo, 2 M. Aliotta, 3 M. Anders, 4,5 D. Bemmerer, 4, A. Best, 6 A. Böltzig,

More information

arxiv: v1 [nucl-ex] 18 Nov 2016

arxiv: v1 [nucl-ex] 18 Nov 2016 Shell and explosive hydrogen burning arxiv:1611.06244v1 [nucl-ex] 18 Nov 2016 A. Boeltzig Gran Sasso Science Institute, L Aquila (Italy) C.G. Bruno SUPA, School of Physics and Astronomy, University of

More information

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018 : Lecture 1 Chris Wrede National Nuclear Physics Summer School June 19 th, 2018 Outline Lecture 1: Introduction & charged-particle reactions Lecture 2: Neutron-capture reactions Lecture 3: What I do (indirect

More information

Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration

Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration 22 Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS MARIE-LUISE MENZEL for the LUNA collaboration 1. INTRODUCTION 1.1 NEON-SODIUM-CYCLE 1.2 THE 22 Ne(p,γ) 23 Na REACTION INTRODUCTION

More information

Nuclear Astrophysics - I

Nuclear Astrophysics - I Nuclear Astrophysics - I Carl Brune Ohio University, Athens Ohio Exotic Beam Summer School 2016 July 20, 2016 Astrophysics and Cosmology Observations Underlying Physics Electromagnetic Spectrum: radio,

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

STUDY OF THE RESONANCES AT 417, 611, AND

STUDY OF THE RESONANCES AT 417, 611, AND STUDY OF THE RESONANCES AT 417, 611, AND 63 kev IN THE Ne(p,γ) 3 Na REACTION,a,b, Francesca Cavanna a,b, Rosanna Depalo c,d, Alessandra Slemer c,d, Tariq Al-Abdullah e,g, Michael Anders e, f, Daniel Bemmerer

More information

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY DIANA D. Leitner for the DIANA collaboration Michigan State University PAC 2011 New York, April 2011 A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY Outline of the Talk Why underground? Brief science

More information

The 3 He(α, γ ) 7 Be S-factor at solar energies: The prompt γ experiment at LUNA

The 3 He(α, γ ) 7 Be S-factor at solar energies: The prompt γ experiment at LUNA Nuclear Physics A 814 (2008) 144 158 www.elsevier.com/locate/nuclphysa The 3 He(α, γ ) 7 Be S-factor at solar energies: The prompt γ experiment at LUNA H. Costantini a,,1,d.bemmerer b, F. Confortola a,a.formicola

More information

Ne(alpha,n) revisited

Ne(alpha,n) revisited 22 Ne(alpha,n) revisited Joachim Görres University of Notre Dame & JINA Ph.D. Thesis of Rashi Talwar Neutron sources for the s-process Main Component A>100 Weak Component A< 100 low mass AGB stars T= 0.1

More information

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern Measurement of the 62,63 Ni(n,γ) cross section at n_tof/cern University of Vienna 01. September 2011 ERAWAST II, Zürich Nucleosynthesis of heavy elements BB fusion neutrons Abundance (Si=10 6 ) Fe Mass

More information

Stellar Evolution: what do we know?

Stellar Evolution: what do we know? Stellar Evolution: what do we know? New Tools - Astronomy satellite based observatories Hubble Space Telescope Compton Gamma-Ray Observatory Chandra X-Ray Observatory INTEGRAL ground based observatories

More information

Hands on LUNA: Detector Simulations with Geant4

Hands on LUNA: Detector Simulations with Geant4 : Detector Simulations with Geant4 Gran Sasso Science Institute E-mail: axel.boeltzig@gssi.infn.it Andreas Best Laboratori Nazionali del Gran Sasso E-mail: andreas.best@lngs.infn.it For the evaluation

More information

Felsenkeller 5 MV underground accelerator: Towards the Holy Grail of Nuclear Astrophysics 12 C(α, γ) 16 O

Felsenkeller 5 MV underground accelerator: Towards the Holy Grail of Nuclear Astrophysics 12 C(α, γ) 16 O Felsenkeller 5 MV underground accelerator: Towards the Holy Grail of Nuclear Astrophysics 12 C(α, γ) 16 O Daniel Bemmerer 1,, Thomas E. Cowan 1,2, Marcel Grieger 1,2, Sebastian Hammer 1,2, Thomas Hensel

