Procedure for Alcohol Determination by Distillation

Size: px
Start display at page:

Download "Procedure for Alcohol Determination by Distillation"

Transcription

1 Page 1 14 November 1998 Procedure for Alcohol Determination by Distillation 1.0 Introduction The following notes discuss the procedure for determination of the alcohol in beer based upon ASBC MOA Beer 4A as implemented in our laboratory. Comments are also included on the expected recovery and accuracy of determinations done in this way. 2.0 Method The method consists of execution of the following enumerated steps. See Figure 1 for an illustration of the configuration of the apparatus. 1. Pour beer into 100 ml volumetric flask (use the one labeled 7 as its mark is high up on the neck.) Use a 1 ml Tensette pipet to suck foam out of neck. Fill to the mark or just above. Stopper and place in 20 C water bath. 2. While beer is attemperating pull microwave oven away from wall. Place jack stand on top of microwave oven. Elevate so that top of platform is about 8 above top of microwave. Place 500 ml mantle on top of jack stand with control knob facing about 30 to the right of forward. 3. Place Cole-Parmer ringstand (with white base) to left of microwave oven. Base should be behind rod and rod should carry two clamps oriented away form base i.e. towards front of microwave. 4. After beer has attemperated, suck out excess beer and foam so level is at the mark. 5. Fill two 25 ml flasks with DI water to near the marks. 6. Pour beer into 500 ml distillation flask. Rinse with two 25 ml portions of DI water. Add a couple of carborundum boiling stones. 7. Place distillation flask in mantle. Stabilize with clamp on mantle rod. 8. Place Kjeldahl trap in flask neck. Stabilize with clamp on mantle rod. 9. Connect bridge adapter to top of trap. Be sure thermometer port is plugged with glass stopper. 10. Rinse 100 ml volumetric flask with DI water and place in 500 ml beaker on counter top.

2 Page Place straight adapter on end of 400 mm condenser and while holding it in place lower its end into volumetric flask. Place condenser into two clamps on Cole Parmer ringstand without tightening. Simultaneously lower jack and position receiver, ringstand and bridge adapter angle so that bridge adapter mates with top of condenser. Adjust postitions so that all glass joints are tight and so that there is a little clearance between the straight adapter and the mouth of the volumetric flask. Tighten the clamps. 12. Make and check the cooling water connections. 13. Surround the receiver with ice cubes in a little water, turn on the cooling water and set the mantle control to 10 for 10 minutes, then lower heat setting to 6. There should be some reflux from the neck of the flask during this time.

3 Page Recheck tighness of all ground glass joints. Figure 2.1 Arrangement of distillation apparatus

4 Page Boiling should commence within a minute or so and reflux from the walls of the Kjeldahl adapter should start. If all goes well, the alcohol in this reflux should collapse the foam. If it doesn t, well that s what the trap is there for. 16. After 20 minutes (total) foaming should be under control and alcohol should be seen dropping from condenser tip into straight adapter. Advance heat to 7. After stabilizing, condensate should appear at about drops per minute. 17. After 1 hour (total) raise heat to 8. Check tightness of glass joints. 18. During distillation tare pycnometer, if pycnometer is being used, and obtain weight measurement with DI water at 20 C 19. Collect just under 100 ml of distillate. This should take about 2 and three quarters hours. 20. Place volumetric flask in water bath. After attemperation, make to mark with DI water. Mix throroughly. Measure and record density, specific gravity and OIML ABV. Find ASBC ABV from ASBC tables. Calculate ABW from grams/100 ml in ASBC tables. 21. Transfer residue from distillation flask to same volumetric flask. Rinse distillation flask with 25 ml portions of DI water. Place in water bath and make to mark with DI water. Measure and record density, specific gravity and P. 22. Measure and record specific gravity, density and P of beer. 23. Do the sums! 3.0 Accuracy There are five factors which effect the acheivable accuracy Measurement Conversion Recovery The standard Interferences The alcohol content in the distillate is estimated by measuring the distillate specific gravity (or density) and then converting this reading to an alcohol concentration by entering a table. Error in measurement of specific gravity thus translates into an error in the reported alcohol content we take out of the table. The table itself has some errors in it as it was at some time based on a set of measurements. It is clear that the ASBC table, at least, contains quantizing errors.

