A solar surface dynamo

Size: px
Start display at page:

Download "A solar surface dynamo"

Transcription

1 MPS Solar Group Seminar May 8, 2007 A solar surface dynamo Alexander Vögler (Univ. of Utrecht) & Manfred Schüssler

2 A lot of magnetic flux in the `quiet Sun Observation: Flux replenishment rates increase with increasing spatial resolution sensitive Zeeman magnetometry shows much flux in intergranular lanes Hanle depolarization indicates large amounts of small-scale, mixed-polarity flux in quiet photospheric regions Zeeman: B G Hanle: B 130 G? (Domίnguez Cerdena et al., 2003)

3 Local dynamo action based on granulation? Possible origin of quiet-sun magnetism: `turbulent surface dynamo Idealized simulations by Cattaneo (1999) Boussinesq, closed box self-excited dynamo action R m,crit 1000 (for Re = 200.) E mag / E kin 20% growth rate turnover time (Cattaneo 1999) Temperature (top) B z (top) B z (middle)

4 Local dynamo under solar conditions? Stein & Nordlund (2003) don t find dynamo action and argue: Little recirculation in the solar surface layers Downward pumping of magnetic flux no local dynamo

5 The MURaM (MPS/UofC Radiation MHD) code Developed by the MPS MHD group (A. Vögler, R. Cameron, S. Shelyag, M. Schüssler) in cooperation with F. Cattaneo, Th. Emonet, T. Linde (Univ. of Chicago) 3D compressible MHD Cartesian fixed grid 4th order centered spatial difference scheme explicit time stepping: 4th order Runge-Kutta MPI parallelized (domain decomposition) radiative transfer: short characteristics non-grey (opacity binning), LTE partial ionisation (11 species) and: extensive diagnostic tools to compare with observations (e.g. continuum & spectral line & polarization diagnostics)

6 The MURaM code: equations Continuity equation Momentum equation Q rad = F = 4πρ κν ( Jν Sν ) dν Energy equation di ds ν = κ ν ρ ( Iν Sν ) Induction equation Radiative Transfer Equation

7 Simulation setup Grid Resolution up to 648 x 648 x km 800 km τ=1 1.4 Mm 6 (4.9)Mm 6 (4.9) Mm closed, stress-free top boundary vertical field vertical at bottom & top bottom boundary open start with non-magnetic convection introduce 0.01 G vertical seed field (4 4 checkerboard, zero net flux) 3runs:

8 Time evolution of magnetic energy Emag open boundary: Rm 2600 no artificial recirculation free downward transport of magnetic flux no advection of flux from below seed field B0 = 0.01 G Rm 1300 Rm 300 Turbulent diffusivity from field decay experiments: ηt (τ k 2 ) cm 2 s -1 Æ Emag / Ekin < 1% Æ growth rate 10 min (turnover time) effective critical Reynolds number of O(10)

9 Structure of the near-surface field 4.9 Mm vertical magnetic field near <τ>=1 (greyscale saturates at Bz =50 G) Generation of small-scale flux, preferentially near long-lived downflows Unsigned vertical flux corresponds to ~25 G near the visible solar surface

10 Height dependence and relation to granulation pattern 4.9 Mm Magnetic field at τ R =1. B z = 25 G, saturation ±250 G Brightness Magnetic field at τ R =0.01 Bz = 3 G, saturation ±50 G

11 Probability density function (PDF) for B z as f(height) ~450 km below τ R =1. τ R 1. τ R 0.01

12 Energy spectra (B z, v z ) near the solar surface granules E kin E mag horizontal wave number

13 Poynting flux and energy balance Poynting Flux Energy Balance F = ( u B) B F ( j B) W = u Q J = η B 2 Negative Poynting flux Convective pumping into deeper layers F ( W Q ) 0. 8 J 80% of net energy input lost due to downward pumping Conclusion: There is sufficient local recirculation to overcome the drain of energy into the subsurface layers!

