ILE, Osaka University ILE, Osaka February 3, 2014

Size: px
Start display at page:

Download "ILE, Osaka University ILE, Osaka February 3, 2014"

Transcription

1 Summary of Today s Workshop Hideaki Takabe (Aki) ILE, Osaka University ILE, Osaka February 3, 2014

2 Brief Summary Basic Science on (Astrophysics) Nuclear Physics with ps and ns Intense Lasers 1. NEEC (NEET) b-f process - Nuclear excitation (b-b: NEET) Plasma is essential 2. Neutron Source PW Laser - MeV Protons - MeV neutrons 3. NS-NS Merging Many r-process synthesis - Event rate (1/100 enough) 4. Many Mysteries Neutrino driven reactions. 6 Li problem - Photo-nuclear reaction etc.

3 Number Abundance (Si = 10 6 ) Solar System Abundance n-, g- & n- induced nuclear reactions play the significant roles in explosive element genesis! Big-Bang Nucleosynthesis 1,2 H, 3,4 He, 6,7 Li, etc. Stellar Fusion 12 C 56 Fe- 58 Ni, etc. (r-nuclei) (s-nuclei) Core-Collapse SNe & AGB: 56 Fe < A Iron peak Core Collapse Supernova n-processes r-nuclei 7 Li, 11 B np-nuclei 232 Th (14.05Gy) 238 U (4.47 Gy) B Cosmic Ray Spallation Li-Be-B, F, Na, etc. p-nuclei 92 Nb 98 Tc 138 La 180 Ta Mass Number A

4

5 Nucleosynthesis of heavy elements by photons in supernova explosions The p-nuclei are synthesized by two subsequent photon-induced reactions in O/Ne layers in supernova explosions

6 Type II SN Explosion Simulation

7 Luca Baiotti et al,

8 R and S Processes

9 Evolution of stars of different masses are represented in the Hertzsprung Russell diagram. The asymptotic giant branch is marked AGB in the case of a star of 2 solar masses.

10

11 r and s Processes in Astrophysics

12 Nuclear chart known: ~3,000 predicted: ~10,000 (7,000) Z (proton) + fission - ~300 Aug N (nuetron) APPC10

13 Nucleon density neutron 11 Li 208 Pb proton Stable nuclei Hallo Nucleus skin n-rich hallo drip-line excess neutrons: decoiupled strog p-n interaction by Tanihata.

14 Double decay - n mass - Astro-Cosmology Connection K. Yako et al., PRL 103 (2009) Experiment (RCNP, Osaka) Shell model (theory)

15 Nuclear-Plasma Interactions (NPI) can excite nuclear states with energies comparable to those of the surrounding plasma Photo-absorption Time Reverse: g-ray decay Well understood Atomic-nuclear (electron) interactions NEEC, NEET, IES Time Reverse: IC-decay e free/boun e free/bound d N Radiative Dielectronic N* Photons N B(E/M l) N* HEDP electrons Atom photons Nucleus Recombination Photons F(E g ), r(e x,j π ) NEET: measured once * NEEC: never observed *Phys. Rev. Lett (2000), Phys. Rev. C R (2006)

16 Counts 1 6 The 9.7 hour 12 - isomer in 196 Au might allow us to explore the interaction of highly-excited states with a HEDP 197 Au(n,2n) 196m Au 197 Au(n,2n) 196g Au This is entirely new Nuclear Physics N SRC data DT cryo with Y 14 =5x S n =6.642 MeV 100 Energy (kev) r 1 ev -1 { G 1 ev 197 Au 196 Au { r 1 ev -1 Vacant electron orbital

17 Unresolved Transition Array Fe Opacity: OPAL By Roger, Iglesias, Wilson

18 TNSA proton based nuclear-plasma experiment make 196m,g Au using the 198 Pt(p,3n) reaction Use TNSA protons from a petawatt laser to make an excited nucleus via the 198 Pt(p,3n) 196m,g Au 1 mm P t f o i l Use a long pulse (ns) laser to place the target nuclides into an HED plasma state a fixed amount of time after the TNSA protons arrive First experiment: Platinum in a plasma state when the protons hit Control experiment: Platinum put into a plasma state after the protons hit This experiment is well-suited to laser facilities such as GEKKO-XII+LFEX