5 Page 5 Recovery refers to the fact that in this method we try to remove the alcohol from the beer sample in order to measure it. We cannot recover all the alcohol in the distillation receiver. That which is not recovered is not counted. If we can obtain an estimate of the fraction of the alcohol not recovered we can adjust the amount determined by specific gravity measurement in order to account for it. Our estimate of the recovery is subject to error and depends upon our knowledge of the purity of the standard used in making the estimate. Intereference refers to other substances in the beer which interfere with our ability to measure ethanol. Substances more volatile than alcohol and substances less volatile than alcohol but more volatile than water will be carried over into the distillate in some measure. We assume, for this work, that the amounts of such volatile substances are small enough that they need not be considered. DeClerk focuses on acetic acid noting that it is present in quantities insufficient to make much of a difference except in the case of lambics. He notes (Vol. II p429) that raising the ph of the beer with alkali dissociates the acid and prevents its being volatilized but that this leads to frothing and inability to determine the true extract. We will say no more about interference. 3.1 Measurement Two types of measurements are made when beer alcohol is determined using this methodology. The first tyhpe of measurement is of the volumes of beer and distillate. The second is in the specific gravity of the distillate. 3.2 Volume Measurement Volumes are measured with the same Class A 100 ml volumetric flask specified as 100 ± 0.08 ml. If this value (0.08) is interpreted as being the standard deviation of the random error in filling the flask it is clear that the alcohol determined should be multiplied by the factor f ε = d ε b where ε b represents the error in filling the flask with beer (to include the error in transfer to the distilling flask) and ε d the error in topping off the distillate with deionized water. Though common sense dictates that the standard devitation associated with ε b should be larger than that associated with ε d because of the transfer of beer to the distilling flask we have no feel for how much larger and thus, to keep the analysis simple, make no adjustment for this. Expanding Equation (3.1) and throwing away second order terms gives (3.1) f = 1 ε b 100 ε d 100 (3.2) 2σ from which we see that the expected value of f is one and the standard deviation in f is b where σ is the standard deviation associated with filling the flask (0.08 ml) and thus the standard deviation in f is Thus, at the 100 b 10% level the error budgeted to this source would be %.

6 Page Specific Gravity Measurement To determine alcohol content we measure the density of distillate from the beer sample which distillate is assumed to contain all the alcohol in the sample and nothing else except water. We use an Anton Paar DMA 5000 Density Meter calibrated against dry air and deionized, degassed water. The specified repeatability for this instrument is and its accuracy is specified as grams/cm 3. The error in specific gravity measurement is seen through its conversion to an error in alcohol content (see section which follows). Figure 3.2 shows the sensitivity (partial differential of) ABV to specific gravity taken from the ASBC (based on table Association of Official Agricultural Chemists) tables. For example, at an ABV of 5% Figure 3.2 shows a sensitivity of -740% ABV for each unit of error in specific gravity. The repeatability of alcohol concentration estimates for solutions near 5% is thus % and the overal accuracy % 1. At 9.5% ABV the uncertainty in alcohol content from a specific gravity uncertainty of is % and it is this value that we will budget for the error contribution from density measurement. 3.4 Conversion The measured specific gravity is enterend into the ASBC table (based on table Association of Official Agricultural Chemists) and the alcohol content taken out.the data from this table is plotted in Figure 3.1. In fact we use an Anton Paar DMA5000 density meter which measures the density of the alcohol solution and looks up the ABV value using tables prepared by the OIML (International Organisation of Legal Metrology) rather than the ASBC tables 2. The two tables are presumed close. We checked at specific gravity According to the ASBC tables the ABV for solutions at this specific gravity is %. Examination of ABV s determined by the DMA 5000 indicate that the OIML value for this same specific gravity is 9.984% or 0.016% lower than the ASBC table s reading. Chi squared in fitting the ASBC data is given on Figure 3.1 as for 501 points corresponding to an rmse of %. The OIML tables are not accesible. We assume that they are about the same and we thus budget % for conversion error. 1. Given that the instrument deviations are interpreted as standard deviations then these error values are standard deviations as well. The values should be increased sligtly (1/ i.e. about 0.2% - i.e. percent of a percent) because the instrument spec values are for density, not specific gravvity. 2. We note that the DMA 5000 does contain the AOAC tables but as the instrument was programmed for the OIML method as it came from the factory we have stayed with it. Note further that the OIML tables are based on ITS90 and, therefor, presumably more accurate than the AOAC tables which were published originally in 1930.