14 Summary & Outlook Local dynamo action demonstrated for realistic solar conditions Field amplitude not far below observed values Intermittent field structure (stretched exponential PDF) inefficient dynamo: downward pumping removes 80% of the magnetic energy input This is just the beginning... further clarification of the generation/amplification process existence of an inverse cascade? dependence of amplitude on magnetic Reynolds number dependence on Prandtl number (viscosity/magn. diffusivity) dependence on lower boundary condition (depth & specification) effect of a large-scale background field

arxiv:astro-ph/ v1 26 Feb 2007

arxiv:astro-ph/ v1 26 Feb 2007 Astronomy & Astrophysics manuscript no. 7253 c ESO 2008 February 5, 2008 Letter to the Editor A solar surface dynamo A. Vögler and M. Schüssler Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse

More information

Konvektion und solares Magnetfeld

Konvektion und solares Magnetfeld Vorlesung Physik des Sonnensystems Univ. Göttingen, 2. Juni 2008 Konvektion und solares Magnetfeld Manfred Schüssler Max-Planck Planck-Institut für Sonnensystemforschung Katlenburg-Lindau Convection &

More information

Magnetic Field Intensification and Small-scale Dynamo Action in Compressible Convection

Magnetic Field Intensification and Small-scale Dynamo Action in Compressible Convection Magnetic Field Intensification and Small-scale Dynamo Action in Compressible Convection Paul Bushby (Newcastle University) Collaborators: Steve Houghton (Leeds), Nigel Weiss, Mike Proctor (Cambridge) Magnetic

More information

LES Simulations of Quiet Sun Magnetism

LES Simulations of Quiet Sun Magnetism LES Simulations of Quiet Sun Magnetism Matthias Rempel HAO/NCAR Quiet sun magnetism Origin and spatial distribution of quiet sun field Small scale dynamo? Remnant field from large scale dynamo? Vögler,

More information

The Solar Surface Dynamo

The Solar Surface Dynamo Overview of turbulent dynamo theory The Solar Surface Dynamo J. Pietarila Graham, 1 S. Danilovic, 1 M. Schüssler, 1 A. Vögler, 2 1 Max-Planck-Institut für Sonnensystemforschung 2 Sterrekundig Instituut,

More information

Surface Convection INTRODUCTION

Surface Convection INTRODUCTION Surface Convection Robert F. Stein, David Benson, Dali Georgobiani, Åke Nordlund Werner Schaffenberger and Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824, USA Department

More information

Non-spot magnetic fields

Non-spot magnetic fields Non-spot magnetic fields Non-spot fields Sunspots cover in general

More information

Solar photosphere. Michal Sobotka Astronomical Institute AS CR, Ondřejov, CZ. ISWI Summer School, August 2011, Tatranská Lomnica

Solar photosphere. Michal Sobotka Astronomical Institute AS CR, Ondřejov, CZ. ISWI Summer School, August 2011, Tatranská Lomnica Solar photosphere Michal Sobotka Astronomical Institute AS CR, Ondřejov, CZ ISWI Summer School, August 2011, Tatranská Lomnica Contents General characteristics Structure Small-scale magnetic fields Sunspots

More information

Chromospheric heating and structure as determined from high resolution 3D simulations

Chromospheric heating and structure as determined from high resolution 3D simulations Mem. S.A.It. Vol. 81, 582 c SAIt 2010 Memorie della Chromospheric heating and structure as determined from high resolution 3D simulations M. Carlsson 1,2, V. H. Hansteen 1,2, and B. V. Gudiksen 1,2 1 Institute

More information

Solar cycle & Dynamo Modeling

Solar cycle & Dynamo Modeling Solar cycle & Dynamo Modeling Andrés Muñoz-Jaramillo www.solardynamo.org Georgia State University University of California - Berkeley Stanford University THE SOLAR CYCLE: A MAGNETIC PHENOMENON Sunspots

More information

Three-dimensional simulations of magneto-convection in the solar photosphere

Three-dimensional simulations of magneto-convection in the solar photosphere Three-dimensional simulations of magneto-convection in the solar photosphere Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität

More information

Turbulence models and excitation of solar oscillation modes

Turbulence models and excitation of solar oscillation modes Center for Turbulence Research Annual Research Briefs Turbulence models and excitation of solar oscillation modes By L. Jacoutot, A. Wray, A. G. Kosovichev AND N. N. Mansour. Motivation and objectives

More information

Astronomy. Astrophysics. G-band spectral synthesis and diagnostics of simulated solar magneto-convection

Astronomy. Astrophysics. G-band spectral synthesis and diagnostics of simulated solar magneto-convection A&A 427, 335 343 (24) DOI: 1.151/4-6361:24471 c ESO 24 Astronomy & Astrophysics G-band spectral synthesis and diagnostics of simulated solar magneto-convection S. Shelyag 1, M. Schüssler 1, S. K. Solanki

More information

First MHD simulations of the chromosphere

First MHD simulations of the chromosphere CO 5 BOLD WORKSHOP 2006, 12 14 June First MHD simulations of the chromosphere Oskar Steiner Kiepenheuer-Institut für Sonnenphysik, Freiburg i.br., Germany Collaborators The work presented in this talk

More information

Dynamo Simulations in Solar Convection Zone

Dynamo Simulations in Solar Convection Zone Dynamo Simulations in Solar Convection Zone Bidya Binay Karak (Nordita fellow & Visitor at MPS) Collaborators: Axel Brandenburg (Nordita), Petri Käpylä and Maarit Käpylä (Aalto University) Thanks to organisers

More information

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism.