19

20

21 Nuclear Fusion in the Sun CNO-cycle pp-chain

22 Figure: The astrophysical S-factor for the reaction 3 He( 3 He,2p) 4 He. The filled circles were obtained by an underground pilot experiment (LUNA) at the Gran Sasso facility. The solid or dashed curves indicate the inclusion (non-inclusion) of screening corrections. The Gamov peak marks the energy range probed under solar burning conditions, reached for the very first time by experiment

23

24

25 Vacuum Breakdown and Pair-Plasma Creations with Ultra-Intense Lasers Hideaki Takabe and Toseo Moritaka Institute of Laser Engineering Yamada-oka 2-6, Suita Osaka , Japan Osaka University, International Conference on Plasma Science and Applications, 4-6 December, 2013, Singapore

26 Science on NIF Committee just after the Evaluation July 15, 2010 at LLNL David Arnett*, University of Arizona Riccardo Betti, University of Rochester Roger Blandford, Stanford University Nathanial Fisch, Princeton University Ramon Leeper, Sandia National Lab. Christopher McKee, UC Berkeley Mordecai Rosen, LNL Robert Rosner, The Univ. of Chicago (Chair) John Sarrao, Los Alamos National Laboratory Hideaki Takabe, ILE, Osaka University Justin Wark, University of Oxford Choong-Shik Yoo, Washington State University 26

27 My Conclusion Plasma Nuclear Physics is New Discipline to Make Astrophysical Nucleosynthesis Precision Science The First Challenge with Laser looks NEEC, where Plasma is Essential Process. PW Laser Protons are Source of Monoenergetic Neutron Source Where will Such research Done in a Few Years?

28

Collisionless Shock and Particle Acceleration Computation and Experiment

Collisionless Shock and Particle Acceleration Computation and Experiment Collisionless Shock and Particle Acceleration Computation and Experiment H. Takabe (Aki) ILE, Osaka University, Japan Meudon Observatory, Paris December 3, 2011 1 Challenging Basic Science in Laboratory

More information

Nuclear-Plasma Interactions on highly excited states Workshop on Level Densities and Gamma Strength University of Oslo Oslo, Norway

Nuclear-Plasma Interactions on highly excited states Workshop on Level Densities and Gamma Strength University of Oslo Oslo, Norway Nuclear-Plasma Interactions on highly excited states Workshop on Level Densities and Gamma Strength University of Oslo Oslo, Norway Lee Bernstein May 27, 2013 Collaborators We need lots of them! D.H.G.

More information

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA)

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA) Fukuoka, Japan 23 August 2012 National Ignition Facility (NIF) LLNL-PRES-562760 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

More information

Astrophysical Nucleosynthesis

Astrophysical Nucleosynthesis R. D. Gehrz ASTRO 2001, Fall Semester 2018 1 RDG The Chemical Evolution of the Universe 2RDG 1 The Stellar Evolution Cycle 3 RDG a v a v X X V = v a + v X 4 RDG reaction rate r n n s cm ax a X r r ( E)

More information

James Maxwell ( )

James Maxwell ( ) From Atoms To Stars James Maxwell (1831 1879) Finalized the work of others on electricity and magnetism. He formulated Maxwell Equations for the electromagnetic field. His equations predicted the existence

More information

Nucleosynthesis. W. F. McDonough 1. Neutrino Science, Tohoku University, Sendai , Japan. (Dated: Tuesday 24 th April, 2018)

Nucleosynthesis. W. F. McDonough 1. Neutrino Science, Tohoku University, Sendai , Japan. (Dated: Tuesday 24 th April, 2018) Nucleosynthesis W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan (Dated: Tuesday 24 th April, 2018) Goals Where were

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 6/99 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 3873-3889 (1998)

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Nuclear Physics Questions, Directions, Applications

Nuclear Physics Questions, Directions, Applications Nuclear Physics Questions, Directions, Applications Science Questions & Goals of Nuclear Physics Implications of Nuclear Physics for other Fields Applications of Nuclear Physics in other Fields The Nuclear

More information

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H; In the Beginning Obviously, before we can have any geochemistry we need some elements to react with one another. The most commonly held scientific view for the origin of the universe is the "Big Bang"

More information

Zach Meisel, PAN 2016

Zach Meisel, PAN 2016 Nuclear Astrophysics Zach Meisel, PAN 2016 Nuclear Astrophysics is the study of: Energy generation in stars and stellar explosions Extremely dense matter The origin of the elements If the sun were powered