7 Page x ABV, % 5 4 ABV vs. Specific Gravity Fit to ASBC Tables W_coef={1.7417e+05, e+05, e+05, e+05} V_chisq= ; V_npnts= 501; W_sigma={5.06e+03,1.53e+04, 1.54e+04,5.17e+03} Alcohol: ABV vs SG Specific gravity (20 C/20 C) Figure 3.1 Polynomial Fit to ASBC (AOAC) Alcohol Table Recovery To check on recovery we made up 1 L of an approximately 10% v/v solution of EtOH and measured the alcohol content of 7 aliquots using the method described here. Class A glassware was used to measure out 100 ml of ethanol and DI water was added to make up to 1000 ml. Alcohol and water measurements were made with volumetric flasks in a constant temperature bath at 20 C. The 100 ml volumetric flask used to measure the alcohol is rated ±0.08 ml and the 1 litre volumetric flask used to make up with water is rated ±0.3 ml. We interpret these numbers as standard deviations. The strength of the solution by volume is, A ( p + ε p )( V a + ε a ) = V s where p is the purity of the ethanol standard (fraction close to 1), ε p is the uncertainty in the purity, V a is the vol- ε s (3.3)

8 Page 8 ABV/ Specific Gravity, % ABV Error From S.G. Uncertainty To Estimate ABV Error Multiply Value Read From Graph Against Alcohol Content By SEM in SG Reading Alcohol:dabvdsg vs ABV ABV, % Figure 3.2 ABV Error Sensitivity to Error in Density vs ABV ume (100 ml in this case ) of alcohol transferred quantitatively to the V s (1 L) volumetric flask and ε a and ε s represent the standard errors in the volumes of the two volumetric flasks. Rearranging Equation (3.3) A pv a + pε a + ε p V a + ε p ε a ε s pv a + pε s ε a + ε s ε p V a + ε p ε a ε s = V s V 2 s Separating the actual strength from the errors we have (3.4) pv A = a V s pε a + V s ε p V a V s ε s pv a V 2 s (3.5) where we have dropped all second order and higher terms.in the uncertainties and, thus, assuming that the three

9 Page 9 uncertainties are small and independent we find EA = V a 1000 (3.6) σ A = ( pε a ) 2 + ( ε p V a ) 2 + ( ε s pv a 1000) (3.7) 1000 Both these values are fractional values. If V a is 100 ml then the expected strength of the solution is 10% and the standard error is %. The accuracy of the 100 ml volumetric flask is the major contributor. Were it the only source of error the uncertainty in the concentration would be %. The second largest contributor is the uncertainty in the volume of the 1L volumetric flask. Were this the only error source the uncertainty would be 0.003%. The ethanol used to prepare this solution is not 100% pure. It is guaranteed by the label to have a minimum assay of 99.5%. We assayed it by measuring its density at 20 C. The measurement ensemble is given in the upper left portion of Figure 3.3. Two of the readings in this set appear to contain errors three times that of the rest of the group. These are discarded in the upper right grouping of measuremets which give an ensemble average of is % with an SEM of %. This uncertainty is clearly dominated by the uncertainty from the volume measurements if the two errors are RSS d. Thus we consider a solution prepared from 100 ml of this ethanol to be ± % ethanol. Measured values from the individual distillation runs are compared to % in the spreadsheet and the average readings used to determine the recovery for our lab. Thus the uncertainty in the strength of the standard becomes and uncertainty in every measurement of a sample which is adjusted by the average recovery determined by these calibration runs. At the 10% level this uncertainty would be % and it is that value which is budgeted..

10 Page 10 Alcohol Assay Alcohol Assay ABV Density ABV dev Dens Dev ABV Density ABV dev Dens Dev u u sd sd sem sem Solution (100 ml in 1L): % Replicate Distil. Assay Recovery Err Err^2 Adjby Rec. Err Err^ % % E % E % E % % % u % RMSE: RMSE: sd % cv 0.24% Figure 3.3 OIML Measurements of Alcohol Standard and Recovery from Solution of 100 ml Standard in 1000 ml DI Water Thus we model the recovery as ± 0.23% i.e. it represents a bias plus a random component. As we did in the tests with standard solutions we would multiply all determined values by the factor (the reciprocal of ) to account for the alcohol held up in the distillation apparatus and lost to evaporation. This value is relevent only to our laboratory and our implementation of the procedure. At the same time we add the random part of the determined recovery to our error budget. At an alcohol content of 10% this would be 0.023% 3.6 Summary of Errors The table which follows summarizes the error sources. The RSS of all of them is about 0.03% and that is the estimate of the error level of which we think we are capable in the absence of interferences.

11 Page 11 Table 1: Error Source RMSE Volume Measurement % Specific Gravity Measurement % Tabulation Error % Recovery 0.023% Calibration Standard % RSS % 4.0 References 1.

Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE

Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE Concepts: Density Equipment Calibration Approximate time required: 90 minutes for density 90 minutes for two thermometers

More information

Properties of Liquids

Properties of Liquids Experiment: Properties of Liquids Many of the organic compounds you will be studying this year will be liquids, and in lab, you will frequently have to identify unknown liquids and confirm the identity

More information

Density of an Unknown

Density of an Unknown Experiment 3 Density of an Unknown Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The density of an

More information

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Abstract: This lab was performed to synthesize acetyl salicylic acid or aspirin from a carboxylic acid and an alcohol. We had learned in class

More information

Laboratory Techniques for Small Distilleries

Laboratory Techniques for Small Distilleries 2009 TTB Expo Presentation Laboratory Techniques for Small Distilleries Presented by Norma R. Hill Scientific Services Division Overview Basic Assumptions: Target audience Basic terminology Analytical

More information

The Synthesis and Analysis of Aspirin

The Synthesis and Analysis of Aspirin The Synthesis and Analysis of Aspirin Computer 22 Aspirin, the ubiquitous pain reliever, goes by the chemical name acetylsalicylic acid. One of the compounds used in the synthesis of aspirin is salicylic

More information

Experiment # 13 PREPARATION OF ASPIRIN

Experiment # 13 PREPARATION OF ASPIRIN Experiment # 13 PREPARATION OF ASPIRIN Objective In this experiment you will synthesize acetyl salicylic acid (aspirin), determine the limiting reagent, and then determine the theoretical and percent yields

More information

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Introduction A common challenge in chemical kinetics is to determine the rate law for a reaction with multiple reactants.

More information

Chesapeake Campus Chemistry 111 Laboratory

Chesapeake Campus Chemistry 111 Laboratory Chesapeake Campus Chemistry 111 Laboratory Objectives Calculate molar mass using the ideal gas law and laboratory data. Determine the identity of an unknown from a list of choices. Determine how sources

More information

Experiment 8 Introduction to Volumetric Techniques I. Objectives

Experiment 8 Introduction to Volumetric Techniques I. Objectives Experiment 8 Introduction to Volumetric Techniques I Objectives 1. To learn the proper technique to use a volumetric pipette. 2. To learn the proper technique to use a volumetric flask. 3. To prepare a

More information

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour:

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour: Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise Chemistry II Partner: 10 points USE BLUE/BLACK INK!!!! Date: Hour: Goal: The goal of this lab is to determine the equilibrium

More information

Experimental Procedure. Lab 406

Experimental Procedure. Lab 406 Experimental Procedure Lab 406 Overview This experiment is to be complete in cooperation with other chemists/chemist groups in the laboratory. In PART A, a standardized solution of hydrochloric acid is

More information

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization. E x p e r i m e n t Synthesis of Aspirin Experiment : http://genchemlab.wordpress.com/-aspirin/ objectives To synthesize aspirin. To understand concept of limiting reagents. To determine percent yield.

More information

EXPERIMENT 7 - Distillation Separation of a Mixture

EXPERIMENT 7 - Distillation Separation of a Mixture EXPERIMENT 7 - Distillation Separation of a Mixture Purpose: a) To purify a compound by separating it from a non-volatile or less-volatile material. b) To separate a mixture of two miscible liquids (liquids

More information

Experiment 20: Analysis of Vinegar. Materials:

Experiment 20: Analysis of Vinegar. Materials: Experiment 20: Analysis of Vinegar Materials: graduated cylinder 6 M NaOH: Dilute Sodium Hydroxide 1000 ml Florence Flask & stopper KHC 8 H 4 O 4 : Potassium Hydrogen Phthalate (KHP) 125 ml Erlenmeyer

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

Schools Analyst Competition

Schools Analyst Competition Royal Society of Chemistry Analytical Division North West Region Schools Analyst Competition March 2012 Experimental Handbook 1 SCHOOLS ANALYST COMPETITION 2012 In this year s challenge your task is to

More information

Chemistry 143 Dr. Caddell Laboratory Experiment 1

Chemistry 143 Dr. Caddell Laboratory Experiment 1 The Tools of the Trade Equipment You will need a digital thermometer, a liquid thermometer, a 50 ml graduated cylinder, a 10 ml volumetric pipet, a 25 ml burette, a 250 ml beaker, a 150 ml beaker, a glass

More information

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques Introduction When two or more substances that do not react chemically are blended together, the components of the

More information

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol Fisher Esterification of an Alcohol (Fraction A) On the Chem 113A website, under "Techniques" and "Videos" review the

More information

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) Introduction 1-bromobutane is a primary alkyl halide (primary alkyl) and therefore it is produced

More information

Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis

Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis Nucleophilic displacement - Formation of an ether by an S N 2 reaction The Williamson- Ether Synthesis Bond formation by use of an S N 2 reaction is very important for organic and biological synthesis.

