The Solar Surface Dynamo

Size: px
Start display at page:

Download "The Solar Surface Dynamo"

Transcription

1 Overview of turbulent dynamo theory The Solar Surface Dynamo J. Pietarila Graham, 1 S. Danilovic, 1 M. Schüssler, 1 A. Vögler, 2 1 Max-Planck-Institut für Sonnensystemforschung 2 Sterrekundig Instituut, Utrecht University SGS

2 Overview of turbulent dynamo theory Outline 1 Overview of turbulent dynamo theory 2 3

3 Overview of turbulent dynamo theory Solar global dynamo Global dynamo 22 year cycle dipolar many models (Babcock-Leighton, flux-transport (Dikpati et al.), surface shear (Brandenburg 2005)) M. Dikpati, NCAR

4 Overview of turbulent dynamo theory Solar surface dynamo turbulent (small-scale) dynamo? Turbulent dynamo Stretching of B-field lines by turbulence (Batchelor 1950, Moffat 1978, Parker 1979) Fast dynamo for chaotic & sufficiently complex flows (Childress & Gilbert 1995) Near the surface layer of the sun? (e.g., Petrovay & Szakaly 1993) Stretching η t B = (v B) + η 2 B Re M = volo η > ReM C dynamo

5 Overview of turbulent dynamo theory Turbulent dynamos well studied Turbulent dynamos first demonstrated 20 years ago Realistic: Boussinesq (no sound waves), rotation, convection in spherical shell (Gilman and Miller 1981) Idealistic: periodic box N 3 = 64 3, Re M 100 (Meneguzzi et al. 1981) Homogeneity and isotropy recovered at small scales Helical and Non-helical

6 Turbulent dynamos large & small 2 types of turbulent dynamos Large-scale (LSD; helicity, α effect: mean-field) Small-scale (SSD; non-helical) solar surface dynamo (τ conv 10 min << τ rotation no net helicity)

7 Overview of turbulent dynamo theory Evidence for SSSD Arguments against SSSD Magnetic carpet (Title and Schrijver 1998; Title 2000) Lites et al (see also Hagenaar et al. 2003)

8 Evidence for SSSD Arguments against SSSD Convectively-Driven Small-Scale Dynamo (Cattaneo 1999) Temperature B z Re 200 Re M Re 9/4 M Boussinesq convection (no sound waves) no Coriolis force (SSD) (see also Cattaneo et al. 2003)

9 Overview of turbulent dynamo theory Evidence for SSSD Arguments against SSSD 1. Shredding of large-scale field by turbulence? Induced small-scale field Observation: Very small-scale bipolar regions (Φ < Mx) independent of the solar cycle and latitude (for low latitudes) (Hagenaar et al. 2003; Trujillo Bueno et al. 2004) Timescale for SSD much faster (e.g., Kulsrud & Anderson 1992; Kulsrud 1999) for open questions see Iskakov et al. (2007) τ SSD 10 min (theoretically) other dynamos Shredding is algebraic-in-time, SSD is exponential-in-time (e.g., Schekochihin et al. 2005)

10 Evidence for SSSD Arguments against SSSD 2. Re Re M (i.e., P M Re M Re = ν η 1) P M > 1 l η < l ν Schekochihin et al P M < 1 l η < l ν eddies l > l η stretch B eddies l < l η diffuse B

11 Evidence for SSSD Arguments against SSSD 2. Re Re M (i.e., P M Re M Re = ν η 1) 2 Theoretical possibilities (Rogachevskii & Kleeorin 1997) Schekochihin et al. 2005

12 Evidence for SSSD Arguments against SSSD 2. Re Re M (i.e., P M Re M Re = ν η 1) Dynamo at low P M Iskakov et al. 2007

13 Evidence for SSSD Arguments against SSSD 2. Re Re M (i.e., P M Re M Re = ν η 1) Dynamo at low P M P M 10 5 Iskakov et al. 2007

14 P M 10 5 No Problem Evidence for SSSD Arguments against SSSD VKS experiment (Monchaux et al. 2007) CEA-Saclay CNRS ENS-Lyon ENS-Paris

15 Overview of turbulent dynamo theory Evidence for SSSD Arguments against SSSD 3. Strong stratification & little recirculation Last argument against SSD (Stein et al. 2003) Strong stratification Little plasma is recirculated in the near-surface layers Realistic magneto-convection with open boundaries (Stein et al. 2003): Re M 600

16 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux The MURaM code (Vögler et al. 2005; Vögler 2003) Realistic magnetoconvection Strong stratification Fully compressible Partial ionization Radiative transfer Open lower boundary B z & brightness dv (vertical upflows, = 0 for downflows; B hor not advected dz into box) No rotation Parallelized

17 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Strong stratification & little recirculation No Problem Vögler & Schüssler 2007 Run Nhor 2 N Z Re M A B C Re C M < 2600 Run C: E M 3%E K