More information

arxiv:nucl-ex/ v1 9 Feb 2006

arxiv:nucl-ex/ v1 9 Feb 2006 First measurement of the 14 N(p,γ) 15 O cross section down to 70keV arxiv:nucl-ex/0602012v1 9 Feb 2006 A.Lemut a, D.Bemmerer b, F.Confortola a, R.Bonetti c, C.Broggini b,, P.Corvisiero a, H.Costantini

More information

Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction

Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction Preliminary results of the indirect study of the 12 C( 12 C,α) 20 Ne reaction via the THM applied to the 16 O( 12 C,α 20 Ne )α reaction G.G. Rapisarda, 1,2,6 C. Spitaleri, 1,2 C. Bordeanu, 3 Z. Hons, 4

More information

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis Lecture #1: Nuclear and Thermonuclear Reactions Prof. Christian Iliadis Nuclear Reactions Definition of cross section: = N r N 0 N t Unit: 1 barn=10-28 m 2 Example: 1 H + 1 H 2 H + e + + ν (first step

More information

(EXPERIMENTAL) NUCLEAR ASTROPHYSICS. study energy generation processes in stars study nucleosynthesis of the elements

(EXPERIMENTAL) NUCLEAR ASTROPHYSICS. study energy generation processes in stars study nucleosynthesis of the elements (EXPERIMENTAL) NUCLEAR ASTROPHYSICS Ø Ø study energy generation processes in stars study nucleosynthesis of the elements What is the origin of the elements? How do stars/galaxies form and evolve? What

More information

Background (α,n) reactions at low energies: 10,11 B(α,n) 13,14 N

Background (α,n) reactions at low energies: 10,11 B(α,n) 13,14 N Background (α,n) reactions at low energies: 10,11 B(α,n) 13,14 N (Richard) James deboer Nuclear Physics in Astrophysics VIII Catania, Italy June 20, 2017 Improved rates for neutron production reactions

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

Evolution and nucleosynthesis prior to the AGB phase

Evolution and nucleosynthesis prior to the AGB phase Evolution and nucleosynthesis prior to the AGB phase Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars, and the evolution

More information

Explosive Phenomena in Astrophysics and Nuclear Reactions Studies

Explosive Phenomena in Astrophysics and Nuclear Reactions Studies Explosive Phenomena in Astrophysics and Nuclear Reactions Studies Marialuisa Aliotta School of Physics and Astronomy University of Edinburgh Scottish Universities Physics Alliance Talk s outline explosive

More information

Recent neutron capture measurements at FZK

Recent neutron capture measurements at FZK René Reifarth Recent neutron capture measurements at FZK Outline: Overview of s-process nucleosynthesis Nuclear data needs for the s-process where do we stand? Recent (n,γ) cross section measurements at

More information

Nuclear astrophysics studies with charged particles in hot plasma environments

Nuclear astrophysics studies with charged particles in hot plasma environments Nuclear astrophysics studies with charged particles in hot plasma environments Manoel Couder University of Notre Dame Summary I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS Accelerator based nuclear

More information

Reaction rates in the Laboratory

Reaction rates in the Laboratory Reaction rates in the Laboratory Example I: 14 N(p,γ) 15 O slowest reaction in the CNO cycle Controls duration of hydrogen burning Determines main sequence turnoff glob. cluster ages stable target can

More information

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 3873-3889 (1998)

More information

Scientific goal in Nuclear Astrophysics is to explore:

Scientific goal in Nuclear Astrophysics is to explore: Nuclear Physics in Stars Michael Wiescher University of Notre Dame Joint Institute for Nuclear Astrophysics Scientific goal in Nuclear Astrophysics is to explore: Nuclear Signature in the Cosmos The Nuclear

More information

Experiments on reaction rates for the astrophysical p-process

Experiments on reaction rates for the astrophysical p-process Experiments on reaction rates for the astrophysical p-process Zs. Fülöp ATOMKI Debrecen, Hungary Science case Experimental needs Used technique Trends in available data Plans for the future Heavy element

More information

Future research of 12 C(a,g) 16 O. Claudio Ugalde

Future research of 12 C(a,g) 16 O. Claudio Ugalde Future research of 12 C(a,g) 16 O Claudio Ugalde 12 C(a,g) 16 O Reaction Key reaction for stellar structure, evolution, and nucleosynthesis in stars. Affects the synthesis of most of the elements of the

More information

arxiv:astro-ph/ v1 2 Mar 2004

arxiv:astro-ph/ v1 2 Mar 2004 Astronomy & Astrophysics manuscript no. sm 2 January 19, 2014 (DOI: will be inserted by hand later) The bottleneck of the CNO burning and the age of the Globular Clusters arxiv:astro-ph/0403071v1 2 Mar