More information

RAPID KJELDAHL BENCHNOTES

RAPID KJELDAHL BENCHNOTES RAPID KJELDAHL BENCHNOTES Methodology for the Determination of Alcohol in a Mixture by Direct Distillation with the RapidStill II Principle: This method covers the determination of percent alcohol in distilled

More information

CHEM 334 Quantitative Analysis Laboratory

CHEM 334 Quantitative Analysis Laboratory Calibration of Volumetric Glassware Introduction Volumetric glassware is a class of glass vessels that are calibrated to contain or deliver certain volumes of substances. Graduated cylinders, pipettes

More information

Exp 03 - Reaction Rate

Exp 03 - Reaction Rate GENERAL CHEMISTRY II CAÑADA COLLEGE SUMMER 2018 Exp 03 - Reaction Rate How the speed at which quantities change during a chemical reaction can be measured, predicted and used to understand the mechanism

More information

Spectrophotometric Determination of an Equilibrium Constant

Spectrophotometric Determination of an Equilibrium Constant Spectrophotometric Determination of an Equilibrium Constant v021214 Objective To determine the equilibrium constant (K c ) for the reaction of iron (III) ion with thiocyanate (SCN - ) to form the thiocyanatoiron(iii)

More information

Experiment 9 Dehydration of Methylcyclohexanol Friday/Monday 1

Experiment 9 Dehydration of Methylcyclohexanol Friday/Monday 1 Experiment 9 Dehydration of Methylcyclohexanol Friday/Monday 1 There are three distinct steps in most organic preparative reactions: 1) the reaction itself, 2) isolation of the crude product, and 3) final

More information

The Molecular Weight of Carbon Dioxide

The Molecular Weight of Carbon Dioxide The Molecular Weight of Carbon Dioxide Objectives The objectives of this laboratory are as follows: To generate and collect a sample of carbon dioxide gas, then measure its pressure, volume, temperature

More information

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Many substances absorb light. When light is absorbed, electrons in the ground state are excited to higher energy levels. Colored

More information

Experiment 2: Reaction Stoichiometry by Thermometric Titration

Experiment 2: Reaction Stoichiometry by Thermometric Titration Experiment 2: Reaction Stoichiometry by Thermometric Titration Introduction The net result of a reaction (a chemical change) is summarized by a chemical equation. In order to write a chemical equation,

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

PART I: MEASURING MASS

PART I: MEASURING MASS Chemistry I Name Dr. Saulmon 2014-15 School Year Laboratory 1 Measuring Mass, Volume, and Temperature Monday, August 25, 2014 This laboratory is broken into three parts, each with its own introduction,

More information

Distillation of Liquids: Separation of 2-Propanol from Water by Fractional Distillation

Distillation of Liquids: Separation of 2-Propanol from Water by Fractional Distillation Distillation of Liquids: Separation of 2-Propanol from Water by Fractional Distillation Introduction: Distillation is the process of vaporizing a liquid, condensing the vapor, and collecting the condensate

More information

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Pre-Laboratory Assignments Reading: Textbook Chapter 16 Chapter 17:1-3 This Laboratory Handout Pre-Laboratory Assignments: Complete

More information

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET)

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET) Methods of pollution control and waste management Experiment 24 Chemical recycling of poly(ethylene) terephthalate (PET) Manual Department of Chemical Technology The aim of this experiment is to gain knowledge

More information

Practice Lab. Balances and calibration of volumetric tools

Practice Lab. Balances and calibration of volumetric tools Practice Lab. Balances and calibration of volumetric tools Balances are a very basic and very valuable tool in any chemistry lab and any chemist must understand their use, their proper treatment, their

More information

Separation of the Components of a Mixture

Separation of the Components of a Mixture Separation of the Components of a Mixture Prepared by Edward L. Brown, Lee University EXPERIMENT 3 To become familiar with the laboratory techniques used to separate different substances from one another.

More information

+ H 2 O Equation 1. + NaOH CO 2 Na

+ H 2 O Equation 1. + NaOH CO 2 Na Experiment # 5 VINEGAR: AN FDA INVESTIGATION Objective In this experiment, you will play the role of an FDA analytical chemist, You will verify whether a vinegar manufacturer's quality control lab remains

More information

Per 5 Activity Solutions: Thermal Energy, the Microscopic Picture

Per 5 Activity Solutions: Thermal Energy, the Microscopic Picture er 5 Activity Solutions: Thermal Energy, the Microscopic icture 5. How Is Temperature Related to Molecular Motion? ) Temperature Your instructor will discuss molecular motion and temperature. a) Watch

More information

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13H 08/03/2017 AHRM THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:

More information

States of Matter: Solid, Liquid, and Gas

States of Matter: Solid, Liquid, and Gas Movie Special Effects Activity 2 States of Matter: Solid, Liquid, and Gas GOALS In this activity you will: Create an animation to illustrate the behavior of particles in different phases of matter, and

