CS 173: Discrete Structures. Eric Shaffer Office Hour: Wed. 12, 2215 SC


 Cameron Merritt
 1 years ago
 Views:
Transcription
1 CS 173: Discrete Structures Eric Shaffer Office Hour: Wed. 12, 2215 SC
2 Agenda Sets (sections 2.1, 2.2) 2
3 Set Theory Sets you should know: Notation you should know: 3
4 Set Theory  Definitions and notation A set is an unordered collection of elements. Some examples: {1, 2, 3} is the set containing 1 and 2 and 3. {1, 1, 2, 3, 3} = {1, 2, 3} since repetition is irrelevant. {1, 2, 3} = {3, 2, 1} since sets are unordered. {1, 2, 3, } is a way we denote an infinite set (in this case, the natural numbers). = {} is the empty set, or the set containing no elements. Note: { } 4
5 Set Theory  Definitions and notation x S means x is an element of set S. x S means x is not an element of set S. A B means A is a subset of B. or, B contains A. or, every element of A is also in B. or, x ((x A) (x B)). A B Venn Diagram 5
6 Set Theory  Definitions and notation A B means A is a subset of B. A B means A is a superset of B. A = B if and only if A and B have exactly the same elements. iff, A B and B A iff, A B and A B iff, x ((x A) (x B)). So to show equality of sets A and B, show: A B B A 6
7 Set Theory  Definitions and notation A B means A is a proper subset of B. A B, and A B. x ((x A) (x B)) x ((x B) (x A)) x ((x A) (x B)) x ( (x B) v (x A)) x ((x A) (x B)) x ((x B) (x A)) x ((x A) (x B)) x ((x B) (x A)) A B 7
8 Set Theory  Definitions and notation Quick examples: {1,2,3} {1,2,3,4,5} {1,2,3} {1,2,3,4,5} Is {1,2,3}? Yes! x (x ) (x {1,2,3}) Vacuously holds, because (x ) is false. Is {1,2,3}? No Is {,1,2,3}?! Yes! Is {,1,2,3}? Yes! 8
9 Quiz time: Set Theory  Definitions and notation Is {x} {x}? Yes Is {x} {x,{x}}? Is {x} {x,{x}}? Yes Yes Is {x} {x}? No 9
10 Set Theory  Ways to define sets Explicitly: {John, Paul, George, Ringo} Implicitly: {1,2,3, }, or {2,3,5,7,11,13,17, } Set builder: { x : x is prime }, { x x is odd }. In general { x : P(x) is true }, where P(x) is some description of the set. : and are read such that or where Ex. Let D(x,y) denote x is divisible by y. Give another name for { x : y ((y > 1) (y < x)) D(x,y) }. Primes Can we use any predicate P to define a set S = { x : P(x) }? 10
11 Set Theory  Russell s Paradox Can we use any predicate P to define a set S = { x : P(x) }? Define S = { x : x is a set where x x } No! Then, if S S, then by defn of S, S S. So S must not be in S, right? But, if S S, then by defn of S, S S. ARRRGH! There is a town with a barber who shaves all the people (and only the people) who don t shave themselves. Who shaves the barber? 11
12 Set Theory  Cardinality If S is finite, then the cardinality of S, S, is the number of distinct elements in S. If S = {1,2,3}, S = 3. If S = {3,3,3,3,3}, S = 1. If S =, S = 0. If S = {, { }, {,{ }} }, S = 3. If S = {0,1,2,3, }, S is infinite. (more on this later) 12
13 Set Theory  Power sets If S is a set, then the power set of S is 2 S = { x : x S }. aka P(S) If S = {a}, If S = {a,b}, If S =, 2 S = {, {a}}. We say, P(S) is the set of all subsets of S. If S = {,{ }}, 2 S = {, { }, {{ }}, {,{ }}}. Fact: if S is finite, 2 S = 2 S. (if S = n, 2 S = 2 n ) 13
14 Set Theory  Cartesian Product The Cartesian Product of two sets A and B is: A x B = { <a,b> : a A b B} If A = {Charlie, Lucy, Linus}, and B = {Brown, VanPelt}, then A x B = {<Charlie, Brown>, <Lucy, Brown>, <Linus, Brown>, <Charlie, VanPelt>, <Lucy, VanPelt>, <Linus, VanPelt>} We ll use these special sets soon! A 1 x A 2 x x A n = {<a 1, a 2,, a n >: a 1 A 1, a 2 A 2,, a n A n } A,B finite AxB =? 14
15 Set Theory  Cartesian Product The Cartesian Product of two sets A and B is: A x B = { <a,b> : a A b B} A,B finite AxB =? 15
16 Set Theory  Operators The union of two sets A and B is: A B = { x : x A v x B} If A = {Charlie, Lucy, Linus}, and B = {Lucy, Desi}, then A B = {Charlie, Lucy, Linus, Desi} B A 16
17 Set Theory  Operators The intersection of two sets A and B is: A B = { x : x A x B} If A = {Charlie, Lucy, Linus}, and B = {Lucy, Desi}, then A B = {Lucy} B A 17