More information

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae I Outline of scenarios for neutron capture nucleosynthesis (Red Giants, Supernovae) and implications for laboratory

More information

Scientific goal in Nuclear Astrophysics is to explore:

Scientific goal in Nuclear Astrophysics is to explore: Nuclear Physics in Stars Michael Wiescher University of Notre Dame Joint Institute for Nuclear Astrophysics Scientific goal in Nuclear Astrophysics is to explore: Nuclear Signature in the Cosmos The Nuclear

More information

Perspectives on Nuclear Astrophysics

Perspectives on Nuclear Astrophysics Perspectives on Nuclear Astrophysics and the role of DUSEL Nuclear Astrophysics is a broad field that needs facilities from 1keV-100GeV A low energy accelerator DIANA a DUSEL is a unique instrument for

More information

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology 1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology Reading (all from White s Notes) Lecture 1: Introduction And Physics Of The Nucleus: Skim Lecture 1: Radioactive Decay- Read all Lecture 3:

More information

Nuclear Physics Questions, Achievements, Goals

Nuclear Physics Questions, Achievements, Goals Nuclear Physics Questions, Achievements, Goals Science Questions & Goals of Nuclear Physics Current status and instrumentation Implications of Nuclear Physics for other Fields The Nuclear Chart Proton:

More information

Studying Neutron-Induced Reactions for Basic Science and Societal Applications

Studying Neutron-Induced Reactions for Basic Science and Societal Applications Studying Neutron-Induced Reactions for Basic Science and Societal Applications Correlations in Hadronic and Partonic Interactions 2018 A. Couture Yerevan, Armenia 28 September 2018 Operated by Los Alamos

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

The LUNA - MV project at the Gran Sasso Laboratory

The LUNA - MV project at the Gran Sasso Laboratory The LUNA - MV project at the Gran Sasso Laboratory Roberto Menegazzo for the LUNA Collaboration 3ème Andromède Workshop - Orsay, 9 Juillet 2014 outlook LUNA: Why going underground to measure nuclear fusion

More information

Experimental Initiatives in Nuclear Astrophysics

Experimental Initiatives in Nuclear Astrophysics Experimental Initiatives in Nuclear Astrophysics Carl Brune Astrophysics: H and He burning, S process Facilities: neutron and gamma beams, underground accelerators, ICF plasmas Joint DNP Town Meetings

More information

Nuclear Astrophysics Underground Status & Future

Nuclear Astrophysics Underground Status & Future Nuclear Astrophysics Underground Status & Future Frank Strieder South Dakota School of Mines & Technology XV International Symposium on Nuclei in the Cosmos Laboratori Nazionali del Gran Sasso, Assergi,

More information

Nuclear Astrophysics - I

Nuclear Astrophysics - I Nuclear Astrophysics - I Carl Brune Ohio University, Athens Ohio Exotic Beam Summer School 2016 July 20, 2016 Astrophysics and Cosmology Observations Underlying Physics Electromagnetic Spectrum: radio,

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

Astronomy 404 October 9, 2013

Astronomy 404 October 9, 2013 Nuclear reaction rate: Astronomy 404 October 9, 2013 from the tunneling increases with increasing E from the velocity distrib. decreases with increasing E The Gamow peak occurs at energy Energy generation

More information

Stellar processes, nucleosynthesis OUTLINE

Stellar processes, nucleosynthesis OUTLINE Stellar processes, nucleosynthesis OUTLINE Reading this week: White 313-326 and 421-464 Today 1. Stellar processes 2. Nucleosynthesis Powerpoint credit: Using significant parts of a WHOI ppt 1 Question

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

Conceptos generales de astrofísica

Conceptos generales de astrofísica Tema 14 Conceptos generales de astrofísica Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela 1 1. Nuclear Astrophysic s domain Nuclear Astrophysics is a relatively

More information

Nuclear astrophysics studies with charged particles in hot plasma environments

Nuclear astrophysics studies with charged particles in hot plasma environments Nuclear astrophysics studies with charged particles in hot plasma environments Manoel Couder University of Notre Dame Summary I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS Accelerator based nuclear

