12 Chemical Akzo Nobel problem

Size: px
Start display at page:

Download "12 Chemical Akzo Nobel problem"

Transcription

1 II Chemical Akzo Nobel problem 12.1 General information This IVP is a sti system of 6 non-linear DAEs of index 1 and has been taken from [Sto98]. The parallel-ivp-algorithm group of CWI contributed this problem to the test set in collaboration with W.J.H. Stortelder. We acknowledge the remarks of Dotsikas Ioannis, which improved the formulation of this problem considerably. The software part of the problem is in the le chemakzo.f available at [MM08] Mathematical description of the problem The problem is of the form with M dy dt The matrix M is of rank 5 and given by = f(y); y(0) = y 0 ; y 0 (0) = y 0 0; M = y 2 IR 6 ; 0 t 180: C A and the function f by f(y) = 0 2r 1 +r 2 r 3 r r 4 r 1 r 2 +r 3 r 2 +r 3 2r 4 r 2 r 3 +r 5 K s y 1 y 4 y r 5 +F in 1 C A ; where the r i and F in are auxiliary variables, given by r 1 = k 1 y 4 1 y ; r 2 = k 2 y 3 y 4 ; r 3 = k 2 K y 1 y 5 ; r 4 = k 3 y 1 y4; 2 r 5 = k 4 y 2 6 y ; F in = kla ( p(co 2) H y 2 ): The values of the parameters k 1, k 2, k 3, k 4, K, kla, p(co 2 ) and H are k 1 = 18:7; k 2 = 0:58; k 3 = 0:09; k 4 = 0:42; K = 34:4; kla = 3:3; K s = 115:83; p(co 2 ) = 0:9; H = 737:

2 II-12-2 DAE - Chemical Akzo Nobel problem The consistent initial vectors are y 0 = 0:444; 0:00123; 0; 0:007; 0; K s y 0;1 y 0;4 T y 0 0 = f(y 0 ): It is clear from the denition of r 1 and r 5 that the function f can not be evaluated for negative values of y 2. In the Fortran subroutine that denes f, we set IERR=-1 if y 2 < 0 to prevent this situation. See page IV-ix of the description of the software part of the test set for more details on IERR Origin of the problem The problem originates from Akzo Nobel Central Research in Arnhem, The Netherlands. It describes a chemical process, in which 2 species, FLB and ZHU, are mixed, while carbon dioxide is continuously added. The resulting species of importance is ZLA. In the interest of commercial competition, the names of the chemical species are ctitious. The reaction equations, as given by Akzo Nobel [CBS93], are given in Figure II The last reaction equation describes an equilibrium 2 FLB CO 2 ZLA + FLB k 1 - FLBT + H2 O k 2 =K - k2 FLBT + ZHU FLB + 2 ZHU + CO 2 k 3 - LB + nitrate FLB:ZHU CO 2 FLB + ZHU - k 4 - ZLA + H2 O FLB:ZHU Figure II.12.1: Reaction scheme for Chemical Akzo Nobel problem. K s = [FLB:ZHU] [FLB ] [ZHU] : The value of K s plays a role in parameter estimation. The other equations describe reactions with velocities given by r 1 = k 1 [FLB ] 4 [CO 2 ] 1 2 ; (II.12.1) r 2 = k 2 [FLBT ] [ZHU]; r 3 = k 2 [FLB ] [ZLA ]; K r 4 = k 3 [FLB ] [ZHU] 2 ; (II.12.2) r 5 = k 4 [FLB:ZHU] 2 [CO 2 ] 1 2 ; (II.12.3) respectively. Here the square brackets `[ ]' denote concentrations. One would expect from the reaction scheme in Figure II.12.1, that reaction velocities r 1, r 4 and r 5 would read r 1 = k 1 [FLB ] 2 [CO 2 ] 1 2 ; r 4 = k 3 [FLB ] [ZHU] 2 [CO 2 ]; r 5 = k 4 [FLB:ZHU] [CO 2 ] 1 2 :