18 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Turbulent small-scale solar surface dynamo for Re M > Re C M Run C Simulation Comparison Result Grid pts. Re M P M BC SSD Run A open N Stein open N Run B open N Cattaneo closed Y Run C open Y (Vögler & Schüssler 2007)

19 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Pervasive horizontal magnetic flux (Lites et al. 2008) B L app 11 Mx cm 2 B T app 55 Mx cm 2 Bapp L 50 Mx cm 2 Bapp T 200 Mx cm 2

20 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Strong horizontal photospheric magnetic field in SSD (Schüssler & Vögler 2008) Run C: log B hor Shallow narrow loops (integranular lanes) (see also Steiner et al. 2008) Extended loops (above granules) Average vertical field decreases faster with height than horizontal field

21 Overview of turbulent dynamo theory Distribution of vertical field strength Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Hinode Bapp L 220 Mm 110 Mm (Lites et al. 2008) Run C: B ave 4.9 Mm 4.9 Mm

22 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Observed PDF derived from Stokes V (Lites et al. 2008) Simulated PDFs Simulations have prevalent weak field

23 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Observed PDF derived from Stokes V (Lites et al. 2008) Simulated PDFs Synthetic observation is also peaked

24 Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Observed PDF derived from Stokes V (Lites et al. 2008) Simulated PDFs Observed PDF is compatible with monotonic PDF of the actual field

25 Vertical radiative transfer & turbulence Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Fe I Å (a Hinode SP line) Vertically averaged field = 0 Absorption profiles Doppler shifted

26 Vertical radiative transfer & turbulence Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux B ave < 0.1 G Synthetic Magnetogram Effect increases with variance(v z ) 1/2 along line of sight

27 Overview of turbulent dynamo theory Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux From fractal geometry to true unsigned vertical flux (Sorriso-Valvo et al. 2002) Fractal = self-similar = power-law N(l) l D Koch fractal χ(l) P R i Ai (l) Bz da R B da z A χ(l) l κ (Ott et al. 1992) χ(l) measures the portion of flux remaining after averaging over boxes of length l

28 Cancellation is self-similar Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux Hinode Bapp L (Lites et al. 2008) P R i A i (l) Bzda χ(l) R A Bz da Fractal extrapolation B Z A B z da/ A da P R i B Z l B Z = B Z l χ(lη ) χ(l) A i (l) Bzda R A da = χ(l) B Z «0.26 = 11G 220km lη η 10 8 cm 2 s 1 (Kovitya & Cram 1983) K41 l η 80 m < 800 m B Z 46 G

29 Better agreement with Hanle estimates Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux The flux remaining at l = 200 km follows a power-law scaling. Extrapolation to solar values, Re M , yields χ(200 km) = 0.2. B Z 50 G B Z 50 G B hor > B Z (Lites et al. 2008) B 130 G Hanle (Trujillo Bueno et al. 2004)

30 Overview of turbulent dynamo theory Conclusions Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field Estimating true unsigned vertical flux A small-scale solar surface dynamo (SSSD) is likely Evidence seen in observations MURaM dynamo simulations in agreement with observations Arguments against fail: stratified, compressed, little recirculation, P M 1 all seem OK Whatever its source, small-scale B-field is turbulent & fractal - we should use this to interpret observations arxiv:

arxiv:astro-ph/ v1 26 Feb 2007

arxiv:astro-ph/ v1 26 Feb 2007 Astronomy & Astrophysics manuscript no. 7253 c ESO 2008 February 5, 2008 Letter to the Editor A solar surface dynamo A. Vögler and M. Schüssler Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse

More information

A solar surface dynamo

A solar surface dynamo MPS Solar Group Seminar May 8, 2007 A solar surface dynamo Alexander Vögler (Univ. of Utrecht) & Manfred Schüssler A lot of magnetic flux in the `quiet Sun Observation: Flux replenishment rates increase

More information

Konvektion und solares Magnetfeld

Konvektion und solares Magnetfeld Vorlesung Physik des Sonnensystems Univ. Göttingen, 2. Juni 2008 Konvektion und solares Magnetfeld Manfred Schüssler Max-Planck Planck-Institut für Sonnensystemforschung Katlenburg-Lindau Convection &

More information

LES Simulations of Quiet Sun Magnetism

LES Simulations of Quiet Sun Magnetism LES Simulations of Quiet Sun Magnetism Matthias Rempel HAO/NCAR Quiet sun magnetism Origin and spatial distribution of quiet sun field Small scale dynamo? Remnant field from large scale dynamo? Vögler,

More information

IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv: ) Bidya Binay Karak & Axel Brandenburg (Nordita)

IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv: ) Bidya Binay Karak & Axel Brandenburg (Nordita) IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv:1505.06632) Bidya Binay Karak & Axel Brandenburg (Nordita) Solar Seminar at MPS Oct 25, 2015 Large-scale magnetic field

More information

Non-spot magnetic fields

Non-spot magnetic fields Non-spot magnetic fields Non-spot fields Sunspots cover in general

More information

Dynamo Simulations in Solar Convection Zone

Dynamo Simulations in Solar Convection Zone Dynamo Simulations in Solar Convection Zone Bidya Binay Karak (Nordita fellow & Visitor at MPS) Collaborators: Axel Brandenburg (Nordita), Petri Käpylä and Maarit Käpylä (Aalto University) Thanks to organisers

More information

Magnetic Field Intensification and Small-scale Dynamo Action in Compressible Convection

Magnetic Field Intensification and Small-scale Dynamo Action in Compressible Convection Magnetic Field Intensification and Small-scale Dynamo Action in Compressible Convection Paul Bushby (Newcastle University) Collaborators: Steve Houghton (Leeds), Nigel Weiss, Mike Proctor (Cambridge) Magnetic

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

arxiv: v1 [astro-ph.sr] 13 Jan 2010

arxiv: v1 [astro-ph.sr] 13 Jan 2010 Astronomy & Astrophysics manuscript no. dyn fin c ESO 2018 November 13, 2018 Probing quiet Sun magnetism using MURaM simulations and Hinode/SP results: support for a local dynamo S. Danilovic 1, M. Schüssler

More information

Solar cycle & Dynamo Modeling

Solar cycle & Dynamo Modeling Solar cycle & Dynamo Modeling Andrés Muñoz-Jaramillo www.solardynamo.org Georgia State University University of California - Berkeley Stanford University THE SOLAR CYCLE: A MAGNETIC PHENOMENON Sunspots

More information

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012 Outline of Presentation Karen Meyer 1 Duncan Mackay 1 Aad van Ballegooijen 2 Magnetic Carpet 2D Photospheric Model Non-Linear Force-Free Fields 3D Coronal Model Future Work Conclusions 1 University of

More information

Photospheric magnetism

Photospheric magnetism Photospheric magnetism SAMI K. SOLANKI MAX PLANCK INSTITUTE FOR SOLAR SYSTEM RESEARCH Large and small magnetic features Polar fields 2 4 10 26 Mx/yr Quiet network Internetwork fields 10 28 Mx/yr Active

More information

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science

Solar Magnetism. Arnab Rai Choudhuri. Department of Physics Indian Institute of Science Solar Magnetism Arnab Rai Choudhuri Department of Physics Indian Institute of Science Iron filings around a bar magnet Solar corona during a total solar eclipse Solar magnetic fields do affect our lives!

More information

Small-Scale Dynamo and the Magnetic Prandtl Number

Small-Scale Dynamo and the Magnetic Prandtl Number MRI Turbulence Workshop, IAS, Princeton, 17.06.08 Small-Scale Dynamo and the Magnetic Prandtl Number Alexander Schekochihin (Imperial College) with Steve Cowley (Culham & Imperial) Greg Hammett (Princeton)

More information

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism.

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism. Scope of this lecture ASTR 7500: Solar & Stellar Magnetism Hale CGEG Solar & Space Physics Processes of magnetic field generation and destruction in turbulent plasma flows Introduction to general concepts

More information

Solar photosphere. Michal Sobotka Astronomical Institute AS CR, Ondřejov, CZ. ISWI Summer School, August 2011, Tatranská Lomnica

Solar photosphere. Michal Sobotka Astronomical Institute AS CR, Ondřejov, CZ. ISWI Summer School, August 2011, Tatranská Lomnica Solar photosphere Michal Sobotka Astronomical Institute AS CR, Ondřejov, CZ ISWI Summer School, August 2011, Tatranská Lomnica Contents General characteristics Structure Small-scale magnetic fields Sunspots

More information

Astronomy. Astrophysics. Basal magnetic flux and the local solar dynamo. J. O. Stenflo 1,2. 1. Introduction

Astronomy. Astrophysics. Basal magnetic flux and the local solar dynamo. J. O. Stenflo 1,2. 1. Introduction A&A 547, A93 (2012) DOI: 10.1051/0004-6361/201219833 c ESO 2012 Astronomy & Astrophysics Basal magnetic flux and the local solar dynamo J. O. Stenflo 1,2 1 Institute of Astronomy, ETH Zurich, 8093 Zurich,

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

Surface Convection INTRODUCTION

Surface Convection INTRODUCTION Surface Convection Robert F. Stein, David Benson, Dali Georgobiani, Åke Nordlund Werner Schaffenberger and Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824, USA Department

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 20 2011 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center Solar Cycle Prediction and Reconstruction Dr. David H. Hathaway NASA/Ames Research Center Outline Solar cycle characteristics Producing the solar cycle the solar dynamo Polar magnetic fields producing

More information

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity

Solar Structure. Connections between the solar interior and solar activity. Deep roots of solar activity Deep roots of solar activity Michael Thompson University of Sheffield Sheffield, U.K. michael.thompson@sheffield.ac.uk With thanks to: Alexander Kosovichev, Rudi Komm, Steve Tobias Connections between

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/13/18. Topics for Today and Thur+ Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 9 Tues 13 Feb 2018 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur+ Helioseismology:

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

arxiv: v1 [astro-ph] 31 Oct 2008

arxiv: v1 [astro-ph] 31 Oct 2008 Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations M. C. M. Cheung Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA.