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism. Scope of this lecture ASTR 7500: Solar & Stellar Magnetism Hale CGEG Solar & Space Physics Processes of magnetic field generation and destruction in turbulent plasma flows Introduction to general concepts

More information

A finite difference code designed to study nonlinear magneto-convection and dynamo evolution

A finite difference code designed to study nonlinear magneto-convection and dynamo evolution A finite difference code designed to study nonlinear magneto-convection and dynamo evolution Shravan M. Hanasoge & Jonathan Pietarila Graham Max-Planck-Institut für Sonnensystemforschung, Max Planck Straβe

More information

IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv: ) Bidya Binay Karak & Axel Brandenburg (Nordita)

IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv: ) Bidya Binay Karak & Axel Brandenburg (Nordita) IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE? ApJ press (arxiv:1505.06632) Bidya Binay Karak & Axel Brandenburg (Nordita) Solar Seminar at MPS Oct 25, 2015 Large-scale magnetic field

More information

Chapter 1. Introduction. 1.1 Why study the sun?

Chapter 1. Introduction. 1.1 Why study the sun? Chapter 1 Introduction 1.1 Why study the sun? The sun is an ordinary main-sequence star of spectral type G2V. From the human perspective it is the most important star in the universe. It provides the earth

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Magnetic structuring at spatially unresolved scales. Jan Stenflo ETH Zurich and IRSOL, Locarno

Magnetic structuring at spatially unresolved scales. Jan Stenflo ETH Zurich and IRSOL, Locarno Magnetic structuring at spatially unresolved scales Jan Stenflo ETH Zurich and IRSOL, Locarno Magnetograms of the active and quiet Sun Question: What would the field look like with infinite resolution

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

SOLAR SMALL-SCALE MAGNETOCONVECTION

SOLAR SMALL-SCALE MAGNETOCONVECTION The Astrophysical Journal, 642:1246 1255, 2006 May 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. SOLAR SMALL-SCALE MAGNETOCONVECTION R. F. Stein Department of Physics

More information

Penumbral structure and outflows in simulated sunspots

Penumbral structure and outflows in simulated sunspots Penumbral structure and outflows in simulated sunspots arxiv:0907.2259v1 [astro-ph.sr] 13 Jul 2009 M. Rempel 1, M. Schüssler 2, R.H. Cameron 2 & M. Knölker 1 1 High Altitude Observatory, NCAR, P.O. Box

More information

arxiv: v1 [astro-ph.sr] 5 Jun 2018

arxiv: v1 [astro-ph.sr] 5 Jun 2018 Breaking Taylor-Proudman balance by magnetic field in stellar convection zone H. Hotta arxiv:1806.01452v1 [astro-ph.sr] 5 Jun 2018 Department of Physics, Graduate School of Science, Chiba university, 1-33

More information

Model Atmospheres. Model Atmosphere Assumptions

Model Atmospheres. Model Atmosphere Assumptions Model Atmospheres Problem: Construct a numerical model of the atmosphere to estimate (a) Variation of physical variables (T, P) with depth (b) Emergent spectrum in continuum and lines Compare calculated

More information

Generation of magnetic fields by large-scale vortices in rotating convection

Generation of magnetic fields by large-scale vortices in rotating convection Generation of magnetic fields by large-scale vortices in rotating convection Céline Guervilly, David Hughes & Chris Jones School of Mathematics, University of Leeds, UK Generation of the geomagnetic field

More information

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Yuhong Fan (HAO/NCAR), Fang Fang (LASP/CU) GTP workshop August 17, 2016 The High Altitude Observatory (HAO) at the National

More information

Outline. What is overshoot? Why is overshoot interesting? Overshoot at the base of the solar convection zone. What is overshoot?