3 II-12-3 However, it turns out that the chemical process under consideration is modeled more appropriately using (II.12.1){(II.12.3). The inow of carbon dioxide per volume unit is denoted by F in, and satises F in = kla ( p(co 2) H [CO 2 ]); where kla is the mass transfer coecient, H is the Henry constant and p(co 2 ) is the partial carbon dioxide pressure. p(co 2 ) is assumed to be independent of [CO 2 ]. The parameters k 1, k 2, k 3, k 4, K, kla, K s, H and p(co 2 ) are given constants. The process is started by mixing mol/liter FLB with mol/liter ZHU. The concentration of carbon dioxide at the beginning is mol/liter. Initially, no other species are present. The simulation is performed on the time interval [0; 180 minutes]. Identifying the concentrations [FLB ], [CO 2 ], [FLBT ], [ZHU], [ZLA ], [FLB:ZHU] with y 1 ; : : : ; y 6, respectively, one easily arrives at the mathematical formulation of the preceding section Numerical solution of the problem Tables II.12.1{II.12.2 and Figures II.12.2{II.12.6 present the reference solution at the end of the integration interval, the run characteristics, the behavior of the solution over the integration interval and the work-precision diagrams, respectively. The reference solution was computed by PSIDE on a Cray C90, using double precision, rtol = atol To get more insight in the exact behavior of the second component, we included a plot of y 2 on [0; 3] in Figure II For the work-precision diagrams, we used: rtol = 10 (8+m=4), m = 0; 1; : : : ; 20; atol = rtol; h0 = rtol for BIMD, GAMD, MEBDFDAE, MEBDFI, RADAU and RADAU5. The failed runs are in Table II.12.3; listed are the Table II.12.1: Reference solution at the end of the integration interval. y 1 0: y 2 0: y 3 0: y 4 0: y 5 0: y 6 0: Table II.12.2: Run characteristics. solver rtol atol h0 mescd scd steps accept #f #Jac #LU CPU BIMD :39 10: DDASSL :04 8: GAMD :89 9: MEBDFI :42 9: PSIDE :41 9: RADAU :71 8: name of the solver that failed, for which values of m this happened, and the reason for failing. Apart from H, which is generally known, all parameters have been estimated by W. Stortelder [Sto95].

4 II-12-4 DAE - Chemical Akzo Nobel problem Table II.12.3: Failed runs. solver m reason PSIDE-1 14,16,17,18,19,20 stepsize too small References [CBS93] CBS-reaction-meeting Koln. Handouts, May Br/ARLO-CRC. [MM08] F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers, release 2.4. Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February Available at testset. [Sto95] [Sto98] W.J.H. Stortelder, Private communication. W.J.H. de Stortelder. Parameter Estimation in Nonlinear Dynamical Systems. PhD thesis, University of Amsterdam, March 12, 1998.

5 II-12-5 Figure II.12.2: Behavior of the solution over the integration interval.

6 II-12-6 DAE - Chemical Akzo Nobel problem Figure II.12.3: Work-precision diagram (scd versus CPU-time).

7 II-12-7 Figure II.12.4: Work-precision diagram (scd versus CPU-time).

8 II-12-8 DAE - Chemical Akzo Nobel problem Figure II.12.5: Work-precision diagram (mescd versus CPU-time).

9 II-12-9 Figure II.12.6: Work-precision diagram (mescd versus CPU-time).

6.2 Mathematical description of the problem. i = m j (y j y i )=r 3 2

6.2 Mathematical description of the problem. i = m j (y j y i )=r 3 2 II-6-1 6 Pleiades problem 6.1 General information The problem consists of a nonsti system of 14 special second order dierential equations rewritten to rst order form, thus providing a nonsti system of

More information

ODE - Problem ROBER. 0.04y y 2 y y y 2 y y y 2 2

ODE - Problem ROBER. 0.04y y 2 y y y 2 y y y 2 2 ODE - Problem ROBER II-10-1 10 Problem ROBER 10.1 General information The problem consists of a stiff system of 3 non-linear ordinary differential equations. It was proposed by H.H. Robertson in 1966 [Rob66].

More information

19.2 Mathematical description of the problem. = f(p; _p; q; _q) G(p; q) T ; (II.19.1) g(p; q) + r(t) _p _q. f(p; v. a p ; q; v q ) + G(p; q) T ; a q

19.2 Mathematical description of the problem. = f(p; _p; q; _q) G(p; q) T ; (II.19.1) g(p; q) + r(t) _p _q. f(p; v. a p ; q; v q ) + G(p; q) T ; a q II-9-9 Slider rank 9. General Information This problem was contributed by Bernd Simeon, March 998. The slider crank shows some typical properties of simulation problems in exible multibody systems, i.e.,

More information

Test Set for Initial Value Problem Solvers

Test Set for Initial Value Problem Solvers Test Set for Initial Value Problem Solvers Walter M. Lioen CWI, PO Box 9479, 19 GB Amsterdam, The Netherlands (Walter.Lioen@cwi.nl) Jacques J.B. de Swart CWI, PO Box 9479, 19 GB Amsterdam, The Netherlands

More information

Numerical integration of DAE s

Numerical integration of DAE s Numerical integration of DAE s seminar Sandra Allaart-Bruin sbruin@win.tue.nl seminar p.1 Seminar overview February 18 Arie Verhoeven Introduction to DAE s seminar p.2 Seminar overview February 18 Arie

More information

4. Higher Order Linear DEs

4. Higher Order Linear DEs 4. Higher Order Linear DEs Department of Mathematics & Statistics ASU Outline of Chapter 4 1 General Theory of nth Order Linear Equations 2 Homogeneous Equations with Constant Coecients 3 The Method of