More information

Reaction measurements on and with radioactive isotopes for nuclear astrophysics

Reaction measurements on and with radioactive isotopes for nuclear astrophysics Reaction measurements on and with radioactive isotopes for nuclear astrophysics René Reifarth GSI Darmstadt/University of Frankfurt NUCL Symposium: Radiochemistry at the Facility for Rare Isotope Beams

More information

Astrophysical Nucleosynthesis

Astrophysical Nucleosynthesis R. D. Gehrz ASTRO 2001, Fall Semester 2018 1 RDG The Chemical Evolution of the Universe 2RDG 1 The Stellar Evolution Cycle 3 RDG a v a v X X V = v a + v X 4 RDG reaction rate r n n s cm ax a X r r ( E)

More information

High Resolution Spectroscopy in Nuclear Astrophysics. Joachim Görres University of Notre Dame & JINA

High Resolution Spectroscopy in Nuclear Astrophysics. Joachim Görres University of Notre Dame & JINA High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA Nuclear Astrophysics Studies at RCNP Osaka Notre Dame Groningen Started in 2002 (Georg @ RCNP) with a

More information

MRC-1: Low Energy Nuclear Reactions and Stellar Evolution

MRC-1: Low Energy Nuclear Reactions and Stellar Evolution MRC-1: Low Energy Nuclear Reactions and Stellar Evolution Michael Wiescher Focus-1: Stellar Hydrogen burning in massive stars Re-evaluation of CNO cycles Focus-2: Stellar He-burning neutron sources for

More information

Preparation and characterisation of isotopically enriched Ta 2 O 5 targets for nuclear astrophysics studies

Preparation and characterisation of isotopically enriched Ta 2 O 5 targets for nuclear astrophysics studies EPJ manuscript No. (will be inserted by the editor) Preparation and characterisation of isotopically enriched Ta 2 O 5 targets for nuclear astrophysics studies A. Caciolli 1,2a, D. A. Scott 3, A. Di Leva

More information

arxiv: v1 [nucl-ex] 30 Sep 2008

arxiv: v1 [nucl-ex] 30 Sep 2008 The 3 He(α,γ) 7 Be S-factor at solar energies: the prompt γ experiment at LUNA arxiv:0809.5269v1 [nucl-ex] 30 Sep 2008 H. Costantini a,,1 D. Bemmerer b F. Confortola a A. Formicola c Gy. Gyürky d P. Bezzon

More information

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae I Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory

More information

Nuclear Astrophysics Research at HIγS

Nuclear Astrophysics Research at HIγS Nuclear Astrophysics Research at HIγS Selected Examples of Work in Progress Werner Tornow Duke University & TUNL Outline A. What is HIγS? B. Few-Body Physics (see T. Shima) C. Nuclear Astrophysics 4 9

More information

Neutron capture cross sections on light nuclei

Neutron capture cross sections on light nuclei Mem. S.A.It. Vol. 77, 922 c SAIt 2006 Memorie della Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, and E. Uberseder Forschungszentrum Karlsruhe, Institut für Kernphysik, Postfach

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics I. Stellar burning Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008 1 / 32

More information

Astronomy 404 October 9, 2013

Astronomy 404 October 9, 2013 Nuclear reaction rate: Astronomy 404 October 9, 2013 from the tunneling increases with increasing E from the velocity distrib. decreases with increasing E The Gamow peak occurs at energy Energy generation

More information

Nuclear astrophysics of the s- and r-process

Nuclear astrophysics of the s- and r-process Nuclear astrophysics of the s- and r-process René Reifarth Goethe University Frankfurt Ecole Joliot Curie School on Neutrons and Nuclei Frejus, France, Sep-28 Oct-3 2014 Nucleosynthesis tales from the

More information

arxiv: v1 [astro-ph.sr] 2 Nov 2016

arxiv: v1 [astro-ph.sr] 2 Nov 2016 Astronomy & Astrophysics manuscript no. oiso_3 c ESO 218 November 1, 218 The impact of the revised 17 O(p, α) 14 N reaction rate on 17 O stellar abundances and yields O. Straniero 1, 2, C.G.Bruno 5, M.