More information

Observable consequences

Observable consequences Coronal Heating through braiding of magnetic field lines Solar eclipse, 11.8.1999, Wendy Carlos & John Kern Observable consequences 3D MHD model spectral synthesis results: Doppler shifts DEM variability

More information

Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field. R. Moll, R. H. Cameron, and M. Schüssler

Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field. R. Moll, R. H. Cameron, and M. Schüssler DOI: 10.1051/0004-6361/201218866 c ESO 2012 Astronomy & Astrophysics Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field R. Moll, R. H. Cameron, and M. Schüssler Max-Planck-Institut

More information

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies

Logistics 2/14/17. Topics for Today and Thur. Helioseismology: Millions of sound waves available to probe solar interior. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Pleiades Star Cluster Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 9 Tues 14 Feb 2017 zeus.colorado.edu/astr1040-toomre Topics for Today and Thur Helioseismology:

More information

A finite difference code designed to study nonlinear magneto-convection and dynamo evolution

A finite difference code designed to study nonlinear magneto-convection and dynamo evolution A finite difference code designed to study nonlinear magneto-convection and dynamo evolution Shravan M. Hanasoge & Jonathan Pietarila Graham Max-Planck-Institut für Sonnensystemforschung, Max Planck Straβe

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

Model Atmospheres. Model Atmosphere Assumptions

Model Atmospheres. Model Atmosphere Assumptions Model Atmospheres Problem: Construct a numerical model of the atmosphere to estimate (a) Variation of physical variables (T, P) with depth (b) Emergent spectrum in continuum and lines Compare calculated

More information

Magnetic structuring at spatially unresolved scales. Jan Stenflo ETH Zurich and IRSOL, Locarno

Magnetic structuring at spatially unresolved scales. Jan Stenflo ETH Zurich and IRSOL, Locarno Magnetic structuring at spatially unresolved scales Jan Stenflo ETH Zurich and IRSOL, Locarno Magnetograms of the active and quiet Sun Question: What would the field look like with infinite resolution

More information

SOLAR SMALL-SCALE MAGNETOCONVECTION

SOLAR SMALL-SCALE MAGNETOCONVECTION The Astrophysical Journal, 642:1246 1255, 2006 May 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. SOLAR SMALL-SCALE MAGNETOCONVECTION R. F. Stein Department of Physics

More information

POLARIZATION OF PHOTOSPHERIC LINES FROM TURBULENT DYNAMO SIMULATIONS J. Sánchez Almeida. T. Emonet. and F. Cattaneo

POLARIZATION OF PHOTOSPHERIC LINES FROM TURBULENT DYNAMO SIMULATIONS J. Sánchez Almeida. T. Emonet. and F. Cattaneo The Astrophysical Journal, 585:536 552, 2003 March 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. POLARIZATION OF PHOTOSPHERIC LINES FROM TURBULENT DYNAMO SIMULATIONS

More information

The solar dynamo (critical comments on) SPD Hale talk 14 June 2011

The solar dynamo (critical comments on) SPD Hale talk 14 June 2011 The solar dynamo (critical comments on) The solar dynamo (critical comments on) - what observations show - what they show is not the case - what is known from theory - interesting open questions quantitative

More information

arxiv: v1 [astro-ph.sr] 25 May 2015

arxiv: v1 [astro-ph.sr] 25 May 2015 Does the variation of solar inter-network horizontal field follow sunspot cycle? arxiv:1505.06519v1 [astro-ph.sr] 25 May 2015 C. L. Jin & J. X. Wang Key Laboratory of Solar Activity, National Astronomical

More information

Astronomy. Astrophysics. G-band spectral synthesis and diagnostics of simulated solar magneto-convection

Astronomy. Astrophysics. G-band spectral synthesis and diagnostics of simulated solar magneto-convection A&A 427, 335 343 (24) DOI: 1.151/4-6361:24471 c ESO 24 Astronomy & Astrophysics G-band spectral synthesis and diagnostics of simulated solar magneto-convection S. Shelyag 1, M. Schüssler 1, S. K. Solanki