More information

Collecting Real-life Problems to Test Solvers for Implicit Differential Equations

Collecting Real-life Problems to Test Solvers for Implicit Differential Equations Volume 11 (1) 1998, pp. 83 100 Collecting Real-life Problems to Test Solvers for Implicit Differential Equations Jacques J. B. de Swart Paragon Decision Technology B.V. P.O.Box 3277 2001 DG Haarlem, The

More information

Efficient implementation of Radau collocation methods

Efficient implementation of Radau collocation methods Efficient implementation of Radau collocation methods Luigi Brugnano Felice Iavernaro Cecilia Magherini arxiv:1302.1037v1 [math.na] 5 Feb 2013 December 29, 2012 Abstract In this paper we define an efficient

More information

The BiM code for the numerical solution of ODEs

The BiM code for the numerical solution of ODEs Journal of Computational and Applied Mathematics 64 65 (2004) 45 58 www.elsevier.com/locate/cam The BiM code for the numerical solution of ODEs Luigi Brugnano, Cecilia Magherini Dipartimento di Matematica

More information

Numerical solution of stiff systems of differential equations arising from chemical reactions

Numerical solution of stiff systems of differential equations arising from chemical reactions Iranian Journal of Numerical Analysis and Optimization Vol 4, No. 1, (214), pp 25-39 Numerical solution of stiff systems of differential equations arising from chemical reactions G. Hojjati, A. Abdi, F.

More information

W.M. Lioen, J.J.B de Swart, W.A. van der Veen

W.M. Lioen, J.J.B de Swart, W.A. van der Veen entrum voor Wiskunde en Informatica REPORTRAPPORT PSIDE Users Guide W.M. Lioen, J.J.B de Swart, W.A. van der Veen Modelling, Analysis and Simulation (MAS) MAS-R9834 December 1998 Report MAS-R9834 ISSN

More information

The DAETS Differential-Algebraic Equation Solver

The DAETS Differential-Algebraic Equation Solver The DAETS Differential-Algebraic Equation Solver John Pryce 1 Ned Nedialkov 2 1 Dept of Information Systems, Cranfield U., UK j.d.pryce@ntlworld.com 2 Dept of Computing and Software, McMaster U., Canada

More information

Package detestset: testset for initial value problems of differential equations in R

Package detestset: testset for initial value problems of differential equations in R Package detestset: testset for initial value problems of differential equations in R Karline Soetaert Jeff Cash CEME Department of mathematics Netherlands Institute of Ecology Imperial College London The

More information

ONE-STEP 4-STAGE HERMITE-BIRKHOFF-TAYLOR DAE SOLVER OF ORDER 12

ONE-STEP 4-STAGE HERMITE-BIRKHOFF-TAYLOR DAE SOLVER OF ORDER 12 CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 16, Number 4, Winter 2008 ONE-STEP 4-STAGE HERMITE-BIRKHOFF-TAYLOR DAE SOLVER OF ORDER 12 TRUONG NGUYEN-BA, HAN HAO, HEMZA YAGOUB AND RÉMI VAILLANCOURT ABSTRACT.

More information

Finding elliptic Fekete points sets: two numerical solution approaches

Finding elliptic Fekete points sets: two numerical solution approaches Journal of Computational and Applied Mathematics 130 (2001) 205 216 www.elsevier.nl/locate/cam Finding elliptic Fekete points sets: two numerical solution approaches Walter J.H. Stortelder a;b ; 1, Jacques

More information

consideration, is indispensable. Due to the great number of restarts, one for each split-step time interval, it is particularly important to use integ

consideration, is indispensable. Due to the great number of restarts, one for each split-step time interval, it is particularly important to use integ Gauss-Seidel Iteration for Sti ODEs from Chemical Kinetics J.G. Verwer CWI P.O. Box 94079, 1090 GB Amsterdam, The Netherlands Abstract A simple Gauss-Seidel technique is proposed which exploits the special

More information

Solving Constrained Differential- Algebraic Systems Using Projections. Richard J. Hanson Fred T. Krogh August 16, mathalacarte.

Solving Constrained Differential- Algebraic Systems Using Projections. Richard J. Hanson Fred T. Krogh August 16, mathalacarte. Solving Constrained Differential- Algebraic Systems Using Projections Richard J. Hanson Fred T. Krogh August 6, 2007 www.vni.com mathalacarte.com Abbreviations and Terms ODE = Ordinary Differential Equations

More information

Math 232, Final Test, 20 March 2007

Math 232, Final Test, 20 March 2007 Math 232, Final Test, 20 March 2007 Name: Instructions. Do any five of the first six questions, and any five of the last six questions. Please do your best, and show all appropriate details in your solutions.