18 Set Theory  Operators The intersection of two sets A and B is: A B = { x : x A x B} If A = {x : x is a US president}, and B = {x : x is deceased}, then A B = {x : x is a deceased US president} B A 18
19 Set Theory  Operators The intersection of two sets A and B is: A B = { x : x A x B} If A = {x : x is a US president}, and B = {x : x is in this room}, then A B = {x : x is a US president in this room} = B A Sets whose intersection is empty are called disjoint sets 19
20 Set Theory  Operators The complement of a set A is: A = { x : x A} If A = {x : x is bored}, then A = {x : x is not bored} U = A = U and U = 20
21 The set difference, A  B, is: Set Theory  Operators U B A A  B = { x : x A x B } A  B = A B 21
22 Set Theory  Operators The symmetric difference, A B, is: A B = { x : (x A x B) v (x B x A)} = (A  B) U (B  A) like exclusive or U B A 22
23 Set Theory  Operators A B = { x : (x A x B) v (x B x A)} = (A  B) U (B  A) Proof : { x : (x A x B) v (x B x A)} = { x : (x A  B) v (x B  A)} = { x : x ((A  B) U (B  A))} = (A  B) U (B  A) 23
24 Set Theory  Famous Identities Page 124 Mostly like HS algebra. Don t memorize understand them 24
25 Set Theory  Famous Identities Identity A U = A A U = A Domination Idempotent A U U = U A = A A U A = A A A = A (Lazy) 25
26 Set Theory  Famous Identities Excluded Middle A U A = U Uniqueness A A = Double complement A = A 26
27 Set Theory  Famous Identities Commutativity A U B = A B = B U A B A Associativity (A U B) U C = (A B) C = A U (B U C) A (B C) Distributivity A U (B C) = A (B U C) = (A U B) (A U C) (A B) U (A C) 27
28 Set Theory  Famous Identities DeMorgan s I (A U B) = A B DeMorgan s II (A B) = A U B p q 28
29 Set Theory  4 Ways to prove identities Show that A B and that A B. New & important Use a membership table. Like truth tables Use previously proven identities. Like Use logical equivalences to prove equivalent set definitions. Not hard, a little tedious 29
30 Set Theory  4 Ways to prove identities Prove that (A U B) = A B using a membership table. 0 : x is not in the specified set 1 : otherwise A B A B A B A U B A U B Haven t we seen this before? 30
31 CS 173 Set Theory  4 Ways to prove identities Prove that (A U B) = A B using identities. (A U B) = A U B = A B = A B 31
32 CS 173 Set Theory  4 Ways to prove identities Prove that (A U B) = A B equivalent set definitions. using logically (A U B) = {x : (x A v x B)} = {x : (x A) (x B)} = {x : (x A) (x B)} = A B 32
33 Set Theory  4 Ways to prove identities Prove that (A U B) = A B 1. ( ) (x A U B) 2. ( ) (x A B) 33
34 Set Theory  A proof for us to do together. X (Y  Z) = (X Y)  (X Z). True or False? Prove your response. (X Y)  (X Z) = (X Y) (X Z) = (X Y) (X U Z ) = (X Y X ) U (X Y Z ) = U (X Y Z ) = (X Y Z ) 34
35 Set Theory  A proof for us to do together. Pv that if (A  B) U (B  A) = (A U B) then A B = a) A U B = Suppose to the contrary, that A B, and that x A B. b) A = B c) A B = Then x cannot be in AB and x cannot be in BA. d) AB = BA = DeMorgan s!! Then x is not in (A  B) U (B  A). Do you see the contradiction yet? But x is in A U B since (A B) (A U B). Thus, A B =. Trying to pv p > q Assume p and not q, and find a contradiction. Our contradiction was that sets weren t equal. 35
Sec$on Summary. Definition of sets Describing Sets
Section 2.1 Sec$on Summary Definition of sets Describing Sets Roster Method SetBuilder Notation Some Important Sets in Mathematics Empty Set and Universal Set Subsets and Set Equality Cardinality of Sets
More informationSets. Introduction to Set Theory ( 2.1) Basic notations for sets. Basic properties of sets CMSC 302. Vojislav Kecman
Introduction to Set Theory ( 2.1) VCU, Department of Computer Science CMSC 302 Sets Vojislav Kecman A set is a new type of structure, representing an unordered collection (group, plurality) of zero or
More informationSets are one of the basic building blocks for the types of objects considered in discrete mathematics.