Outline. What is overshoot? Why is overshoot interesting? Overshoot at the base of the solar convection zone. What is overshoot? Overshoot at the base of the solar convection zone What can we learn from numerical simulations? Matthias Rempel HAO / NCAR Outline What is overshoot? Why is overshoot interesting? Overshoot modeling different

More information

Observable consequences

Observable consequences Coronal Heating through braiding of magnetic field lines Solar eclipse, 11.8.1999, Wendy Carlos & John Kern Observable consequences 3D MHD model spectral synthesis results: Doppler shifts DEM variability

More information

ON THE STOKES V AMPLITUDE RATIO AS AN INDICATOR OF THE FIELD STRENGTH IN THE SOLAR INTERNETWORK

ON THE STOKES V AMPLITUDE RATIO AS AN INDICATOR OF THE FIELD STRENGTH IN THE SOLAR INTERNETWORK The Astrophysical Journal, 659:1726Y1735, 2007 April 20 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A ON THE STOKES V AMPLITUDE RATIO AS AN INDICATOR OF THE FIELD

More information

The impact of solar surface dynamo magnetic fields on the chemical abundance determination

The impact of solar surface dynamo magnetic fields on the chemical abundance determination The impact of solar surface dynamo magnetic fields on the chemical abundance determination N. Shchukina 1, A. Sukhorukov 1, J. Trujillo Bueno 2 1 Main Astronomical Observatory, National Academy of Sciences,

More information

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 7 Date of delivery: 29 June 2011 Journal and vol/article ref: IAU 1101493 Number of pages (not including this page): 7 Author queries: Typesetter queries: Non-printed material: The Physics of Sun and Star

More information

arxiv: v1 [astro-ph.sr] 16 Sep 2011

arxiv: v1 [astro-ph.sr] 16 Sep 2011 The Velocity Distribution of Solar Photospheric Magnetic Bright Points P. H. Keys, M. Mathioudakis, D. B. Jess, S. Shelyag, P. J. Crockett arxiv:1109.3565v1 [astro-ph.sr] 16 Sep 2011 Astrophysics Research

More information

Understanding Astrophysical Noise from Stellar Surface Magneto-Convection

Understanding Astrophysical Noise from Stellar Surface Magneto-Convection Understanding Astrophysical Noise from Stellar Surface Magneto-Convection H.M. Cegla 1, C.A. Watson 1, S. Shelyag 2, M. Mathioudakis 1 1 Astrophysics Research Centre, School of Mathematics & Physics, Queen

More information

Energy transfer in compressible MHD turbulence

Energy transfer in compressible MHD turbulence Energy transfer in compressible MHD turbulence Philipp Grete Michigan State University in collaboration with Brian O Shea, Kris Beckwith, Wolfram Schmidt and Andrew Christlieb MIPSE Seminar University

More information

Interpreting HMI multi-height velocity measurements Kaori Nagashima

Interpreting HMI multi-height velocity measurements Kaori Nagashima Interpreting HMI multi-height velocity measurements Kaori Nagashima Postdoc of Interior of the Sun and Stars Dept. @MPS (May 2012 - ) Collaborators of this study: L. Gizon, A. Birch, B. Löptien, S. Danilovic,

More information

arxiv:astro-ph/ v1 8 Sep 2004

arxiv:astro-ph/ v1 8 Sep 2004 On the Saturation of Astrophysical Dynamos: Numerical Experiments with the No-cosines flow arxiv:astro-ph/0409193v1 8 Sep 2004 S.B.F. Dorch The Niels Bohr Institute for Astronomy, Physics and Geophysics,

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 20 2011 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature: The Sun Basic Properties Radius: Mass: 5 R Sun = 6.96 km 9 R M Sun 5 30 = 1.99 kg 3.33 M ρ Sun = 1.41g cm 3 Luminosity: L Sun = 3.86 26 W Effective Temperature: L Sun 2 4 = 4πRSunσTe Te 5770 K The Sun

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

arxiv: v1 [astro-ph.sr] 13 Jan 2010

arxiv: v1 [astro-ph.sr] 13 Jan 2010 Astronomy & Astrophysics manuscript no. dyn fin c ESO 2018 November 13, 2018 Probing quiet Sun magnetism using MURaM simulations and Hinode/SP results: support for a local dynamo S. Danilovic 1, M. Schüssler

More information

arxiv:astro-ph/ v1 22 Dec 2006

arxiv:astro-ph/ v1 22 Dec 2006 Solar Polarization 4 ASP Conference Series, Vol. 358, pages 269 292, 2006 Edited by R. Casini and B. W. Lites The Hanle Effect in Atomic and Molecular Lines: A New Look at the Sun s Hidden Magnetism arxiv:astro-ph/0612678v1

More information

Anisotropic turbulence in rotating magnetoconvection

Anisotropic turbulence in rotating magnetoconvection Anisotropic turbulence in rotating magnetoconvection André Giesecke Astrophysikalisches Institut Potsdam An der Sternwarte 16 14482 Potsdam MHD-Group seminar, 2006 André Giesecke (AIP) Anisotropic turbulence