More information

INRIA Rocquencourt, Le Chesnay Cedex (France) y Dept. of Mathematics, North Carolina State University, Raleigh NC USA

INRIA Rocquencourt, Le Chesnay Cedex (France) y Dept. of Mathematics, North Carolina State University, Raleigh NC USA Nonlinear Observer Design using Implicit System Descriptions D. von Wissel, R. Nikoukhah, S. L. Campbell y and F. Delebecque INRIA Rocquencourt, 78 Le Chesnay Cedex (France) y Dept. of Mathematics, North

More information

The Milne error estimator for stiff problems

The Milne error estimator for stiff problems 13 R. Tshelametse / SAJPAM. Volume 4 (2009) 13-28 The Milne error estimator for stiff problems Ronald Tshelametse Department of Mathematics University of Botswana Private Bag 0022 Gaborone, Botswana. E-mail

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Specification of PSIDE

Specification of PSIDE Specification of PSIDE Jacques J.B. de Swart CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands (Jacques.de.Swart@cwi.nl) & Paragon Decision Technology, PO Box 3277, 2001 DG Haarlem, The Netherlands

More information

An initialization subroutine for DAEs solvers: DAEIS

An initialization subroutine for DAEs solvers: DAEIS Computers and Chemical Engineering 25 (2001) 301 311 www.elsevier.com/locate/compchemeng An initialization subroutine for DAEs solvers: DAEIS B. Wu, R.E. White * Department of Chemical Engineering, Uniersity

More information

Problem Points Problem Points Problem Points

Problem Points Problem Points Problem Points Name Signature Student ID# ------------------------------------------------------------------ Left Neighbor Right Neighbor 1) Please do not turn this page until instructed to do so. 2) Your name and signature

More information

The Plan. Initial value problems (ivps) for ordinary differential equations (odes) Review of basic methods You are here: Hamiltonian systems

The Plan. Initial value problems (ivps) for ordinary differential equations (odes) Review of basic methods You are here: Hamiltonian systems Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 2 Dianne P. O Leary c 2008 The Plan

More information

How to simulate in Simulink: DAE, DAE-EKF, MPC & MHE

How to simulate in Simulink: DAE, DAE-EKF, MPC & MHE How to simulate in Simulink: DAE, DAE-EKF, MPC & MHE Tamal Das PhD Candidate IKP, NTNU 24th May 2017 Outline 1 Differential algebraic equations (DAE) 2 Extended Kalman filter (EKF) for DAE 3 Moving horizon

More information

Solutions to Math 53 First Exam April 20, 2010

Solutions to Math 53 First Exam April 20, 2010 Solutions to Math 53 First Exam April 0, 00. (5 points) Match the direction fields below with their differential equations. Also indicate which two equations do not have matches. No justification is necessary.

More information

MA 226 FINAL EXAM. Show Your Work. Problem Possible Actual Score

MA 226 FINAL EXAM. Show Your Work. Problem Possible Actual Score Name: MA 226 FINAL EXAM Show Your Work Problem Possible Actual Score 1 36 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 8 TOTAL 100 1.) 30 points (3 each) Short Answer: The answers to these questions need only consist

More information

On the Diagonal Approximation of Full Matrices

On the Diagonal Approximation of Full Matrices On the Diagonal Approximation of Full Matrices Walter M. Lioen CWI P.O. Box 94079, 090 GB Amsterdam, The Netherlands ABSTRACT In this paper the construction of diagonal matrices, in some

More information

AN INTERVAL METHOD FOR INITIAL VALUE PROBLEMS IN LINEAR ORDINARY DIFFERENTIAL EQUATIONS

AN INTERVAL METHOD FOR INITIAL VALUE PROBLEMS IN LINEAR ORDINARY DIFFERENTIAL EQUATIONS AN INTERVAL METHOD FOR INITIAL VALUE PROBLEMS IN LINEAR ORDINARY DIFFERENTIAL EQUATIONS NEDIALKO S. NEDIALKOV Abstract. Interval numerical methods for initial value problems (IVPs) for ordinary differential

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

Modified Mathematical Model For Neutralization System In Stirred Tank Reactor Available online at BCREC Website: http://bcrec.undip.ac.id Bulletin of Chemical Reaction Engineering & Catalysis, (), 0, - Research Article Modified Mathematical Model For Neutralization System In Stirred

More information

SOLVING BOUNDARY VALUE PROBLEMS IN THE OPEN SOURCE SOFTWARE R: PACKAGE bvpsolve. Francesca Mazzia, Jeff R. Cash, and Karline Soetaert