More information

The Solar Chromosphere

The Solar Chromosphere 1 / 29 The Solar Chromosphere Recent Advances in Determining the Magnetic Fine Structure Andreas Lagg Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany Rocks n Stars 2012 2 / 29

More information

Anisotropic turbulence in rotating magnetoconvection

Anisotropic turbulence in rotating magnetoconvection Anisotropic turbulence in rotating magnetoconvection André Giesecke Astrophysikalisches Institut Potsdam An der Sternwarte 16 14482 Potsdam MHD-Group seminar, 2006 André Giesecke (AIP) Anisotropic turbulence

More information

Introduction to Daytime Astronomical Polarimetry

Introduction to Daytime Astronomical Polarimetry Introduction to Daytime Astronomical Polarimetry Sami K. Solanki Max Planck Institute for Solar System Research Introduction to Solar Polarimetry Sami K. Solanki Max Planck Institute for Solar System Research

More information

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7 Date of delivery: 29 June 2011 Journal and vol/article ref: IAU 1101493 Number of pages (not including this page): 7 Author queries: Typesetter queries: Non-printed material: The Physics of Sun and Star

More information

A Non-Linear Force- Free Field Model for the Solar Magnetic Carpet

A Non-Linear Force- Free Field Model for the Solar Magnetic Carpet A Non-Linear Force- Free Field Model for the Solar Magnetic Carpet Karen Meyer, Duncan Mackay, Clare Parnell University of St Andrews Aad van Ballegooijen Harvard-Smithsonian Center for Astrophysics Magnetic

More information

L. A. Upton. Heliophysics Summer School. July 27 th 2016

L. A. Upton. Heliophysics Summer School. July 27 th 2016 L. A. Upton Heliophysics Summer School July 27 th 2016 Sunspots, cool dark regions appearing on the surface of the Sun, are formed when the magnetic field lines pass through the photosphere. (6000 times

More information

The Solar Interior. Paul Bushby (Newcastle University) STFC Introductory Course in Solar System Physics Leeds, 06 Sept 2010

The Solar Interior. Paul Bushby (Newcastle University) STFC Introductory Course in Solar System Physics Leeds, 06 Sept 2010 The Solar Interior Paul Bushby (Newcastle University) STFC Introductory Course in Solar System Physics Leeds, 06 Sept 2010 General Outline 1. Basic properties of the Sun 2. Solar rotation and large-scale

More information

Polar Magnetic Field Topology

Polar Magnetic Field Topology 1 / 21 Polar Magnetic Field Topology Andreas Lagg Max-Planck-Institut für Sonnensystemforschung Göttingen, Germany Solar Orbiter SAP science goal #4 + PHI stand-alone science meeting MPS Göttingen, Oct

More information

The Sun s Magnetic Cycle: Current State of our Understanding

The Sun s Magnetic Cycle: Current State of our Understanding The Sun s Magnetic Cycle: Current State of our Understanding Dibyendu Nandi Outline: The need to understand solar variability The solar cycle: Observational characteristics MHD: Basic theoretical perspectives;

More information

Meridional Flow, Differential Rotation, and the Solar Dynamo

Meridional Flow, Differential Rotation, and the Solar Dynamo Meridional Flow, Differential Rotation, and the Solar Dynamo Manfred Küker 1 1 Leibniz Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany Abstract. Mean field models of rotating

More information

Interpreting HMI multi-height velocity measurements Kaori Nagashima

Interpreting HMI multi-height velocity measurements Kaori Nagashima Interpreting HMI multi-height velocity measurements Kaori Nagashima Postdoc of Interior of the Sun and Stars Dept. @MPS (May 2012 - ) Collaborators of this study: L. Gizon, A. Birch, B. Löptien, S. Danilovic,

More information

Extrapolating Solar Dynamo Models throughout the Heliosphere

Extrapolating Solar Dynamo Models throughout the Heliosphere Extrapolating Solar Dynamo Models throughout the Heliosphere Taylor Cox Bridgewater College Mentors: Mark Miesch, Kyle Augustson, Nick Featherstone Solar Convection Convection arises from heat in the Sun

More information

Predicting the Solar Cycle 24 with a Solar Dynamo Model

Predicting the Solar Cycle 24 with a Solar Dynamo Model Predicting the Solar Cycle 24 with a Solar Dynamo Model Arnab Rai Choudhuri and Piyali Chatterjee Department of Physics, Indian Institute of Science and Jie Jiang National Astronomical Observatories, Beijing

More information

Supercomputers simulation of solar granulation

Supercomputers simulation of solar granulation Supercomputers simulation of solar granulation simulation by Stein et al (2006), visualization by Henze (2008) Beyond Solar Dermatology But still stops at 0.97R! what lies deeper still? Supercomputers