Section 2.1 Introduction Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Important for counting. Programming languages have set operations. Set theory
More informationSet Theory. CSE 215, Foundations of Computer Science Stony Brook University
Set Theory CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Set theory Abstract set theory is one of the foundations of mathematical thought Most mathematical
More informationCS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic:
x NOT ~x x y AND x /\ y x y OR x \/ y Figure 1: Types of gates in a digital circuit. CS2742 midterm test 2 study sheet Boolean circuits: Boolean circuits is a generalization of Boolean formulas in which
More informationChapter 2 Sets, Relations and Functions
Chapter 2 Sets, Relations and Functions Key Topics Sets Set Operations Russell s Paradox Relations Composition of Relations Reflexive, Symmetric and Transitive Relations Functions Partial and Total Functions
More informationSets. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007
Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 1 / 42 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.1, 2.2 of Rosen Introduction I Introduction
More information3.4 Set Operations Given a set A, the complement (in the Universal set U) A c is the set of all elements of U that are not in A. So A c = {x x / A}.
3.4 Set Operations Given a set, the complement (in the niversal set ) c is the set of all elements of that are not in. So c = {x x /. (This type of picture is called a Venn diagram.) Example 39 Let = {1,
More informationSets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary
An Algebra on Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing Spring, 2018 Alice E. Fischer... 1/37 An Algebra on 1 Definitions and Notation Venn Diagrams 2 An Algebra on 3 Alice E. Fischer...
More informationChapter 4. Basic Set Theory. 4.1 The Language of Set Theory
Chapter 4 Basic Set Theory There are two good reasons for studying set theory. First, it s a indispensable tool for both logic and mathematics, and even for other fields including computer science, linguistics,
More informationPropositional Logic, Predicates, and Equivalence
Chapter 1 Propositional Logic, Predicates, and Equivalence A statement or a proposition is a sentence that is true (T) or false (F) but not both. The symbol denotes not, denotes and, and denotes or. If
More informationDiscrete Mathematical Structures: Theory and Applications
Chapter 1: Foundations: Sets, Logic, and Algorithms Discrete Mathematical Structures: Theory and Applications Learning Objectives Learn about sets Explore various operations on sets Become familiar with
More informationEquivalence and Implication
Equivalence and Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing February 7 8, 2018 Alice E. Fischer Laws of Logic... 1/33 1 Logical Equivalence Contradictions and Tautologies 2 3 4 Necessary
More informationLogic Synthesis and Verification
Logic Synthesis and Verification Boolean Algebra JieHong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2014 1 2 Boolean Algebra Reading F. M. Brown. Boolean Reasoning:
More informationCISC 1100: Structures of Computer Science
CISC 1100: Structures of Computer Science Chapter 2 Sets and Sequences Fordham University Department of Computer and Information Sciences Fall, 2010 CISC 1100/Fall, 2010/Chapter 2 1 / 49 Outline Sets Basic
More informationTopics in Logic and Proofs
Chapter 2 Topics in Logic and Proofs Some mathematical statements carry a logical value of being true or false, while some do not. For example, the statement 4 + 5 = 9 is true, whereas the statement 2
More informationA Semester Course in Basic Abstract Algebra
A Semester Course in Basic Abstract Algebra Marcel B. Finan Arkansas Tech University c All Rights Reserved December 29, 2011 1 PREFACE This book is an introduction to abstract algebra course for undergraduates
More informationThis section will take the very naive point of view that a set is a collection of objects, the collection being regarded as a single object.