SOLVING BOUNDARY VALUE PROBLEMS IN THE OPEN SOURCE SOFTWARE R: PACKAGE bvpsolve. Francesca Mazzia, Jeff R. Cash, and Karline Soetaert Opuscula Math. 34, no. 2 (2014), 387 403 http://dx.doi.org/10.7494/opmath.2014.34.2.387 Opuscula Mathematica Dedicated to the Memory of Professor Zdzis law Kamont SOLVING BOUNDARY VALUE PROBLEMS IN THE

More information

On at systems behaviors and observable image representations

On at systems behaviors and observable image representations Available online at www.sciencedirect.com Systems & Control Letters 51 (2004) 51 55 www.elsevier.com/locate/sysconle On at systems behaviors and observable image representations H.L. Trentelman Institute

More information

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Institut für Mathematik M7 - A Skateboard(v1.) Andreas Steinbrecher Preprint 216/8 Preprint-Reihe des Instituts für Mathematik Technische Universität Berlin http://www.math.tu-berlin.de/preprints

More information

Blended implementation of block implicit methods for ODEs

Blended implementation of block implicit methods for ODEs Applied Numerical Mathematics 42 (2002) 29 45 www.elsevier.com/locate/apnum Blended implementation of block implicit methods for ODEs Luigi Brugnano, Cecilia Magherini Dipartimento di Matematica U. Dini,

More information

The model reduction algorithm proposed is based on an iterative two-step LMI scheme. The convergence of the algorithm is not analyzed but examples sho

The model reduction algorithm proposed is based on an iterative two-step LMI scheme. The convergence of the algorithm is not analyzed but examples sho Model Reduction from an H 1 /LMI perspective A. Helmersson Department of Electrical Engineering Linkoping University S-581 8 Linkoping, Sweden tel: +6 1 816 fax: +6 1 86 email: andersh@isy.liu.se September

More information

Method of lines study of nonlinear dispersive waves

Method of lines study of nonlinear dispersive waves Available online at www.sciencedirect.com Journal of Computational and Applied Mathematics 68 (24) 43 423 www.elsevier.com/locate/cam Method of lines study of nonlinear dispersive waves P.Saucez a, A.Vande

More information

REPORTRAPPORT. Centrum voor Wiskunde en Informatica. Waveform relaxation methods for implicit differential equations

REPORTRAPPORT. Centrum voor Wiskunde en Informatica. Waveform relaxation methods for implicit differential equations Centrum voor Wiskunde en Informatica REPORTRAPPORT Waveform relaxation methods for implicit differential equations P.J. van der Houwen and W.A. van der Veen Department of Numerical Mathematics NM-R9617

More information

Numerical stroboscopic averaging for ODEs and DAEs

Numerical stroboscopic averaging for ODEs and DAEs Numerical stroboscopic averaging for ODEs and DAEs M. P. Calvo Universidad de Valladolid, Spain Joint work with Ph. Chartier, A. Murua, J. M. Sanz-Serna 1 I. HIGHLY OSCILLATORY PROBLEMS 2 Consider the

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 19: Midterm 2 Review Prof. John Gunnar Carlsson November 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 22, 2010 1 / 34 Administrivia

More information

1 Outline Part I: Linear Programming (LP) Interior-Point Approach 1. Simplex Approach Comparison Part II: Semidenite Programming (SDP) Concludin

1 Outline Part I: Linear Programming (LP) Interior-Point Approach 1. Simplex Approach Comparison Part II: Semidenite Programming (SDP) Concludin Sensitivity Analysis in LP and SDP Using Interior-Point Methods E. Alper Yldrm School of Operations Research and Industrial Engineering Cornell University Ithaca, NY joint with Michael J. Todd INFORMS

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Second-Order Linear ODEs A second order ODE is called linear if it can be written as y + p(t)y + q(t)y = r(t). (0.1) It is called homogeneous if r(t) = 0, and nonhomogeneous otherwise. We shall assume

More information

Math 314 Lecture Notes Section 006 Fall 2006

Math 314 Lecture Notes Section 006 Fall 2006 Math 314 Lecture Notes Section 006 Fall 2006 CHAPTER 1 Linear Systems of Equations First Day: (1) Welcome (2) Pass out information sheets (3) Take roll (4) Open up home page and have students do same

More information

1. Introduction. Many dynamical systems in science and engineering are modeled by ordinary differential equations (ODEs)

1. Introduction. Many dynamical systems in science and engineering are modeled by ordinary differential equations (ODEs) FATODE: A LIBRARY FOR FORWARD, ADJOINT, AND TANGENT LINEAR INTEGRATION OF ODES HONG ZHANG AND ADRIAN SANDU Abstract. Fatode is a fortran library for the integration of ordinary differential equations with

More information

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always October 5 Relevant reading: Section 2.1, 2.2, 2.3 and 2.4 Our goal is to solve a general constant coecient linear second order ODE a d2 y dt + bdy + cy = g (t) 2 dt where a, b, c are constants and a 0.