More information

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows Heavy Element Nucleosynthesis A summary of the nucleosynthesis of light elements is as follows 4 He Hydrogen burning 3 He Incomplete PP chain (H burning) 2 H, Li, Be, B Non-thermal processes (spallation)

More information

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018 : Lecture 1 Chris Wrede National Nuclear Physics Summer School June 19 th, 2018 Outline Lecture 1: Introduction & charged-particle reactions Lecture 2: Neutron-capture reactions Lecture 3: What I do (indirect

More information

Extreme Light Infrastructure - Nuclear Physics ELI - NP

Extreme Light Infrastructure - Nuclear Physics ELI - NP Extreme Light Infrastructure - Nuclear Physics ELI - NP Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering (IFIN-HH) Bucharest-Magurele, Romania www.eli-np.ro Bucharest-Magurele

More information

How to Build a Habitable Planet Summary. Chapter 1 The Setting

How to Build a Habitable Planet Summary. Chapter 1 The Setting How to Build a Habitable Planet Summary Chapter 1 The Setting The universe as we know it began about 15 billion years ago with an explosion that is called the big bang. There is no record of any prior

More information

PHY320 Class Test Topic 1 Elemental Abundances All questions are worth 1 mark unless otherwise stated

PHY320 Class Test Topic 1 Elemental Abundances All questions are worth 1 mark unless otherwise stated Topic 1 Elemental Abundances 1. What is the origin of the Earth s atmosphere? 2. Name the 2 distinct topographical regions on the Moon. 3. In the model of chemical affinities which class of elements forms

More information

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with:

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with: This is a one quarter course dealing chiefly with: ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS Spring, 2015 http://www.ucolick.org/~woosley a) Nuclear astrophysics and the relevant

More information

Nuclear Burning in Astrophysical Plasmas

Nuclear Burning in Astrophysical Plasmas Nuclear Burning in Astrophysical Plasmas Lecture 1: Elements, charge number Z (sorry for the German) Friedrich-Karl Thielemann Department of Physics University of Basel Isotopes A=Z+N Statistical Mechanics

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

The dying sun/ creation of elements

The dying sun/ creation of elements The dying sun/ creation of elements Homework 6 is due Thurs, 2 April at 6:00am OBAFGKM extra credit Angel: Lessons>Extra Credit Due 11:55pm, 31 March Final exam (new, later time) 6 May, 3:00-5:00, BPS

More information

Origin of Elements OUR CONNECTION TO THE STARS

Origin of Elements OUR CONNECTION TO THE STARS Origin of Elements OUR CONNECTION TO THE STARS The smallest piece of an element is a single atom. What makes an atom of one element different from an atom of another element? Atoms are made of: Atoms and

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics I. Stellar burning Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008 1 / 32

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

:Lecture 27: Stellar Nucleosynthesis. Cassieopia A

:Lecture 27: Stellar Nucleosynthesis. Cassieopia A :Lecture 27: Stellar Nucleosynthesis Cassieopia A Major nuclear burning processes Common feature is release of energy by consumption of nuclear fuel. Rates of energy release vary enormously. Nuclear processes

More information

Cosmic Rays in the Galaxy

Cosmic Rays in the Galaxy 1, Over View Cosmic Rays in the Galaxy Discovery : Legendary baloon flight of Victor Hess Observation of Cosmic Rays : Satellite, Balloon (Direct), Air shower (Indirect) Energy Spectrum of Cosmic Rays

More information

Nuclear Physics Opportunities at OMEGA and the NIF

Nuclear Physics Opportunities at OMEGA and the NIF Nuclear Physics Opportunities at OMEGA and the NIF D.P. McNabb (LLNL) D.T. Casey, J.A. Frenje, C.K. Li, R.D. Petrasso, F.H. Seguin (MIT) P.W. McKenty, T.C. Sangster, P.B. Radha (U. Rochester) L. Bernstein,

More information

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso I.N.F.N., Sezione di Genova, Italy Via Dodecanneso, 16146 Genoa (Italy) E-mail: sandra.zavatarelli@ge.infn.it Solar neutrinos

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

Core evolution for high mass stars after helium-core burning.