More information

2. Stellar atmospheres: Structure

2. Stellar atmospheres: Structure 2. Stellar atmospheres: Structure 2.1. Assumptions Plane-parallel geometry Hydrostatic equilibrium, i.e. o no large-scale accelerations comparable to surface gravity o no dynamically significant mass loss

More information

Chapter 6: Granulation

Chapter 6: Granulation 135 Chapter 6: Granulation 6.1: Solar Mass Motions The photosphere is far from static; it exhibits a wide range of motion, with scales ranging from smaller than can be resolved to comparable with the size

More information

Stellar Atmosphere Codes III. Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo La Laguna, November

Stellar Atmosphere Codes III. Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo La Laguna, November Stellar Atmosphere Codes III Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo La Laguna, November 14-15 2017 What physics need to be included when modeling the solar chromosphere? Boundaries

More information

Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field. R. Moll, R. H. Cameron, and M. Schüssler

Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field. R. Moll, R. H. Cameron, and M. Schüssler DOI: 10.1051/0004-6361/201218866 c ESO 2012 Astronomy & Astrophysics Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field R. Moll, R. H. Cameron, and M. Schüssler Max-Planck-Institut

More information

Evolution and Impact of Cosmic Magnetic Fields

Evolution and Impact of Cosmic Magnetic Fields Evolution and Impact of Cosmic Magnetic Fields Robi Banerjee University of Hamburg Collaborators: Dominik Schleicher (Göttingen), C. Federrath (Lyon, HD), Karsten Jedamzik (Montpellier), R. Klessen (Heidelberg),

More information

Hydrodynamic simulations with a radiative surface

Hydrodynamic simulations with a radiative surface Hydrodynamic simulations with a radiative surface Atefeh Barekat Department of Astronomy, Stockholm University, Sweden Nordita, KTH Royal Institute of Technology and Stockholm University, Sweden Department

More information

Disk modelling by global radiation-mhd simulations

Disk modelling by global radiation-mhd simulations Disk modelling by global radiation-mhd simulations ~Confrontation of inflow & outflow~ Shin Mineshige (Kyoto) & Ken Ohsuga (NAOJ) Magnetic tower jet by RMHD simulation (Takeuchi+11) Outline Introduction

More information

Convection-driven dynamos in the limit of rapid rotation

Convection-driven dynamos in the limit of rapid rotation Convection-driven dynamos in the limit of rapid rotation Michael A. Calkins Jonathan M. Aurnou (UCLA), Keith Julien (CU), Louie Long (CU), Philippe Marti (CU), Steven M. Tobias (Leeds) *Department of Physics,

More information

POLARIZATION OF PHOTOSPHERIC LINES FROM TURBULENT DYNAMO SIMULATIONS J. Sánchez Almeida. T. Emonet. and F. Cattaneo

POLARIZATION OF PHOTOSPHERIC LINES FROM TURBULENT DYNAMO SIMULATIONS J. Sánchez Almeida. T. Emonet. and F. Cattaneo The Astrophysical Journal, 585:536 552, 2003 March 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. POLARIZATION OF PHOTOSPHERIC LINES FROM TURBULENT DYNAMO SIMULATIONS

More information

NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY

NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY Draft version September 25, 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 NUMERICAL SIMULATIONS OF ACTIVE REGION SCALE FLUX EMERGENCE: FROM SPOT FORMATION TO DECAY M. Rempel 1 and M.C.M.

More information

Spicule-like structures observed in 3D realistic MHD simulations

Spicule-like structures observed in 3D realistic MHD simulations Spicule-like structures observed in 3D realistic MHD simulations Juan Martínez-Sykora 1 j.m.sykora@astro.uio.no arxiv:0906.4446v1 [astro-ph.sr] 24 Jun 2009 Viggo Hansteen 1 viggo.hansteen@astro.uio.no

More information

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della À Ø Ò Ø ËÓÐ Ö ÓÖÓÒ B.V. Gudiksen Institute of Theoretical Astrophysics, University of Oslo, Norway e-mail:boris@astro.uio.no Abstract. The heating mechanism

More information

Small-Scale Dynamo and the Magnetic Prandtl Number

Small-Scale Dynamo and the Magnetic Prandtl Number MRI Turbulence Workshop, IAS, Princeton, 17.06.08 Small-Scale Dynamo and the Magnetic Prandtl Number Alexander Schekochihin (Imperial College) with Steve Cowley (Culham & Imperial) Greg Hammett (Princeton)