More information

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-0113 Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume

More information

The idea is that if we restrict our attention to any k positions in x, no matter how many times we

The idea is that if we restrict our attention to any k positions in x, no matter how many times we k-wise Independence and -biased k-wise Indepedence February 0, 999 Scribe: Felix Wu Denitions Consider a distribution D on n bits x x x n. D is k-wise independent i for all sets of k indices S fi ;:::;i

More information

INdAM-COFUND INdAM Outgoing Fellowships in Mathematics and/or Applications cofunded by Marie Curie actions. MPoisCoho

INdAM-COFUND INdAM Outgoing Fellowships in Mathematics and/or Applications cofunded by Marie Curie actions. MPoisCoho INdAM-COFUND-2012 INdAM Outgoing Fellowships in Mathematics and/or Applications cofunded by Marie Curie actions MPoisCoho Poisson cohomology of multidimensional Hamiltonian structures Report 2017 Period

More information

Reduced-Hessian Methods for Constrained Optimization

Reduced-Hessian Methods for Constrained Optimization Reduced-Hessian Methods for Constrained Optimization Philip E. Gill University of California, San Diego Joint work with: Michael Ferry & Elizabeth Wong 11th US & Mexico Workshop on Optimization and its

More information

2 C. T. KELLEY, C. T. MILLER AND M. D. TOCCI the two, more frequent recomputation of the approximation to the Jacobian of the corrector equation J, wh

2 C. T. KELLEY, C. T. MILLER AND M. D. TOCCI the two, more frequent recomputation of the approximation to the Jacobian of the corrector equation J, wh TERMINATION OF NEWTON/CHORD ITERATIONS AND THE METHOD OF LINES C. T. KELLEY y, C. T. MILLER z, AND M. D. TOCCI y Abstract. Many ordinary dierential equation and dierential algebraic equation codes terminate

More information

Part 1: Overview of Ordinary Dierential Equations 1 Chapter 1 Basic Concepts and Problems 1.1 Problems Leading to Ordinary Dierential Equations Many scientic and engineering problems are modeled by systems

More information

Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics

Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics UNIVERSITY OF CAMBRIDGE Numerical Analysis Reports Spurious Chaotic Solutions of Dierential Equations Sigitas Keras DAMTP 994/NA6 September 994 Department of Applied Mathematics and Theoretical Physics

More information

Digital Filter Stepsize Control of DASPK and its Effect on Control Optimization Performance. Kirsten R. Meeker

Digital Filter Stepsize Control of DASPK and its Effect on Control Optimization Performance. Kirsten R. Meeker Digial Filer Sepsize Conrol of DASPK and is Effec on Conrol Opimizaion Performance by Kirsen R. Meeker M.S. Physics (California Sae Universiy, Norhridge) 1995 B.S. Physics (California Sae Universiy, Norhridge)

More information

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts and Stephan Matthai Mathematics Research Report No. MRR 003{96, Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL

More information

Contents. 6 Systems of First-Order Linear Dierential Equations. 6.1 General Theory of (First-Order) Linear Systems

Contents. 6 Systems of First-Order Linear Dierential Equations. 6.1 General Theory of (First-Order) Linear Systems Dierential Equations (part 3): Systems of First-Order Dierential Equations (by Evan Dummit, 26, v 2) Contents 6 Systems of First-Order Linear Dierential Equations 6 General Theory of (First-Order) Linear

More information

Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection

Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection Using Thermal Boundary Conditions in SOLIDWORKS Simulation to Simulate a Press Fit Connection Simulating a press fit condition in SOLIDWORKS Simulation can be very challenging when there is a large amount

More information

Arbitrary order Krylov deferred correction methods for differential algebraic equations

Arbitrary order Krylov deferred correction methods for differential algebraic equations Journal of Computational Physics 221 (2007) 739 760 www.elsevier.com/locate/jcp Arbitrary order Krylov deferred correction methods for differential algebraic equations Jingfang Huang *,1, Jun Jia 1, Michael

More information

Section Differential Equations: Modeling, Slope Fields, and Euler s Method

Section Differential Equations: Modeling, Slope Fields, and Euler s Method Section.. Differential Equations: Modeling, Slope Fields, and Euler s Method Preliminar Eample. Phsical Situation Modeling Differential Equation An object is taken out of an oven and placed in a room where

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #4: IVP

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #4: IVP 10.34 Numerical Methods Applied to Chemical Engineering Fall 015 Homework #4: IVP Problem 1 (0 points). In this problem you will develop and implement an ODE solver for problems of the form dy = f(y) dt