Core evolution for high mass stars after helium-core burning. The Carbon Flash Because of the strong electrostatic repulsion of carbon and oxygen, and because of the plasma cooling processes that take place in a degenerate carbon-oxygen core, it is extremely difficult

More information

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul

Type Ia Supernova. White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul Type Ia Supernova White dwarf accumulates mass from (Giant) companion Exceeds Chandrasekar limit Goes supernova Ia simul Last stage of superheavy (>10 M ) stars after completing Main Sequence existence

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics III: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 18, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 18, 2008

More information

Chemical Evolution of the Universe

Chemical Evolution of the Universe Chemical Evolution of the Universe Part 5 Jochen Liske Fachbereich Physik Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomical news of the week Astronomical news of the week Astronomical news

More information

Cosmic Fission: the Synthesis of the Heavy Elements and the role of Fission

Cosmic Fission: the Synthesis of the Heavy Elements and the role of Fission Cosmic Fission: the Synthesis of the Heavy Elements and the role of Fission Sunniva Johanne Rose Trial lecture 29th March 2017 In 2002, the American Research Council made a list over the 11 Greatest Unanswered

More information

How Nature makes gold

How Nature makes gold How Nature makes gold The role of isotopes for the origin of the elements Karlheinz Langanke GSI Helmholtzzentrum Darmstadt AAAS Symposium, Vancouver, February 20, 2012 Signatures of Nucleosynthesis solar

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars Today Stars Evolution of High Mass Stars Nucleosynthesis Supernovae - the explosive deaths of massive stars 1 Another good job on exam! Class average was 71% Given the difficulty of the exam, this was

More information

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis Lecture #1: Nuclear and Thermonuclear Reactions Prof. Christian Iliadis Nuclear Reactions Definition of cross section: = N r N 0 N t Unit: 1 barn=10-28 m 2 Example: 1 H + 1 H 2 H + e + + ν (first step

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Nucleosynthesis in core-collapse supernovae Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe, p-process shock wave heats falling matter shock

More information

Figure 2.11 from page 152 of Exploring the Heart of Ma2er

Figure 2.11 from page 152 of Exploring the Heart of Ma2er Nuclear Astrophysics The aim of nuclear astrophysics is to understand those nuclear reacbons that shape much of the nature of the visible universe. Nuclear fusion is the engine of stars; it produces the

More information

From Notre Dame to National Labs: Cross sections at no charge!

From Notre Dame to National Labs: Cross sections at no charge! From Notre Dame to National Labs: Cross sections at no charge! NSL 80 th Anniversary Celebration A. Couture 8 April 2018 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's

More information

Neutron-to-proton ratio

Neutron-to-proton ratio Neutron-to-proton ratio After one second, the Universe had cooled to 10 13 K. The Universe was filled with protons, neutrons, electrons, and neutrinos. The temperature was high enough that they interconverted

More information

the astrophysical formation of the elements

the astrophysical formation of the elements the astrophysical formation of the elements Rebecca Surman Union College Second Uio-MSU-ORNL-UT School on Topics in Nuclear Physics 3-7 January 2011 the astrophysical formation of the elements Chart of

More information

Life of stars, formation of elements

Life of stars, formation of elements Life of stars, formation of elements Recap life of sun Life of massive stars Creation of elements Formation of stars Profs. Jack Baldwin & Horace Smith will teach course for the remainder of the term to

More information

Evolution and nucleosynthesis prior to the AGB phase

Evolution and nucleosynthesis prior to the AGB phase Evolution and nucleosynthesis prior to the AGB phase Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars, and the evolution

More information

Series Lecture on Laser Plasma Physics

Series Lecture on Laser Plasma Physics Series Lecture on Laser Plasma Physics at Shanghai Jiao Tong University June 27&28, July 4&5, 2009 H. Takabe (Aki) Professor, Institute of Laser Engineering and School for Physics and School for Space

More information

Neutrinos and Nucleosynthesis

Neutrinos and Nucleosynthesis Neutrinos and Nucleosynthesis The effect of neutrinos on nucleosynthesis in core-collapse supernovae Franziska Treffert (Matrikelnummer: 2044556) Seminar zur Kernstruktur und nuklearen Astrophysik Prof.