1.10. BASICS CONCEPTS OF SET THEORY 193 1.10 Basics Concepts of Set Theory Having learned some fundamental notions of logic, it is now a good place before proceeding to more interesting things, such as
More informationCS 340: Discrete Structures for Engineers
CS 340: Discrete Structures for Engineers Instructor: Prof. Harry Porter Office: FAB 11506 harry@cs.pdx.edu Hours: Mon 34, Wed 34, or by appointment Website: web.cecs.pdx.edu/~harry/discrete Class Mailing
More informationChapter 2: The Logic of Quantified Statements. January 22, 2010
Chapter 2: The Logic of Quantified Statements January 22, 2010 Outline 1 2.1 Introduction to Predicates and Quantified Statements I 2 2.2  Introduction to Predicates and Quantified Statements II 3 2.3
More informationChapter 1 Math Set: a collection of objects. For example, the set of whole numbers is W = {0, 1, 2, 3, }
Chapter 1 Math 3201 1 Chapter 1: Set Theory: Organizing information into sets and subsets Graphically illustrating the relationships between sets and subsets using Venn diagrams Solving problems by using
More informationAxioms of Probability
Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing
More informationCHAPTER 1. MATHEMATICAL LOGIC 1.1 Fundamentals of Mathematical Logic
CHAPER 1 MAHEMAICAL LOGIC 1.1 undamentals of Mathematical Logic Logic is commonly known as the science of reasoning. Some of the reasons to study logic are the following: At the hardware level the design
More informationContradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730
MATH 2730 Contradiction Benjamin V.C. Collins James A. Swenson Contrapositive The contrapositive of the statement If A, then B is the statement If not B, then not A. A statement and its contrapositive
More informationFoundations Revision Notes
oundations Revision Notes hese notes are designed as an aid not a substitute for revision. A lot of proofs have not been included because you should have them in your notes, should you need them. Also,
More informationHANDOUT AND SET THEORY. Ariyadi Wijaya
HANDOUT LOGIC AND SET THEORY Ariyadi Wijaya Mathematics Education Department Faculty of Mathematics and Natural Science Yogyakarta State University 2009 1 Mathematics Education Department Faculty of Mathematics
More informationMathematical Preliminaries. Sipser pages 128
Mathematical Preliminaries Sipser pages 128 Mathematical Preliminaries This course is about the fundamental capabilities and limitations of computers. It has 3 parts 1. Automata Models of computation
More informationReal Analysis: Part I. William G. Faris
Real Analysis: Part I William G. Faris February 2, 2004 ii Contents 1 Mathematical proof 1 1.1 Logical language........................... 1 1.2 Free and bound variables...................... 3 1.3 Proofs
More informationChapter 1. Logic and Proof
Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known
More informationAnalysis 1. Lecture Notes 2013/2014. The original version of these Notes was written by. Vitali Liskevich
Analysis 1 Lecture Notes 2013/2014 The original version of these Notes was written by Vitali Liskevich followed by minor adjustments by many Successors, and presently taught by Misha Rudnev University
More informationLecture Notes 1 Basic Concepts of Mathematics MATH 352
Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,
More informationSection 2.1: Introduction to the Logic of Quantified Statements
Section 2.1: Introduction to the Logic of Quantified Statements In the previous chapter, we studied a branch of logic called propositional logic or propositional calculus. Loosely speaking, propositional
More informationFormal Languages, Automata and Models of Computation
CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content  More Properties of Regular Languages (RL)
More informationPropositional and Predicate Logic
Propositional and Predicate Logic CS 53605: Science of Programming This is for Section 5 Only: See Prof. Ren for Sections 1 4 A. Why Reviewing/overviewing logic is necessary because we ll be using it
More informationLogic. Facts (with proofs) CHAPTER 1. Definitions