More information

Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg

Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg SIF - XCIX Congresso Nazionale, Trieste 26 Settembre 2013 Stellar nucleosynthesis Elements in stars are mainly produced

More information

LUNA: a Laboratory for Underground Nuclear Astrophysics. Dipartimento di Scienze Fisiche, Universitá Federico II, Napoli, and INFN Napoli, Italy

LUNA: a Laboratory for Underground Nuclear Astrophysics. Dipartimento di Scienze Fisiche, Universitá Federico II, Napoli, and INFN Napoli, Italy LUNA: a Laboratory for Underground Nuclear Astrophysics H Costantini 1, A Formicola 2, G Imbriani 3, M Junker 2, C Rolfs 4 and F Strieder 4 1 INFN Genova, Italy 2 INFN Laboratori Nazionali del Gran Sasso,

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

Measurement of the neutron capture cross section of gadolinium even isotopes relevant to Nuclear Astrophysics

Measurement of the neutron capture cross section of gadolinium even isotopes relevant to Nuclear Astrophysics EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee Measurement of the neutron capture cross section of gadolinium even isotopes relevant to Nuclear Astrophysics

More information

ILE, Osaka University ILE, Osaka February 3, 2014

ILE, Osaka University ILE, Osaka February 3, 2014 Summary of Today s Workshop Hideaki Takabe (Aki) ILE, Osaka University ILE, Osaka February 3, 2014 Brief Summary Basic Science on (Astrophysics) Nuclear Physics with ps and ns Intense Lasers 1. NEEC (NEET)

More information

Metallicities in stars - what solar neutrinos can do

Metallicities in stars - what solar neutrinos can do - what solar neutrinos can do Institute for Nuclear and Particle Physics, Technical University Dresden, 01069 Dresden, Germany E-mail: zuber@physik.tu-dresden.de New elemental abundance determinations

More information

Absolute cross section of 7 Be(p, γ ) 8 B

Absolute cross section of 7 Be(p, γ ) 8 B Nuclear Physics A 696 (2001) 219 230 www.elsevier.com/locate/npe Absolute cross section of 7 Be(p, γ ) 8 B F. Strieder a, L. Gialanella e,g.gyürky b,f.schümann a, R. Bonetti c, C. Broggini d, L. Campajola

More information

Study of the 2 H(α,γ) 6 Li nuclear reaction producing 6 Li in standard Big Bang nucleosynthesis

Study of the 2 H(α,γ) 6 Li nuclear reaction producing 6 Li in standard Big Bang nucleosynthesis Mem. S.A.It. Suppl. Vol. 22, 181 c SAIt 2012 Memorie della Supplementi Study of the 2 H(α,γ) 6 Li nuclear reaction producing 6 Li in standard Big Bang nucleosynthesis Michael Anders 1, Daniel Bemmerer

More information

Experimental Initiatives in Nuclear Astrophysics

Experimental Initiatives in Nuclear Astrophysics Experimental Initiatives in Nuclear Astrophysics Carl Brune Astrophysics: H and He burning, S process Facilities: neutron and gamma beams, underground accelerators, ICF plasmas Joint DNP Town Meetings

More information

New results of CUORICINO on the way to CUORE

New results of CUORICINO on the way to CUORE New results of CUORICINO on the way to CUORE Laboratori Nazionali del Gran Sasso of INFN On behalf of the CUORE Collaboration The CUORE experiment CUORE (Cryogenic Underground Observatory for Rare Events)

More information

PHYSICAL REVIEW C 75, (2007) (Received 16 November 2006; published 12 March 2007)

PHYSICAL REVIEW C 75, (2007) (Received 16 November 2006; published 12 March 2007) PHYSICAL REVIEW C 75, 035805 (2007) 3 He(α, γ ) 7 Be cross section at low energies Gy. Gyürky, 1 F. Confortola, 2 H. Costantini, 2 A. Formicola, 3 D. Bemmerer, 4,5 R. Bonetti, 6 C. Broggini, 4 P. Corvisiero,

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics Jeff Blackmon (LSU) 1. Introduction, Formalism, Big Bang and H burning 2. He burning, Heavy elements & s process 3. Stellar Explosions Dominant source of energy generation in stars

More information

Experimental Study of Stellar Reactions at CNS

Experimental Study of Stellar Reactions at CNS Experimental Study of Stellar Reactions at CNS Shigeru KUBONO ( 久保野茂 ) Center for Nuclear Study (CNS) University of Tokyo 1. Nucleosynthesis under Explosive Conditions + CNS-RIKEN AVF-Upgrade Project 2.