More information

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009 Substellar Atmospheres II. Dust, Clouds, Meteorology PHY 688, Lecture 19 Mar 11, 2009 Outline Review of previous lecture substellar atmospheres: opacity, LTE, chemical species, metallicity Dust, Clouds,

More information

Lagrangian Statistics. of 3D MHD Convection. J. Pratt, W.-C. Müller. Boussinesq Simulation. Lagrangian. simulation. March 1, 2011

Lagrangian Statistics. of 3D MHD Convection. J. Pratt, W.-C. Müller. Boussinesq Simulation. Lagrangian. simulation. March 1, 2011 March 1, 2011 Our approach to the Dynamo Problem dynamo action: amplification of magnetic fields by turbulent flows, generation of large scale structures collaboration with the group of Schüssler et al.

More information

Hydrodynamic simulations with a radiative surface

Hydrodynamic simulations with a radiative surface Hydrodynamic simulations with a radiative surface Atefeh Barekat Department of Astronomy, Stockholm University, Sweden Nordita, KTH Royal Institute of Technology and Stockholm University, Sweden Image

More information

Stellar magnetic activity: Is Rossby number really the key?

Stellar magnetic activity: Is Rossby number really the key? Solar Group Seminar June 24, 2014 Stellar magnetic activity: Is Rossby number really the key? or Rossby or not Rossby (Gibor Basri, 1986) Ansgar Reiners (IAG), Vera Maria Passeger (IAG) Manfred Schüssler

More information

Zeeman Paschen-Back effects

Zeeman Paschen-Back effects Zeeman Paschen-Back effects ZE: Weak Bfield Magnetic splitting level separation Splitting linear with B Equal total strength of σ b, π, σ r components (Anti-)symmetric Zero net polarization (Incomplete)

More information

A revolutionizing new view of our Sun with ALMA

A revolutionizing new view of our Sun with ALMA A revolutionizing new view of our Sun with ALMA Sven Wedemeyer (University of Oslo, Norway) in cooperation with the North American and European ALMA Solar Development Teams and the Solar Simulations for

More information

Hale Collage. Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno

Hale Collage. Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno Hale Collage Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno March 1-8, 2016 Degree of polarization The degree of polarization is defined as: p = Q2 + U 2 + V 2 I 2 In a purely absorptive

More information

Size-dependent properties of simulated 2-D solar granulation

Size-dependent properties of simulated 2-D solar granulation ASTRONOMY & ASTROPHYSICS OCTOBER II 2000, PAGE 267 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 146, 267 291 (2000) Size-dependent properties of simulated 2-D solar granulation A.S. Gadun 1,,A.Hanslmeier

More information

Modelling Brightness Variability of Sun-Like Stars

Modelling Brightness Variability of Sun-Like Stars Modelling Brightness Variability of Sun-Like Stars V. Witzke, A. I. Shapiro, S. K. Solanki, N. A. Krivova Cool Stars 20 Fundamental Properties of Cool Stars August 1st, 2018 Veronika Witzke (MPS) 2018

More information

Equilibrium Structure of Radiation-dominated Disk Segments

Equilibrium Structure of Radiation-dominated Disk Segments Equilibrium Structure of Radiation-dominated Disk Segments Shigenobu Hirose The Earth Simulator Center, JAMSTEC, Japan collaborators Julian Krolik (JHU) Omer Blaes (UCSB) Reconstruction of standard disk

More information

1 Energy dissipation in astrophysical plasmas

1 Energy dissipation in astrophysical plasmas 1 1 Energy dissipation in astrophysical plasmas The following presentation should give a summary of possible mechanisms, that can give rise to temperatures in astrophysical plasmas. It will be classified

More information

ON THE INTERACTION BETWEEN CONVECTION AND MAGNETIC FIELDS Fausto Cattaneo. Thierry Emonet. and Nigel Weiss

ON THE INTERACTION BETWEEN CONVECTION AND MAGNETIC FIELDS Fausto Cattaneo. Thierry Emonet. and Nigel Weiss The Astrophysical Journal, 588:1183 1198, 2003 May 10 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE INTERACTION BETWEEN CONVECTION AN MAGNETIC FIELS Fausto Cattaneo

More information

Photospheric magnetism

Photospheric magnetism Photospheric magnetism SAMI K. SOLANKI MAX PLANCK INSTITUTE FOR SOLAR SYSTEM RESEARCH Large and small magnetic features Polar fields 2 4 10 26 Mx/yr Quiet network Internetwork fields 10 28 Mx/yr Active