CHAPTER 1 Logic Definitions D1. Statements (propositions), compound statements. D2. Truth values for compound statements p q, p q, p q, p q. Truth tables. D3. Converse and contrapositive. D4. Tautologies
More informationCSE 20. Lecture 4: Introduction to Boolean algebra. CSE 20: Lecture4
CSE 20 Lecture 4: Introduction to Boolean algebra Reminder First quiz will be on Friday (17th January) in class. It is a paper quiz. Syllabus is all that has been done till Wednesday. If you want you may
More information(2) Generalize De Morgan s laws for n sets and prove the laws by induction. 1
ARS DIGITA UNIVERSITY MONTH 2: DISCRETE MATHEMATICS PROFESSOR SHAI SIMONSON PROBLEM SET 2 SOLUTIONS SET, FUNCTIONS, BIGO, RATES OF GROWTH (1) Prove by formal logic: (a) The complement of the union of
More informationMATH 120. Test 1 Spring, 2012 DO ALL ASSIGNED PROBLEMS. Things to particularly study
MATH 120 Test 1 Spring, 2012 DO ALL ASSIGNED PROBLEMS Things to particularly study 1) Critical Thinking Basic strategies Be able to solve using the basic strategies, such as finding patterns, questioning,
More informationHW 4 SOLUTIONS. , x + x x 1 ) 2
HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A
More informationCS Discrete Mathematics Dr. D. Manivannan (Mani)
CS 275  Discrete Mathematics Dr. D. Manivannan (Mani) Department of Computer Science University of Kentucky Lexington, KY 40506 Course Website: www.cs.uky.edu/~manivann/cs275 Notes based on Discrete Mathematics
More informationSection 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false.
Section 1.2 Propositional Equivalences A tautology is a proposition which is always true. Classic Example: P P A contradiction is a proposition which is always false. Classic Example: P P A contingency
More informationTutorial on Axiomatic Set Theory. Javier R. Movellan
Tutorial on Axiomatic Set Theory Javier R. Movellan Intuitively we think of sets as collections of elements. The crucial part of this intuitive concept is that we are willing to treat sets as entities
More informationEQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS
EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs
More informationWhat is Logic? Introduction to Logic. Simple Statements. Which one is statement?
What is Logic? Introduction to Logic Peter Lo Logic is the study of reasoning It is specifically concerned with whether reasoning is correct Logic is also known as Propositional Calculus CS218 Peter Lo
More informationTable of mathematical symbols  Wikipedia, the free encyclopedia
Página 1 de 13 Table of mathematical symbols From Wikipedia, the free encyclopedia For the HTML codes of mathematical symbols see mathematical HTML. Note: This article contains special characters. The
More informationcse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska
cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 1 Course Web Page www3.cs.stonybrook.edu/ cse303 The webpage contains: lectures notes slides; very detailed solutions to
More information2.2: Logical Equivalence: The Laws of Logic
Example (2.7) For primitive statement p and q, construct a truth table for each of the following compound statements. a) p q b) p q Here we see that the corresponding truth tables for two statement p q
More informationMath 144 Summer 2012 (UCR) ProNotes June 24, / 15
Before we start, I want to point out that these notes are not checked for typos. There are prbally many typeos in them and if you find any, please let me know as it s extremely difficult to find them all
More informationVenn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes
Lecture 2 s; Text: A Course in Probability by Weiss 2.4 STAT 225 Introduction to Probability Models January 8, 2014 s; Whitney Huang Purdue University 2.1 Agenda s; 1 2 2.2 Intersection: the intersection
More informationMath 13, Spring 2013, Lecture B: Midterm
Math 13, Spring 2013, Lecture B: Midterm Name Signature UCI ID # Email address Each numbered problem is worth 12 points, for a total of 84 points. Present your work, especially proofs, as clearly as possible.