More information

Measuring the Magnetic Vector with the Hei Å Line: A Rich New World

Measuring the Magnetic Vector with the Hei Å Line: A Rich New World Solar Polarization 4 ASP Conference Series, Vol. 358, 2006 R. Casini and B. W. Lites Measuring the Magnetic Vector with the Hei 10830 Å Line: A Rich New World S. K. Solanki, 1 A. Lagg, 1 R. Aznar Cuadrado,

More information

The Solar Cycle: From Understanding to Forecasting

The Solar Cycle: From Understanding to Forecasting AAS-SPD Karen Harvey Prize Lecture, 12th June, 2012, Anchorage, Alaska The Solar Cycle: From Understanding to Forecasting Dibyendu Nandy Indian Institute of Science Education and Research, Kolkata Influences

More information

HMI multi height Dopplergram study

HMI multi height Dopplergram study Nagashima et al. 2014 SoPh Interpreting the Helioseismic and Magnetic Imager (HMI) Multi Height Velocity Measurements HMI multi height Dopplergram study Kaori Nagashima (MPS) Collaborators: L. Gizon, A.

More information

Magnetohydrodynamic Simulations at IRSOL

Magnetohydrodynamic Simulations at IRSOL 1st Swiss SCOSTEP workshop, Oct. 4 5, 2016 Oeschger Centre, Bern Magnetohydrodynamic Simulations at IRSOL Oskar Steiner Istituto Ricerche Solari Locarno (IRSOL), Locarno-Monti, Switzerland Kiepenheuer-Institut

More information

Three-dimensional simulations of magneto-convection in the solar photosphere

Three-dimensional simulations of magneto-convection in the solar photosphere Three-dimensional simulations of magneto-convection in the solar photosphere Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität

More information

Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as a Cosmic Dynamo

Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as a Cosmic Dynamo J. Astrophys. Astr. (2000) 21, 365-371 Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as a Cosmic Dynamo Hirokazu Yoshimura, Department of Astronomy, University of Tokyo, Tokyo, Japan

More information

arxiv: v1 [astro-ph] 29 Jan 2008

arxiv: v1 [astro-ph] 29 Jan 2008 Contrib. Astron. Obs. Skalnaté Pleso?, 1 6, (2018) Non-dipolar magnetic fields in Ap stars arxiv:0801.4562v1 [astro-ph] 29 Jan 2008 J.Braithwaite 1 Canadian Institute for Theoretical Astrophysics 60 St.

More information

Parity of solar global magnetic field determined by turbulent diffusivity

Parity of solar global magnetic field determined by turbulent diffusivity First Asia-Pacific Solar Physics Meeting ASI Conference Series, 2011, Vol. 1, pp 117 122 Edited by Arnab Rai Choudhuri & Dipankar Banerjee Parity of solar global magnetic field determined by turbulent

More information

Predicting a solar cycle before its onset using a flux transport dynamo model

Predicting a solar cycle before its onset using a flux transport dynamo model *** TITLE *** Proceedings IAU Symposium No. 335, 2017 ***NAME OF EDITORS*** c 2017 International Astronomical Union DOI: 00.0000/X000000000000000X Predicting a solar cycle before its onset using a flux

More information

Penumbral structure and outflows in simulated sunspots

Penumbral structure and outflows in simulated sunspots Penumbral structure and outflows in simulated sunspots arxiv:0907.2259v1 [astro-ph.sr] 13 Jul 2009 M. Rempel 1, M. Schüssler 2, R.H. Cameron 2 & M. Knölker 1 1 High Altitude Observatory, NCAR, P.O. Box

More information

Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope

Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope Allan Sacha Brun DSM/DAPNIA/SAp, CEA Saclay, Gif sur Yvette, 91191 Cedex, France Mark S. Miesch HAO, NCAR, Boulder, CO

More information

The Sun. The Sun. Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences. May 7, 2016

The Sun. The Sun. Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences. May 7, 2016 The Sun Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences May 7, 2016 Outline 1 Motivation 2 Resume of the Sun 3 Structure of the Sun - Solar Interior and Atmosphere 4 Standard Solar Model -

More information

New insights from. observation. Hinode-VTT He Andreas Lagg (MPS) Saku Tsuneta (NAOJ) Ryohko Ishikawa (NAOJ/Univ. Tokyo)

New insights from. observation. Hinode-VTT He Andreas Lagg (MPS) Saku Tsuneta (NAOJ) Ryohko Ishikawa (NAOJ/Univ. Tokyo) New insights from Hinode-VTT He10830 observation Ryohko Ishikawa (NAOJ/Univ. Tokyo) Saku Tsuneta (NAOJ) Andreas Lagg (MPS) Hinode-VTT joint campaign (HOP71) (2008/04/29-2008/05/12) Purpose: Finding chromospheric