More information

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43 Extraction Background Extraction is a technique that separates compounds (usually solids) based on solubility. Depending on the phases involved, extractions are either liquid-solid or liquid-liquid. If

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

Experiment 12: Grignard Synthesis of Triphenylmethanol

Experiment 12: Grignard Synthesis of Triphenylmethanol 1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel

More information

Determination of the K a Value and Molar Mass of an Unknown Weak Acid

Determination of the K a Value and Molar Mass of an Unknown Weak Acid 10 Determination of the K a Value and Molar Mass of an Unknown Weak Acid Introduction In this experiment you will titrate a monoprotic weak acid with a strong base, and measure the titration curve with

More information

TOSYLHYDRAZONE CLEAVAGE OF AN α,β-epoxy KETONE; OXIDATIVE KMnO 4 CLEAVAGE OF AN ALKYNE EXPERIMENT A

TOSYLHYDRAZONE CLEAVAGE OF AN α,β-epoxy KETONE; OXIDATIVE KMnO 4 CLEAVAGE OF AN ALKYNE EXPERIMENT A 1 EXPERIMENT A EPOXIDATION OF AN α,β-unsaturated KETONE; TOSYLYDRAZONE CLEAVAGE OF AN α,β-epoxy KETONE; OXIDATIVE KMnO 4 CLEAVAGE OF AN ALKYNE The goal of this experiment is the correct assignment of the

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution In this experiment, you will determine the molarity and percent

More information

(b) Write the chemical equation for the dissolution of NaOH in water.

(b) Write the chemical equation for the dissolution of NaOH in water. Making a Solution and Measuring ph Prelab Assignment Read the entire lab. Write an objective and any hazards associated with this lab in your laboratory notebook. Answer the following 6 questions in your

More information

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS The Molar Mass of a Volatile Liquid Computer 3 One of the properties that helps characterize a substance is its molar mass. If the substance in question is a volatile liquid, a common method to determine

More information

In this lab you are asked to make a series of volume and temperature measurements and record the number of significant figures in each measurement.

In this lab you are asked to make a series of volume and temperature measurements and record the number of significant figures in each measurement. CHEM 0011 1 Experiment 2 Measurement Objectives 1. To understand the accuracy of various types of graduated glassware. 2. To measure volumes of liquids using a graduated cylinder. 3. To measure the volume

More information

REVIEW OF LAB TECHNIQUES

REVIEW OF LAB TECHNIQUES Experiment 1 REVIEW OF LAB TECHNIQUES Prepared by Masanobu M. Yamauchi and Ross S. Nord, Eastern Michigan University PURPOSE To review density calculations, Beer s Law and the use of electronic balances,

More information

Lab 3: Determination of molar mass by freezing point depression

Lab 3: Determination of molar mass by freezing point depression Chemistry 162 The following write-up may be inaccurate for the particular chemicals or equipment we are using. Be prepared to modify your materials/procedure sections when performing the exercise. Please

More information

Johns Hopkins University What is Engineering? M. Karweit CHEMICAL PROCESSES

Johns Hopkins University What is Engineering? M. Karweit CHEMICAL PROCESSES CHEMICAL PROCESSES Focus: This lab consists of three experiments: one related to energy loss which can affect environmental systems or chemical processing operations; and two related to chemical separation

More information

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Introduction In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. Crystal violet

More information

METHOD 3665 SULFURIC ACID/PERMANGANATE CLEANUP

METHOD 3665 SULFURIC ACID/PERMANGANATE CLEANUP METHOD 3665 SULFURIC ACID/PERMANGANATE CLEANUP 1.0 SCOPE AND APPLICATION 1.1 This method is suitable for the rigorous cleanup of sample extracts prior to analysis for polychlorinated biphenyls. This method

More information

Experiment: Titration

Experiment: Titration Experiment: Titration INTRODUCTION In this experiment you will be determining the volume of sodium hydroxide solution of known concentration required to neutralize a known mass of an unknown acid in solution.

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Basic Equipment. 2D.1 Equipment for Measuring Mass

Basic Equipment. 2D.1 Equipment for Measuring Mass Basic Equipment The array of equipment for making analytical measurements is impressive, ranging from the simple and inexpensive, to the complex and expensive. With three exceptions measuring mass, measuring

More information

Assessment of Accuracy and Precision

Assessment of Accuracy and Precision 2 chapter Assessment of Accuracy and Precision S.S. Nielsen, Food Analysis Laboratory Manual, Food Science Texts Series, DOI 10.1007/978-1-4419-1463-7_2, Springer Science+Business Media, LLC 2010 9 Chapter

More information

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW To study the Ideal Gas Law. LEARNING OBJECTIVES To determine the molar mass of a volatile liquid. BACKGROUND The most common instrument