More informationINFINITY: CARDINAL NUMBERS
INFINITY: CARDINAL NUMBERS BJORN POONEN 1 Some terminology of set theory N := {0, 1, 2, 3, } Z := {, 2, 1, 0, 1, 2, } Q := the set of rational numbers R := the set of real numbers C := the set of complex
More informationSupplementary Material for MTH 299 Online Edition
Supplementary Material for MTH 299 Online Edition Abstract This document contains supplementary material, such as definitions, explanations, examples, etc., to complement that of the text, How to Think
More informationClimbing an Infinite Ladder
Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite
More informationExercises for Unit VI (Infinite constructions in set theory)
Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize
More informationBefore we show how languages can be proven not regular, first, how would we show a language is regular?
CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful
More informationBoolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table.
The Laws of Boolean Boolean algebra As well as the logic symbols 0 and 1 being used to represent a digital input or output, we can also use them as constants for a permanently Open or Closed circuit or
More informationWUCT121. Discrete Mathematics. Logic. Tutorial Exercises
WUCT11 Discrete Mathematics Logic Tutorial Exercises 1 Logic Predicate Logic 3 Proofs 4 Set Theory 5 Relations and Functions WUCT11 Logic Tutorial Exercises 1 Section 1: Logic Question1 For each of the
More informationLecture Notes for MATH Mathematical Logic 1
Lecture Notes for MATH2040  Mathematical Logic 1 Michael Rathjen School of Mathematics University of Leeds Autumn 2009 Chapter 0. Introduction Maybe not all areas of human endeavour, but certainly the
More informationCSE 105 Theory of Computation
CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Undecidability Today s Agenda Review and More Problems A NonTR Language Reminders and announcements: HW 7 (Last!!)
More informationPropositions and Proofs
Propositions and Proofs Gert Smolka, Saarland University April 25, 2018 Proposition are logical statements whose truth or falsity can be established with proofs. Coq s type theory provides us with a language
More informationCHAPTER 1. Basic Ideas
CHPTER 1 asic Ideas In the end, all mathematics can be boiled down to logic and set theory. ecause of this, any careful presentation of fundamental mathematical ideas is inevitably couched in the language
More informationBoolean Algebra CHAPTER 15
CHAPTER 15 Boolean Algebra 15.1 INTRODUCTION Both sets and propositions satisfy similar laws, which are listed in Tables 11 and 41 (in Chapters 1 and 4, respectively). These laws are used to define an
More informationLogic and Propositional Calculus
CHAPTER 4 Logic and Propositional Calculus 4.1 INTRODUCTION Many algorithms and proofs use logical expressions such as: IF p THEN q or If p 1 AND p 2, THEN q 1 OR q 2 Therefore it is necessary to know
More informationMathmatics 239 solutions to Homework for Chapter 2
Mathmatics 239 solutions to Homework for Chapter 2 Old version of 8.5 My compact disc player has space for 5 CDs; there are five trays numbered 1 through 5 into which I load the CDs. I own 100 CDs. a)
More informationDiscrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009
Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Our main goal is here is to do counting using functions. For that, we
More informationAnnouncements. CS311H: Discrete Mathematics. Propositional Logic II. Inverse of an Implication. Converse of a Implication
Announcements CS311H: Discrete Mathematics Propositional Logic II Instructor: Işıl Dillig First homework assignment out today! Due in one week, i.e., before lecture next Wed 09/13 Remember: Due before
More informationSolutions to Problem Set 1
Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 21 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 21, 2005, 1076 minutes Problem
More informationMore Propositional Logic Algebra: Expressive Completeness and Completeness of Equivalences. Computability and Logic