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

Dynamics of small-scale granular cells

Dynamics of small-scale granular cells This work was supported by FWF grant: P23818 (Dynamics of Magnetic Bright Points) Dynamics of small-scale granular cells B. Lemmerer A. Hanslmeier, A. Veronig H. Grimm-Strele, I. Piantschitsch IGAM/Institute

More information

arxiv:submit/ [astro-ph.sr] 19 Jun 2017

arxiv:submit/ [astro-ph.sr] 19 Jun 2017 Astronomy & Astrophysics manuscript no. ms c ESO 2017 June 19, 2017 Numerical simulations of quiet Sun magnetic fields seeded by Biermann battery E. Khomenko 1,2, N. Vitas 1,2, M. Collados 1,2, A. de Vicente

More information

arxiv: v1 [astro-ph.sr] 11 May 2009

arxiv: v1 [astro-ph.sr] 11 May 2009 Research in Astronomy and Astrophysics manuscript no. (L A TEX: ms18.tex; printed on October, 18; 8:) arxiv:95.1553v1 [astro-ph.sr] 11 May 9 Interaction between Granulation and Small-Scale Magnetic Flux

More information

Chapter 1. Introduction. 1.1 Why study the sun?

Chapter 1. Introduction. 1.1 Why study the sun? Chapter 1 Introduction 1.1 Why study the sun? The sun is an ordinary main-sequence star of spectral type G2V. From the human perspective it is the most important star in the universe. It provides the earth

More information

Solar and stellar dynamo models

Solar and stellar dynamo models Solar and stellar dynamo models Paul Charbonneau, Université de Montréal From MHD to simple dynamo models Mean-field models Babcock-Leighton models Stochastic forcing Cycle forecasting Stellar dynamos

More information

Search for photospheric footpoints of quiet Sun transition region loops

Search for photospheric footpoints of quiet Sun transition region loops Search for photospheric footpoints of quiet Sun transition region loops L. Teriaca Max Planck Institut für Sonnensystemforschung Submitted to A&A as Sánchez Almeida, Teriaca, Sütterlin, Spadaro, Schühle,

More information

COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI

COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI COMPLETE LIST OF PUBLICATIONS OF ARNAB RAI CHOUDHURI Publications (Book) : The Physics of Fluids and Plasmas: An Introduction for Astrophysicists Arnab Rai Choudhuri (1998) Cambridge University Press.

More information

Flux concentrations in turbulent convection

Flux concentrations in turbulent convection Solar and Astrophysical Dynamos and Magnetic Activity Proceedings IAU Symposium No. 294, 2012 c International Astronomical Union 2013 A.G. Kosovichev, E.M. de Gouveia Dal Pino, & Y. Yan, eds. doi:10.1017/s1743921313002640

More information

Results from Chromospheric Magnetic Field Measurements

Results from Chromospheric Magnetic Field Measurements Results from Chromospheric Magnetic Field Measurements Andreas Lagg Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau Outline: The average chromosphere Magnetic structures canopy spicules

More information

arxiv: v1 [astro-ph.sr] 3 Oct 2011

arxiv: v1 [astro-ph.sr] 3 Oct 2011 Small-scale dynamo action in rotating compressible convection B. Favier and P.J. Bushby School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE 7RU, UK arxiv:.374v [astro-ph.sr]

More information

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle David H. Hathaway NASA/MSFC National Space Science and Technology Center Outline 1. Key observational components of the solar magnetic

More information

DYNAMO ACTION AND THE SUN

DYNAMO ACTION AND THE SUN Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 2006 DYNAMO ACTION AND THE SUN Michael Proctor 1 Abstract. Solar magnetic fields are produced

More information

Workshop on Astrophysical 3-D Dynamics and Visualization 1 What is a dynamo in the context of the Sun and why must it be there? The solar dynamo revea

Workshop on Astrophysical 3-D Dynamics and Visualization 1 What is a dynamo in the context of the Sun and why must it be there? The solar dynamo revea Solar Dynamo Mechanisms Workshop on Astrophysical 3-D Dynamics and Visualization Vasilis Archontis & Bertil Dorch, The Astronomical Observatory at NBIfAFG, Juliane Maries Vej 30, DK-2100 Copenhagen. January

More information

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere

Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere Mesoscale Variations in the Heliospheric Magnetic Field and their Consequences in the Outer Heliosphere L. A. Fisk Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor,

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

DISTRIBUTION OF THE MAGNETIC FLUX IN ELEMENTS OF THE MAGNETIC FIELD IN ACTIVE REGIONS

DISTRIBUTION OF THE MAGNETIC FLUX IN ELEMENTS OF THE MAGNETIC FIELD IN ACTIVE REGIONS The Astrophysical Journal, 619:1160 1166, 2005 February 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISTRIBUTION OF THE MAGNETIC FLUX IN ELEMENTS OF THE MAGNETIC