More information

Nuclear Astrophysics with DRAGON at ISAC:

Nuclear Astrophysics with DRAGON at ISAC: Nuclear Astrophysics with DRAGON at ISAC: The 21 Na(p, γ) 22 Mg reaction John M. D Auria for the DRAGON Collaboration Simon Fraser University Burnaby, British Columbia, Canada Abstract The DRAGON facility

More information

Nuclear Binding Energy

Nuclear Binding Energy 5. NUCLEAR REACTIONS (ZG: P5-7 to P5-9, P5-12, 16-1D; CO: 10.3) Binding energy of nucleus with Z protons and N neutrons is: Q(Z, N) = [ZM p + NM n M(Z, N)] c 2. } {{ } mass defect Nuclear Binding Energy

More information

H/He burning reactions on unstable nuclei for Nuclear Astrophysics

H/He burning reactions on unstable nuclei for Nuclear Astrophysics H/He burning reactions on unstable nuclei for Nuclear Astrophysics PJ Woods University of Edinburgh H T O F E E U D N I I N V E B R U S I R T Y H G Explosive H/He burning in Binary Stars Isaac Newton,

More information

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration Status of CUORE and Results from CUORICINO SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration 11th Seminar on Innovative Particle and Radiation Detectors Siena, 1 October 2008

More information

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich) GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09 Neutrinos mixing

More information

Status of the CUORE experiment at Gran Sasso

Status of the CUORE experiment at Gran Sasso University and INFN Genova ICHEP 2012 MELBOURNE JULY 2012 on behalf of the CUORE collaboration Status of the CUORE experiment at Gran Sasso Double beta decay Rare nuclear decay: (A, Z) (A, Z+2) + 2e- (+2

More information

MAJOR NUCLEAR BURNING STAGES

MAJOR NUCLEAR BURNING STAGES MAJOR NUCLEAR BURNING STAGES The Coulomb barrier is higher for heavier nuclei with high charge: The first reactions to occur are those involving light nuclei -- Starting from hydrogen burning, helium burning

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Achim Weiss Max-Planck-Institut für Astrophysik 01/2014 Stellar Structure p.1 Stellar evolution overview 01/2014 Stellar Structure p.2 Mass ranges Evolution of stars with

More information

arxiv:nucl-ex/ v2 17 May 2004

arxiv:nucl-ex/ v2 17 May 2004 Astrophysical S-factor of 14 N(p, γ) 15 O arxiv:nucl-ex/31215v2 17 May 24 A.Formicola, 1 G.Imbriani, 2 H.Costantini, 3 C.Angulo, 4 D.Bemmerer, 5 R.Bonetti, 6 C.Broggini, 7 P.Corvisiero, 3 J.Cruz, 8 P.Descouvemont,

More information

The Monash Chemical Yields Project

The Monash Chemical Yields Project The Monash Chemical Yields Project Carolyn Doherty (Konkoly Observatory) George Angelou Simon W. Campbell Ross Church Thomas Constantino Sergio Cristallo Pilar Gil Pons Amanda Karakas John Lattanzio Maria

More information

Neutron capture cross sections of 69,71 Ga at n TOF EAR1

Neutron capture cross sections of 69,71 Ga at n TOF EAR1 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee Neutron capture cross sections of 69,71 Ga at n TOF EAR1 May 31, 2016 K. Göbel 1, S. Fiebiger 1, D.

More information

Measurement of very low (α,n) cross sections of astrophysical interest

Measurement of very low (α,n) cross sections of astrophysical interest doi:.88/1742-6596/665/1/012031 Measurement of very low (α,n) cross sections of astrophysical interest J L Tain 1, D Jordán 1, J Agramunt 1, A Algora 1, I Bandac 2, A Bettini 2,3 R Caballero-Folch 4, F

More information

arxiv: v1 [astro-ph.sr] 22 Jul 2011

arxiv: v1 [astro-ph.sr] 22 Jul 2011 Astronomy & Astrophysics manuscript no. Caciolli2011 AA arxiv c ESO 2011 July 25, 2011 Revision of the 15 N(p,γ) 16 O reaction rate and oxygen abundance in H burning zones A. Caciolli 1,2, C. Mazzocchi

More information

He-Burning in massive Stars

He-Burning in massive Stars He-Burning in massive Stars He-burning is ignited on the He and ashes of the preceding hydrogen burning phase! Most important reaction -triple alpha process 3 + 7.6 MeV Red Giant Evolution in HR diagram

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information