More information

The Solar Chromosphere

The Solar Chromosphere The Solar Chromosphere Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot NM, USA IUGG, Session GAiv.01, Sapporo, Japan, 2003 July 1 Summary The chromosphere as part of the transition between

More information

Scales of solar convection

Scales of solar convection Solar convection In addition to radiation, convection is the main form of energy transport in solar interior and lower atmosphere. Convection dominates just below the solar surface and produces most structures

More information

Search for photospheric footpoints of quiet Sun transition region loops

Search for photospheric footpoints of quiet Sun transition region loops Search for photospheric footpoints of quiet Sun transition region loops L. Teriaca Max Planck Institut für Sonnensystemforschung Submitted to A&A as Sánchez Almeida, Teriaca, Sütterlin, Spadaro, Schühle,

More information

arxiv: v1 [astro-ph] 31 Oct 2008

arxiv: v1 [astro-ph] 31 Oct 2008 Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations M. C. M. Cheung Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA.

More information

Large-scale field and small scale dynamo

Large-scale field and small scale dynamo Large-scale field and small scale dynamo Franck Plunian & Yannick Ponty Université de Grenoble, LGIT Observatoire de la Côte d'azur Large scale magnetic fields are ubiquitous in planetary and stellar objects

More information

Astronomy 421. Lecture 14: Stellar Atmospheres III

Astronomy 421. Lecture 14: Stellar Atmospheres III Astronomy 421 Lecture 14: Stellar Atmospheres III 1 Lecture 14 - Key concepts: Spectral line widths and shapes Curve of growth 2 There exists a stronger jump, the Lyman limit, occurring at the wavelength

More information

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges Limb Darkening Sun Betelgeuse Limb Darkening Stars are both redder and dimmer at the edges Sun Limb Darkening Betelgeuse Limb Darkening Can also be understood in terms of temperature within the solar photosphere.

More information

Dynamics of small-scale granular cells

Dynamics of small-scale granular cells This work was supported by FWF grant: P23818 (Dynamics of Magnetic Bright Points) Dynamics of small-scale granular cells B. Lemmerer A. Hanslmeier, A. Veronig H. Grimm-Strele, I. Piantschitsch IGAM/Institute

More information

SIMPLE RADIATIVE TRANSFER

SIMPLE RADIATIVE TRANSFER ASTR 511/O Connell Lec 4 1 SIMPLE RADIATIVE TRANSFER The theory of radiative transfer provides the means for determining the emergent EM spectrum of a cosmic source and also for describing the effects

More information

arxiv: v1 [astro-ph.sr] 24 Jul 2015

arxiv: v1 [astro-ph.sr] 24 Jul 2015 Preprint February 19, 2018 Compiled using MNRAS LATEX style file v3.0 On line contribution functions and examining spectral line formation in 3D model stellar atmospheres A. M. Amarsi 1 1 Mount Stromlo

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

ASTR-3760: Solar & Space Physics...Spring 2017

ASTR-3760: Solar & Space Physics...Spring 2017 ASTR-3760: Solar & Space Physics...Spring 2017 Review material for midterm exam (March 22, 2017) Although I m not recommending full-on memorization of everything in this document, I do think it s important

More information

arxiv: v1 [astro-ph.sr] 18 Mar 2017

arxiv: v1 [astro-ph.sr] 18 Mar 2017 Numerical Simulations of the Evolution of Solar Active Regions: the Complex AR12565 and AR12567 Cristiana Dumitrache Astronomical Institute of Romanian Academy, Str. Cutitul de Argint 5, 040557 Bucharest,

More information

Energy transport: convection

Energy transport: convection Outline Introduction: Modern astronomy and the power of quantitative spectroscopy Basic assumptions for classic stellar atmospheres: geometry, hydrostatic equilibrium, conservation of momentum-mass-energy,

More information

EXCITATION OF RADIAL P-MODES IN THE SUN AND STARS. 1. Introduction

EXCITATION OF RADIAL P-MODES IN THE SUN AND STARS. 1. Introduction EXCITATION OF RADIAL P-MODES IN THE SUN AND STARS ROBERT STEIN 1, DALI GEORGOBIANI 1, REGNER TRAMPEDACH 1, HANS-GÜNTER LUDWIG 2 and ÅKE NORDLUND 3 1 Michigan State University, East Lansing, MI 48824, U.S.A.;

More information

Modeling of turbulent MHD processes on the Sun

Modeling of turbulent MHD processes on the Sun Center for Turbulence Research Proceedings of the Summer Program 00 Modeling of turbulent MHD processes on the Sun By I. N. Kitiashvili, A. G. Kosovichev, N. N. Mansour AND A. A. Wray Solar observations