More information

arxiv: v1 [astro-ph.sr] 18 May 2009

arxiv: v1 [astro-ph.sr] 18 May 2009 Submitted to the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 10/10/03 arxiv:0905.2691v1 [astro-ph.sr] 18 May 2009 EMERGENCE OF SMALL-SCALE MAGNETIC LOOPS THROUGH THE QUIET

More information

CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE SUN

CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE SUN The Astrophysical Journal, 631:647 652, 2005 September 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. CONSTRAINTS ON THE APPLICABILITY OF AN INTERFACE DYNAMO TO THE

More information

Modeling of turbulent MHD processes on the Sun

Modeling of turbulent MHD processes on the Sun Center for Turbulence Research Proceedings of the Summer Program 00 Modeling of turbulent MHD processes on the Sun By I. N. Kitiashvili, A. G. Kosovichev, N. N. Mansour AND A. A. Wray Solar observations

More information

NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY

NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY Draft version September 25, 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY M. Rempel 1 and M.C.M.

More information

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field Center for Turbulence Research Proceedings of the Summer Program 2010 475 Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field By R. D. Simitev, F.

More information

Magnetic twists and energy releases in solar flares

Magnetic twists and energy releases in solar flares Hinode seminar 2 September 2015 Magnetic twists and energy releases in solar flares Toshifumi Shimizu (ISAS/JAXA, Japan) 2015.9.2 Hinode seminar 1 Eruptive solar flares! General scenario Formation of magnetic

More information

Circulation-dominated solar shell dynamo models with positive alpha-effect

Circulation-dominated solar shell dynamo models with positive alpha-effect A&A 374, 301 308 (2001) DOI: 10.1051/0004-6361:20010686 c ESO 2001 Astronomy & Astrophysics Circulation-dominated solar shell dynamo models with positive alpha-effect M. Küker,G.Rüdiger, and M. Schultz

More information

Helicity and Large Scale Dynamos; Lessons From Mean Field Theory and Astrophysical Implications

Helicity and Large Scale Dynamos; Lessons From Mean Field Theory and Astrophysical Implications Helicity and Large Scale Dynamos; Lessons From Mean Field Theory and Astrophysical Implications Eric Blackman (U. Rochester) 21st century theory based on incorporating mag. hel conservation has predictive

More information

Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations

Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations Reconstructing the Subsurface Three-Dimensional Magnetic Structure of Solar Active Regions Using SDO/HMI Observations Georgios Chintzoglou*, Jie Zhang School of Physics, Astronomy and Computational Sciences,

More information

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University

Solar-B. Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University Solar-B Report from Kyoto 8-11 Nov Meeting organized by K. Shibata Kwasan and Hida Observatories of Kyoto University The mission overview Japanese mission as a follow-on to Yohkoh. Collaboration with USA

More information

Hale Collage. Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno

Hale Collage. Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno Hale Collage Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno March 1-8, 2016 Degree of polarization The degree of polarization is defined as: p = Q2 + U 2 + V 2 I 2 In a purely absorptive

More information

THE DYNAMO EFFECT IN STARS

THE DYNAMO EFFECT IN STARS THE DYNAMO EFFECT IN STARS Axel Brandenburg NORDITA, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark; and Department of Mathematics, University of Newcastle upon Tyne, NEl 7RU, UK brandenb@nordita.dk Abstract

More information

Advances in measuring the chromospheric magnetic field using the He triplet

Advances in measuring the chromospheric magnetic field using the He triplet 1 / 39 Advances in measuring the chromospheric magnetic field using the He 10830 triplet Andreas Lagg Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany 1 st Sino-German Symposium

More information

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP

Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Waves & Turbulence in the Solar Wind: Disputed Origins & Predictions for PSP Steven R. Cranmer University of Colorado Boulder, LASP A. Schiff, S. Van Kooten, C. Gilbert, L. N. Woolsey, A. A. van Ballegooijen,

More information

2. Stellar atmospheres: Structure

2. Stellar atmospheres: Structure 2. Stellar atmospheres: Structure 2.1. Assumptions Plane-parallel geometry Hydrostatic equilibrium, i.e. o no large-scale accelerations comparable to surface gravity o no dynamically significant mass loss

More information

Outline. What is overshoot? Why is overshoot interesting? Overshoot at the base of the solar convection zone. What is overshoot?

Outline. What is overshoot? Why is overshoot interesting? Overshoot at the base of the solar convection zone. What is overshoot? Overshoot at the base of the solar convection zone What can we learn from numerical simulations? Matthias Rempel HAO / NCAR Outline What is overshoot? Why is overshoot interesting? Overshoot modeling different

More information

Results from Chromospheric Magnetic Field Measurements

Results from Chromospheric Magnetic Field Measurements Results from Chromospheric Magnetic Field Measurements Andreas Lagg Max-Planck Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau Outline: The average chromosphere Magnetic structures network

More information