More information

Light Element Nucleosynthesis: The Li-Be-B Story

Light Element Nucleosynthesis: The Li-Be-B Story Light Element Nucleosynthesis: The Li-Be-B Story Jake VanderPlas Phys 554 12-6-2007 Mz3: Hubble Heritage Image Presentation Summary The Problem of Light Elements Big Bang Nucleosynthesis Cosmic Ray Nucleosynthesis

More information

Recent neutron capture measurements at FZK

Recent neutron capture measurements at FZK René Reifarth Recent neutron capture measurements at FZK Outline: Overview of s-process nucleosynthesis Nuclear data needs for the s-process where do we stand? Recent (n,γ) cross section measurements at

More information

Internal conversion electrons and SN light curves

Internal conversion electrons and SN light curves Internal conversion electrons and SN light curves International School of Nuclear Physics 32nd Course: Particle and Nuclear Astrophysics September 23, 2010, Erice Ivo Rolf Seitenzahl DFG Emmy Noether Research

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Abundance of Elements. Relative abundance of elements in the Solar System

Abundance of Elements. Relative abundance of elements in the Solar System Abundance of Elements Relative abundance of elements in the Solar System What is the origin of elements in the universe? Three elements formed in the first minutes after the big bang (hydrogen, helium

More information

Particles in the Early Universe

Particles in the Early Universe Particles in the Early Universe David Morrissey Saturday Morning Physics, October 16, 2010 Using Little Stuff to Explain Big Stuff David Morrissey Saturday Morning Physics, October 16, 2010 Can we explain

More information

Astrochemistry. Special course in astronomy 53855, 5 op. Jorma Harju, Julien Montillaud, Olli Sipilä. Department of Physics

Astrochemistry. Special course in astronomy 53855, 5 op. Jorma Harju, Julien Montillaud, Olli Sipilä. Department of Physics Astrochemistry Special course in astronomy 53855, 5 op Jorma Harju, Julien Montillaud, Olli Sipilä Department of Physics Spring 2013, Fridays 12:15-13:45, Lecture room D117 Course web page http://www.courses.physics.helsinki.fi/astro/astrokemia

More information

Three-dimensional nuclear chart; Understanding of nuclear physics and nucleosynthesis in star.

Three-dimensional nuclear chart; Understanding of nuclear physics and nucleosynthesis in star. 日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository Title Author(s) Citation Text Version URL DOI Right Three-dimensional nuclear chart; Understanding of nuclear physics and nucleosynthesis

More information

A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis

A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis X-ray Optical Infrared Radio Aimee Hungerford INT - July 28, 2011 Circle of Scientific Life Cas A Properties Fast moving Nitrogen knots

More information

Neutrinos and Nucleosynthesis

Neutrinos and Nucleosynthesis Neutrinos and Nucleosynthesis The effect of neutrinos on nucleosynthesis in core-collapse supernovae by Franziska Treffert [1] 25.05.2016 Seminar Kernstruktur und nukleare Astrophysik Neutrinos and Nucleosynthesis

More information

Evolution, Death and Nucleosynthesis of the First Stars

Evolution, Death and Nucleosynthesis of the First Stars First Stars IV, Kyoto, Japan, May 24, 2012 Alexander Heger Stan Woosley Ken Chen Pamela Vo Bernhad Müller Thomas Janka Candace Joggerst http://cosmicexplosions.org Evolution, Death and Nucleosynthesis

More information

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability.

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability. Radioactive Decay Mechanisms (cont.) Beta (β) Decay: Radioactive decay process in which the charge of the nucleus is changed without any change in the number of nucleons. There are three types of beta

More information

Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process )

Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process ) Laser Compton Scattering Gamma-Ray Experiments for Supernova Neutrino Process ) Takehito HAYAKAWA 1,2), Shuji MIYAMOTO 3), Takayasu MOCHIZUKI 3), Ken HORIKAWA 3), Sho AMANO 3), Dazhi LI 4), Kazuo IMAZAKI

More information

Reaction measurements on and with radioactive isotopes for nuclear astrophysics

Reaction measurements on and with radioactive isotopes for nuclear astrophysics Reaction measurements on and with radioactive isotopes for nuclear astrophysics René Reifarth GSI Darmstadt/University of Frankfurt NUCL Symposium: Radiochemistry at the Facility for Rare Isotope Beams

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 1 - Course Organiser: Deputy: Dr E. Rizvi (room 401) Prof. J. Emerson My Office hours 1000 1100 Thursday 3 lecture slots per week Thursday