More information

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction 1 EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate the formation of a precipitate in a chemical

More information

Table of Contents. Purpose... 2 Background... 2 Prelab Questions... 3 Procedure:... 3 Calculations:... 4

Table of Contents. Purpose... 2 Background... 2 Prelab Questions... 3 Procedure:... 3 Calculations:... 4 Table of Contents Purpose... 2 Background... 2 Prelab Questions... 3 Procedure:... 3 Calculations:... 4 CHM 212 Experiment 4 Determination of the Ka of Potassium Hydrogen Phthalate (KHP) Using a Gran Plot

More information

2 burets (50 ml) Standard solution of NaOH (0.600 M) Phenolphthalein indicator

2 burets (50 ml) Standard solution of NaOH (0.600 M) Phenolphthalein indicator Name: \[-[L Percentage of Acetic Acid In Vinegar Lab 4-5 INTRODUCTION: The quality of acid in a sample of vinegar may be found by titrating the sample against a standard basic solution. ost commercial

More information

Distillation. Boiling

Distillation. Boiling Distillation The most important technique for separating and purifying organic liquids is distillation 21. A gross oversimplification of the technique is this: the impure liquid in one vessel is vaporized,

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

EXPERIMENT MODULE CHEMICAL ENGINEERING EDUCATION LABORATORY

EXPERIMENT MODULE CHEMICAL ENGINEERING EDUCATION LABORATORY EXPERIMENT MODULE CHEMICAL ENGINEERING EDUCATION LABORATORY SIMPLE DISTILLATION CHEMICAL ENGINEERING DEPARTMENT FACULTY OF INDUSTRIAL TECHNOLOGY INSTITUT TEKNOLOGI BANDUNG 2018 Contributor: Dr. Danu Ariono,

More information

EXPERIMENT 20. Solutions INTRODUCTION

EXPERIMENT 20. Solutions INTRODUCTION EXPERIMENT 20 Solutions INTRODUCTION A solution is a homogeneous mixture. The solvent is the dissolving substance, while the solute is the dissolved substance. A saturated solution is one in which the

More information

Volumetric Measurement Techniques. Technique #1 Use of a Burette. Technique #2 Use of a Pipette. Technique #3 Use of a Volumetric Flask

Volumetric Measurement Techniques. Technique #1 Use of a Burette. Technique #2 Use of a Pipette. Technique #3 Use of a Volumetric Flask Volumetric Measurement Techniques Technique #1 Use of a Burette Technique #2 Use of a Pipette Technique #3 Use of a Volumetric Flask Technique #4 Use of a Bottle-Top Dispenser Last updated 12/6/2009 5:46

More information

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13I FV 1/11/16 THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES: By

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

H + [ ] [ ] H + NH 3 NH 4. = poh + log HB +

H + [ ] [ ] H + NH 3 NH 4. = poh + log HB + Titration Lab: Determination of a pk a for an Acid and for a Base Theory A Brønsted-Lowry acid is a substance that ionizes in solution (usually aqueous, but it doesn t have to be, ammonia is often used

More information

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal.

College Chem I 2045C Specific Heat of a Metal-SL. Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Student Name Partner s Name Date College Chem I 2045C Specific Heat of a Metal-SL Objective: In this lab, you will use calorimetry to determine the specific heat of a metal. Materials: Metal Sample Bunsen

More information

Calibration of Volumetric Glassware. Prepared by Allan Fraser May 2016 APPLICATION Note 1

Calibration of Volumetric Glassware. Prepared by Allan Fraser May 2016 APPLICATION Note 1 Calibration of Volumetric Glassware Prepared by Allan Fraser May 2016 APPLICATION Note 1 TABLE OF CONTENTS TABLE OF CONTENTS... i LIST OF TABLES... ii 1. 2. 3. 4. 5. 6. 7. 8. Purpose... 1 Scope... 1 Principle...

More information

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Purpose To use spectroscopy to prepare a Beer s Law plot of known dilutions of copper(ii) sulfate so that

More information

Chem 102b Experiment 14: Part II Revised Preparation of Esters

Chem 102b Experiment 14: Part II Revised Preparation of Esters http://www.chem.arizona.edu/courseweb/981/chem102b1/fisher_esterification.html Purpose of the Experiment: Chem 102b Experiment 14: Part II Revised Preparation of Esters Students will be given alcohols

More information

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

Partner: Judy 29 March Analysis of a Commercial Bleach

Partner: Judy 29 March Analysis of a Commercial Bleach Partner: Judy 29 March 2012 Analysis of a Commercial Bleach Purpose: The purpose of this lab is to determine the amount of sodium hypochlorite (NaClO) in commercial bleach. This can be done by forming

More information

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract:

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract: Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert Abstract: This lab was performed to find the chemical equilibrium constant K c for the reaction Fe 3+ + SCN FeSCN 2+ using

More information

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1 EXPERIMET 14. ACID DISSOCIATIO COSTAT OF METHYL RED 1 The acid dissociation constant, Ka, of a dye is determined using spectrophotometry. Introduction In aqueous solution, methyl red is a zwitterion and

More information

Density of Aqueous Sodium Chloride Solutions

Density of Aqueous Sodium Chloride Solutions Experiment 3 Density of Aqueous Sodium Chloride Solutions Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

More information

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter.