More Propositional Logic Algebra: Expressive Completeness and Completeness of Equivalences Computability and Logic Equivalences Involving Conditionals Some Important Equivalences Involving Conditionals
More informationChapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
More informationUnit 1. Propositional Logic Reading do all quickchecks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9
Unit 1. Propositional Logic Reading do all quickchecks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9 Typeset September 23, 2005 1 Statements or propositions Defn: A statement is an assertion
More informationGeneral Info. Grading
Syllabus & Policies General Info Lecture 1: Introduction, Set Theory, and Boolean Algebra Classroom: Perkins 2072 Time: Mon  Fri, 2:003:15 pm Wed, 3:304:30 pm Sta 111 Colin Rundel May 13, 2014 Professor:
More informationFunctions. Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways:
Boolean Algebra (1) Functions Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: An expression is finite but not unique f(x,y)
More information8. Reductio ad absurdum
8. Reductio ad absurdum 8.1 A historical example In his book, The Two New Sciences, Galileo Galilea (15641642) gives several arguments meant to demonstrate that there can be no such thing as actual infinities
More informationCHAPTER 1: Functions
CHAPTER 1: Functions 1.1: Functions 1.2: Graphs of Functions 1.3: Basic Graphs and Symmetry 1.4: Transformations 1.5: PiecewiseDefined Functions; Limits and Continuity in Calculus 1.6: Combining Functions
More informationBasic counting techniques. Periklis A. Papakonstantinou Rutgers Business School
Basic counting techniques Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elementary counting methods Periklis A. Papakonstantinou MSIS, Rutgers Business School ALL RIGHTS RESERVED
More informationMaanavaN.Com MA1256 DISCRETE MATHEMATICS. DEPARTMENT OF MATHEMATICS QUESTION BANK Subject & Code : MA1256 DISCRETE MATHEMATICS
DEPARTMENT OF MATHEMATICS QUESTION BANK Subject & Code : UNIT I PROPOSITIONAL CALCULUS Part A ( Marks) Year / Sem : III / V. Write the negation of the following proposition. To enter into the country you
More informationShow Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page.
Formal Methods Midterm 1, Spring, 2007 Name Show Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page. 1. Use truth
More informationSimplification by Truth Table and without Truth Table
SUBJECT NAME SUBJECT CODE : MA 6566 MATERIAL NAME REGULATION : Discrete Mathematics : University Questions : R2013 UPDATED ON : June 2017 (Scan the above Q.R code for the direct download of this material)
More informationProof by contrapositive, contradiction
Proof by contrapositive, contradiction Margaret M. Fleck 9 September 2009 This lecture covers proof by contradiction and proof by contrapositive (section 1.6 of Rosen). 1 Announcements The first quiz will
More informationComputer Science Foundation Exam
Computer Science Foundation Exam August 2, 2002 Section II A DISCRETE STRUCTURES NO books, notes, or calculators may be used, and you must work entirely on your own. Name: SSN: In this section of the exam,
More informationHOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating
HOW TO CREATE A PROOF ALLAN YASHINSKI Abstract We discuss how to structure a proof based on the statement being proved Writing proofs is typically not a straightforward, algorithmic process such as calculating
More informationHomework 3 Solutions, Math 55
Homework 3 Solutions, Math 55 1.8.4. There are three cases: that a is minimal, that b is minimal, and that c is minimal. If a is minimal, then a b and a c, so a min{b, c}, so then Also a b, so min{a, b}
More informationSets and Games. Logic Tea, ILLC Amsterdam. 14. September Stefan Bold. Institute for Logic, Language and Computation. Department of Mathematics
Sets and Games 14. September 2004 Logic Tea, ILLC Amsterdam Stefan Bold Mathematical Logic Group Department of Mathematics University of Bonn Institute for Logic, Language and Computation University of
More informationCLASSICAL EXTENSIONAL MEREOLOGY. Mereology