More information

Primordial (Big Bang) Nucleosynthesis

Primordial (Big Bang) Nucleosynthesis Primordial (Big Bang) Nucleosynthesis H Li Be Which elements? He METALS - 1942: Gamow suggests a Big Bang origin of the elements. - 1948: Alpher, Bethe & Gamow: all elements are synthesized minutes after

More information

Chapter CHAPTER 11 ORIGIN OF THE ELEMENTS

Chapter CHAPTER 11 ORIGIN OF THE ELEMENTS Chapter 11 165 CHAPTER 11 ORIGIN OF THE ELEMENTS The nuclear reactions of the early universe lead to the production of light nuclei like 2 H and 4 He. There are few reaction pathways leading to nuclei

More information

Nuclear Reactions and Astrophysics: a (Mostly) Qualitative Introduction

Nuclear Reactions and Astrophysics: a (Mostly) Qualitative Introduction Nuclear Reactions and Astrophysics: a (Mostly) Qualitative Introduction Barry Davids, TRIUMF Key Concepts Lecture 2013 Introduction To observe the nucleus, we must use radiation with a (de Broglie) wavelength

More information

Stellar Nucleosynthesis

Stellar Nucleosynthesis 21 November 2006 by JJG Stellar Nucleosynthesis Figure 1 shows the relative abundances of solar system elements versus atomic number Z, the number of protons in the nucleus. A theory of nucleosynthesis

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Supernova Nucleosynthesis

Supernova Nucleosynthesis Supernova Nucleosynthesis Andrea Kulier Princeton University, Department of Astrophysical Sciences November 25, 2009 Outline o Overview o Core-Collapse Supernova Nucleosynthesis o Explosive Nucleosynthesis

More information

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern Measurement of the 62,63 Ni(n,γ) cross section at n_tof/cern University of Vienna 01. September 2011 ERAWAST II, Zürich Nucleosynthesis of heavy elements BB fusion neutrons Abundance (Si=10 6 ) Fe Mass

More information

Nuclear Binding Energy

Nuclear Binding Energy 5. NUCLEAR REACTIONS (ZG: P5-7 to P5-9, P5-12, 16-1D; CO: 10.3) Binding energy of nucleus with Z protons and N neutrons is: Q(Z, N) = [ZM p + NM n M(Z, N)] c 2. } {{ } mass defect Nuclear Binding Energy

More information

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX)

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) 1 Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) K. Mima 1), H. Azechi 1), H. Fujita 1), Y. Izawa 1), T. Jitsuno 1), T. Johzaki 1), Y. Kitagawa

More information

Theory for nuclear processes in stars and nucleosynthesis

Theory for nuclear processes in stars and nucleosynthesis Theory for nuclear processes in stars and nucleosynthesis Gabriel Martínez Pinedo Nuclear Astrophysics in Germany November 15-16, 2016 Nuclear Astrophysics Virtual Institute Outline 1 Ab-initio description

More information

The r-process and the νp-process

The r-process and the νp-process The r-process and the νp-process Carla Fröhlich Enrico Fermi Fellow The Enrico Fermi Institute University of Chicago GCE April 30 / 2010 Solar System Abundances?? 2 s-process peak r-process peak s-process

More information

CNO(I) Cycle in Steady Flow

CNO(I) Cycle in Steady Flow Types of Equilibria Steady Flow of Reactions Chemical Equilibrium of Reactions Complete Chemical Equilibrium (NSE) Clusters of Chemical Equilbrium (QSE) QSE Clusters linked by Steady Flow CNO(I) Cycle

More information

Evolution of High Mass Stars

Evolution of High Mass Stars Luminosity (L sun ) Evolution of High Mass Stars High Mass Stars O & B Stars (M > 4 M sun ): Burn Hot Live Fast Die Young Main Sequence Phase: Burn H to He in core Build up a He core, like low-mass stars

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Achim Weiss Max-Planck-Institut für Astrophysik 01/2014 Stellar Structure p.1 Stellar evolution overview 01/2014 Stellar Structure p.2 Mass ranges Evolution of stars with

More information

A proposed muon facility at RAON/Korea

A proposed muon facility at RAON/Korea A proposed muon facility at RAON/Korea 1 A proposed muon facility at RAON/Korea Eunil Won Korea University International Symposium on Science Explored by Ultra Slow Muon, Aug. 9-12, 2013 1 Contents A new

More information