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. Name: Block: Date: LCPS Core Experience Heat Transfer Student Notes OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. LINK 1. Particles in

More information

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water Accuracy and Precision of Laboratory Glassware: Determining the Density of Water During the semester in the general chemistry lab, you will come into contact with various pieces of laboratory glassware.

More information

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco INTRODUCTION For this lab, students attempted to synthesize

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

Substances and Mixtures:Separating a Mixture into Its Components

Substances and Mixtures:Separating a Mixture into Its Components MiraCosta College Introductory Chemistry Laboratory Substances and Mixtures:Separating a Mixture into Its Components EXPERIMENTAL TASK To separate a mixture of calcium carbonate, iron and sodium chloride

More information

CH 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, NUCLEOPHILIC SUBSTITUTION REACTIONS (S N 1 and S N 2)

CH 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, NUCLEOPHILIC SUBSTITUTION REACTIONS (S N 1 and S N 2) C 241 EXPERIMENT #6 WEEK OF NOVEMBER 12, 2001 NUCLEOPILIC SUBSTITUTION REACTIONS (S N 1 and S N 2) Background By the time you do this experiment we should have covered nucleophilic substitution reactions

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use **

Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use ** Chemical Kinetics: Integrated Rate Laws ** updated Procedure for Spec 200 use ** *DISCLAIMER: It is highly recommended that students bring in their own computers to lab this week to use excel. There may

More information

DR/4000 PROCEDURE SELENIUM. 4. Measure 100 ml of sample into a second 500-mL erlenmeyer flask (label the flask sample ).

DR/4000 PROCEDURE SELENIUM. 4. Measure 100 ml of sample into a second 500-mL erlenmeyer flask (label the flask sample ). Method 8194 DR/4000 PROCEDURE Diaminobenzidine Method* (0 to 1.000 mg/l) Scope and Application: For water and wastewater; distillation is required for determining total selenium. See the Distillation procedure

More information

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A MAIN EXAMINATION P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu JANUARY APRIL 2014 TRIMESTER

More information

EXPERIMENT 25 THE FERTILIZER PROJECT ANALYSIS

EXPERIMENT 25 THE FERTILIZER PROJECT ANALYSIS EXPERIMENT 25 THE FERTILIZER PROJECT ANALYSIS OF PHOSPHORUS IN FERTILIZER INTRODUCTION In this project we will investigate the phosphorus content of soluble fertilizers. The idea is to simulate the type

More information

Tex-620-J, Determining Chloride and Sulfate Contents in Soil

Tex-620-J, Determining Chloride and Sulfate Contents in Soil Contents in Soil Contents: Section 1 Overview...2 Section 2 Sample Preparation...3 Section 3 Ion Chromatography Method...5 Section 4 Wet Chemical Method...9 Section 5 Archived Versions...15 Texas Department

More information

Density of Aqueous Sodium Chloride Solutions

Density of Aqueous Sodium Chloride Solutions Experiment 3 Density of Aqueous Sodium Chloride Solutions Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

Reference method for the determination of real alcoholic strength by volume of spirit drinks of viti-vinicultural origin: measurement by pycnometry

Reference method for the determination of real alcoholic strength by volume of spirit drinks of viti-vinicultural origin: measurement by pycnometry OIV-MA-BS-03 Reference method for the determination of real alcoholic strength by volume of spirit drinks of viti-vinicultural origin: measurement by pycnometry Type II method A.1 Principle The alcoholic

More information

Chemical Reactions of Copper and Percent Recovery

Chemical Reactions of Copper and Percent Recovery and Percent Recovery EXPERIMENT 9 Prepared by Edward L. Brown, Lee University To take copper metal through series of chemical reactions that regenerates elemental copper. Students will classify the various

More information

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+ AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2 Lab days: Thursday and Friday, February 22-23, 2018 Lab due: Tuesday, February 27, 2018 Goal (list in your lab book): The

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l) EXPERIMENT 21 Molarity of a Hydrochloric Acid Solution by Titration INTRODUCTION Volumetric analysis is a general term meaning any method in which a volume measurement is the critical operation; however,

More information