More information

immediately, without knowledge of the jobs that arrive later The jobs cannot be preempted, ie, once a job is scheduled (assigned to a machine), it can

immediately, without knowledge of the jobs that arrive later The jobs cannot be preempted, ie, once a job is scheduled (assigned to a machine), it can A Lower Bound for Randomized On-Line Multiprocessor Scheduling Jir Sgall Abstract We signicantly improve the previous lower bounds on the performance of randomized algorithms for on-line scheduling jobs

More information

CHAPTER 10: Numerical Methods for DAEs

CHAPTER 10: Numerical Methods for DAEs CHAPTER 10: Numerical Methods for DAEs Numerical approaches for the solution of DAEs divide roughly into two classes: 1. direct discretization 2. reformulation (index reduction) plus discretization Direct

More information

MTAEA Implicit Functions

MTAEA Implicit Functions School of Economics, Australian National University February 12, 2010 Implicit Functions and Their Derivatives Up till now we have only worked with functions in which the endogenous variables are explicit

More information

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method)

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method) Section 2.7 Euler s Method (Computer Approximation) Key Terms/ Ideas: Numerical method for approximating the solution of an IVP Linear Approximation; Tangent Line Euler Algorithm (the simplest approximation

More information

Section 2.5 Mixing Problems. Key Terms: Tanks Mixing problems Input rate Output rate Volume rates Concentration

Section 2.5 Mixing Problems. Key Terms: Tanks Mixing problems Input rate Output rate Volume rates Concentration Section 2.5 Mixing Problems Key Terms: Tanks Mixing problems Input rate Output rate Volume rates Concentration The problems we will discuss are called mixing problems. They employ tanks and other receptacles

More information

A family of A-stable Runge Kutta collocation methods of higher order for initial-value problems

A family of A-stable Runge Kutta collocation methods of higher order for initial-value problems IMA Journal of Numerical Analysis Advance Access published January 3, 2007 IMA Journal of Numerical Analysis Pageof20 doi:0.093/imanum/drl00 A family of A-stable Runge Kutta collocation methods of higher

More information

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University

Method of Frobenius. General Considerations. L. Nielsen, Ph.D. Dierential Equations, Fall Department of Mathematics, Creighton University Method of Frobenius General Considerations L. Nielsen, Ph.D. Department of Mathematics, Creighton University Dierential Equations, Fall 2008 Outline 1 The Dierential Equation and Assumptions 2 3 Main Theorem

More information

Math Problem Set #3 Solution 19 February 2001

Math Problem Set #3 Solution 19 February 2001 Math 203-04 Problem Set #3 Solution 19 February 2001 Exercises: 1. B & D, Section 2.3, problem #3. In your answer, give both exact values and decimal approximations for the amount of salt in the tank at

More information

Validating an A Priori Enclosure Using. High-Order Taylor Series. George F. Corliss and Robert Rihm. Abstract

Validating an A Priori Enclosure Using. High-Order Taylor Series. George F. Corliss and Robert Rihm. Abstract Validating an A Priori Enclosure Using High-Order Taylor Series George F. Corliss and Robert Rihm Abstract We use Taylor series plus an enclosure of the remainder term to validate the existence of a unique

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 7: 2.4 Differences Between Linear and Nonlinear Equations

Lecture Notes for Math 251: ODE and PDE. Lecture 7: 2.4 Differences Between Linear and Nonlinear Equations Lecture Notes for Math 51: ODE and PDE. Lecture 7:.4 Differences Between Linear and Nonlinear Equations Shawn D. Ryan Spring 01 1 Existence and Uniqueness Last Time: We developed 1st Order ODE models for

More information

Predator-Prey and Weight Change Models

Predator-Prey and Weight Change Models 1 Predator-Prey and Weight Change Models Lab Objective: We introduce built-in methods for solving Initial Value Problems and apply the methods to two dynamical systems. The rst system looks at the relationship

More information

An Implicit Runge Kutta Solver adapted to Flexible Multibody System Simulation

An Implicit Runge Kutta Solver adapted to Flexible Multibody System Simulation An Implicit Runge Kutta Solver adapted to Flexible Multibody System Simulation Johannes Gerstmayr 7. WORKSHOP ÜBER DESKRIPTORSYSTEME 15. - 18. March 2005, Liborianum, Paderborn, Germany Austrian Academy

More information

MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution

MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution 1/16 MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution Dominique Guillot Departments of Mathematical Sciences University of Delaware February 26, 2016 Computing the lasso

More information

Analyzing Autonomous DEs: Spotted Owls

Analyzing Autonomous DEs: Spotted Owls Analyzing Autonomous DEs: Spotted Owls A group of biologists are making predictions about the spotted owl population in a forest in the Pacific Northwest. The autonomous differential equation the scientist

More information

Iterative Methods for Incompressible Flow

Iterative Methods for Incompressible Flow Iterative Methods for Incompressible Flow Melanie McKay Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master s of Science

More information

Chern characters via connections up to homotopy. Marius Crainic. Department of Mathematics, Utrecht University, The Netherlands