More information

Magnetic Fields (and Turbulence) in Galaxy Clusters

Magnetic Fields (and Turbulence) in Galaxy Clusters Magnetic Fields (and Turbulence) in Galaxy Clusters Dongsu Ryu (UNIST, Ulsan National Institute of Science and Technology, Korea) with Hyesung Kang (Pusan Nat. U, Korea), Jungyeon Cho (Chungnam Nat. U.),

More information

Accepted Manuscript. Simulations of stellar convection with CO5BOLD

Accepted Manuscript. Simulations of stellar convection with CO5BOLD Accepted Manuscript Simulations of stellar convection with CO5BOLD B. Freytag, M. Steffen, H.-G. Ludwig, S. Wedemeyer-Böhm, W. Schaffenberger, O. Steiner PII: S0021-9991(11)00569-9 DOI: 10.1016/j.jcp.2011.09.026

More information

HMI multi height Dopplergram study

HMI multi height Dopplergram study Nagashima et al. 2014 SoPh Interpreting the Helioseismic and Magnetic Imager (HMI) Multi Height Velocity Measurements HMI multi height Dopplergram study Kaori Nagashima (MPS) Collaborators: L. Gizon, A.

More information

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377 Section 11.5 and Problem 11.51 Radiative Transfer from Astronomy Methods A Physical Approach to Astronomical Observations Pages 365-375, 377 Cambridge University Press 24 by Hale Bradt Hale Bradt 24 11.5

More information

2 Solar models: structure, neutrinos and helioseismological properties 8 J.N. Bahcall, S. Basu and M.H. Pinsonneault

2 Solar models: structure, neutrinos and helioseismological properties 8 J.N. Bahcall, S. Basu and M.H. Pinsonneault Foreword xv E.N. Parker 1 Dynamic Sun: an introduction 1 B.N. Dwivedi 1.1 Introduction 1 1.2 Main contents 2 1.3 Concluding remarks 7 2 Solar models: structure, neutrinos and helioseismological properties

More information

X-ray Emission from Massive Stars

X-ray Emission from Massive Stars X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore College with Roban Kramer ( 03) and Stephanie Tonnesen ( 03) presented at Widener University, May 2, 2005 What

More information

Dynamo action in a rotating convective layer

Dynamo action in a rotating convective layer Under consideration for publication in J. Fluid Mech. 1 Dynamo action in a rotating convective layer By F A U S T O C A T T A N E O 1 A N D D A V I D W. H U G H E S 2 1 Department of Mathematics, University

More information

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012

Outline of Presentation. Magnetic Carpet Small-scale photospheric magnetic field of the quiet Sun. Evolution of Magnetic Carpet 12/07/2012 Outline of Presentation Karen Meyer 1 Duncan Mackay 1 Aad van Ballegooijen 2 Magnetic Carpet 2D Photospheric Model Non-Linear Force-Free Fields 3D Coronal Model Future Work Conclusions 1 University of

More information

NUMERICAL METHODS IN ASTROPHYSICS An Introduction

NUMERICAL METHODS IN ASTROPHYSICS An Introduction -1 Series in Astronomy and Astrophysics NUMERICAL METHODS IN ASTROPHYSICS An Introduction Peter Bodenheimer University of California Santa Cruz, USA Gregory P. Laughlin University of California Santa Cruz,

More information

arxiv: v1 [astro-ph.sr] 30 Jun 2009

arxiv: v1 [astro-ph.sr] 30 Jun 2009 Twisted flux tube emergence from the convection zone to the corona II: Later states 1 Juan Martínez-Sykora arxiv:0906.5464v1 [astro-ph.sr] 30 Jun 2009 j.m.sykora@astro.uio.no 1,2 Viggo Hansteen viggo.hansteen@astro.uio.no

More information

Radiative magnetohydrodynamic simulations of solar pores

Radiative magnetohydrodynamic simulations of solar pores Astronomy & Astrophysics manuscript no. aa8140-07 c ESO 2007 September 10, 2007 Radiative magnetohydrodynamic simulations of solar pores R. Cameron 1, M. Schüssler 1,A.Vögler 2, and V. Zakharov 1 1 Max-Planck-Institut

More information

The Solar Chromosphere

The Solar Chromosphere 1 / 29 The Solar Chromosphere Recent Advances in Determining the Magnetic Fine Structure Andreas Lagg Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany Rocks n Stars 2012 2 / 29

More information