1 Mereology Core axioms and concepts parthood sum Higher order properties: cumulativity divisivity (aka divisiveness) atomicity 2 Mereology is the theory of parthood derived from the Greek µέρος (meros)
More informationA Transition to Advanced Mathematics
A Transition to Advanced Mathematics Darrin Doud and Pace P. Nielsen Darrin Doud Department of Mathematics Brigham Young University Provo, UT 84602 doud@math.byu.edu Pace P. Nielsen Department of Mathematics
More informationBoolean Algebras. Chapter 2
Chapter 2 Boolean Algebras Let X be an arbitrary set and let P(X) be the class of all subsets of X (the power set of X). Three natural settheoretic operations on P(X) are the binary operations of union
More informationLecture 4. Algebra, continued Section 2: Lattices and Boolean algebras
V. Borschev and B. Partee, September 2126, 2006 p. 1 Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras CONTENTS 1. Lattices.... 1 1.0. Why lattices?... 1 1.1. Posets... 1 1.1.1. Upper
More informationMath Real Analysis
1 / 28 Math 370  Real Analysis G.Pugh Sep 3 2013 Real Analysis 2 / 28 3 / 28 What is Real Analysis? Wikipedia: Real analysis... has its beginnings in the rigorous formulation of calculus. It is a branch
More informationIncomplete version for students of easllc2012 only. 6.6 The Model Existence Game 99
98 FirstOrder Logic 6.6 The Model Existence Game In this section we learn a new game associated with trying to construct a model for a sentence or a set of sentences. This is of fundamental importance
More informationLogic and Set Notation
Logic and Set Notation Logic Notation p, q, r: statements,,,, : logical operators p: not p p q: p and q p q: p or q p q: p implies q p q:p if and only if q We can build compound sentences using the above
More informationDISCRETE MATH: FINAL REVIEW
DISCRETE MATH: FINAL REVIEW DR. DANIEL FREEMAN 1) a. Does 3 = {3}? b. Is 3 {3}? c. Is 3 {3}? c. Is {3} {3}? c. Is {3} {3}? d. Does {3} = {3, 3, 3, 3}? e. Is {x Z x > 0} {x R x > 0}? 1. Chapter 1 review
More information1.2 The WellOrdering Principle
36 Chapter 1. The Integers Exercises 1.1 1. Prove the following theorem: Theorem. Let m and a be integers. If m a and a m, thenm = ±a. 2. Prove the following theorem: Theorem. For all integers a, b and
More informationLecture 3: Latin Squares and Groups
Latin Squares Instructor: Padraic Bartlett Lecture 3: Latin Squares and Groups Week 2 Mathcamp 2012 In our last lecture, we came up with some fairly surprising connections between finite fields and Latin
More informationA Readable Introduction to Real Mathematics
Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 10: Sizes of Infinite Sets 1. Show that the set of all polynomials
More information1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A.
1.A Sets, Relations, Graphs, and Functions 1.A.1 Set a collection of objects(element) Let A be a set and a be an elements in A, then we write a A. How to specify sets 1. to enumerate all of the elements
More informationMATH 201 Solutions: TEST 3A (in class)
MATH 201 Solutions: TEST 3A (in class) (revised) God created infinity, and man, unable to understand infinity, had to invent finite sets.  Gian Carlo Rota Part I [5 pts each] 1. Let X be a set. Define
More informationNOTE ON A THEOREM OF PUTNAM S
NOTE ON A THEOREM OF PUTNAM S MICHAEL BARR DEPARTMENT OF MATHEMATICS AND STATISTICS MCGILL UNIVERSITY MONTREAL, QUEBEC, CANADA 1. Introduction In an appendix to his 1981 book, Putnam made the following
More information8. Reductio ad absurdum
8. Reductio ad absurdum 8.1 A historical example In his book, The Two New Sciences, 10 Galileo Galilea (15641642) gives several arguments meant to demonstrate that there can be no such thing as actual
More informationAbstract Measure Theory
2 Abstract Measure Theory Lebesgue measure is one of the premier examples of a measure on R d, but it is not the only measure and certainly not the only important measure on R d. Further, R d is not the
More informationCSE 20 DISCRETE MATH. Fall
CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets
More information