Chern characters via connections up to homotopy. Marius Crainic. Department of Mathematics, Utrecht University, The Netherlands Chern characters via connections up to homotopy Marius Crainic Department of Mathematics, Utrecht University, The Netherlands 1 Introduction: The aim of this note is to point out that Chern characters

More information

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ]

[A + 1 ] + (1 ) v: : (b) Show: the derivative of T at v = v 0 < 0 is: = (v 0 ) (1 ) ; [A + 1 ] Homework #2 Economics 4- Due Wednesday, October 5 Christiano. This question is designed to illustrate Blackwell's Theorem, Theorem 3.3 on page 54 of S-L. That theorem represents a set of conditions that

More information

= c c + g (n; c) (.b) on the interior of the unit square (; ) (; ) in space and for t (; t final ] in time for the unknown functions n(x; y; t)

= c c + g (n; c) (.b) on the interior of the unit square (; ) (; ) in space and for t (; t final ] in time for the unknown functions n(x; y; t) Splitting Methods for Mixed Hyperbolic-Parabolic Systems Alf Gerisch, David F. Griths y, Rudiger Weiner, and Mark A. J. Chaplain y Institut fur Numerische Mathematik, Fachbereich Mathematik und Informatik

More information

PUTNAM PROBLEM SOLVING SEMINAR WEEK 7 This is the last meeting before the Putnam. The Rules. These are way too many problems to consider. Just pick a

PUTNAM PROBLEM SOLVING SEMINAR WEEK 7 This is the last meeting before the Putnam. The Rules. These are way too many problems to consider. Just pick a PUTNAM PROBLEM SOLVING SEMINAR WEEK 7 This is the last meeting before the Putnam The Rules These are way too many problems to consider Just pick a few problems in one of the sections and play around with

More information

the reference terminal. For electrotechnical reasons, the current entering terminal n is given by i n = ; P n; k= i k. The conductance matrix G(v :::

the reference terminal. For electrotechnical reasons, the current entering terminal n is given by i n = ; P n; k= i k. The conductance matrix G(v ::: Topological index calculation of DAEs in circuit simulation Caren Tischendorf, Humboldt-University of Berlin Abstract. Electric circuits are present in a number of applications, e.g. in home computers,

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

type of high order Z. Jackiewicz, A. Marthinsen and B. Owren PREPRINT NUMERICS NO. 4/1999

type of high order Z. Jackiewicz, A. Marthinsen and B. Owren PREPRINT NUMERICS NO. 4/1999 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Construction of Runge-Kutta methods of Crouch-Grossman type of high order by Z. Jackiewicz, A. Marthinsen and B. Owren PREPRINT NUMERICS NO. 4/1999 NORWEGIAN

More information

Question ( ) Solution. Approximate length of an atomic bond for solid aluminum.

Question ( ) Solution. Approximate length of an atomic bond for solid aluminum. Question (1450001) Approximate length of an atomic bond for solid aluminum. Spring A of stiness 10 N/m is hung vertically from a ringstand. From the lower end of this spring, a dierent spring (Spring B)

More information

Notes on Density Functional Theory

Notes on Density Functional Theory Notes on Density Functional Theory Rocco Martinazzo E-mail: rocco.martinazzo@unimi.it Contents 1 Introduction 1 Density Functional Theory 7 3 The Kohn-Sham approach 11 1 Introduction We consider here a

More information

V 1 V 2. r 3. r 6 r 4. Math 2250 Lab 12 Due Date : 4/25/2017 at 6:00pm

V 1 V 2. r 3. r 6 r 4. Math 2250 Lab 12 Due Date : 4/25/2017 at 6:00pm Math 50 Lab 1 Name: Due Date : 4/5/017 at 6:00pm 1. In the previous lab you considered the input-output model below with pure water flowing into the system, C 1 = C 5 =0. r 1, C 1 r 5, C 5 r r V 1 V r

More information

2 I like to call M the overlapping shue algebra in analogy with the well known shue algebra which is obtained as follows. Let U = ZhU ; U 2 ; : : :i b

2 I like to call M the overlapping shue algebra in analogy with the well known shue algebra which is obtained as follows. Let U = ZhU ; U 2 ; : : :i b The Leibniz-Hopf Algebra and Lyndon Words Michiel Hazewinkel CWI P.O. Box 94079, 090 GB Amsterdam, The Netherlands e-mail: mich@cwi.nl Abstract Let Z denote the free associative algebra ZhZ ; Z2; : : :i

More information

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(21) No.4,pp.414-421 Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy

More information

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION

A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION A COUPLED-ADJOINT METHOD FOR HIGH-FIDELITY AERO-STRUCTURAL OPTIMIZATION Joaquim Rafael Rost Ávila Martins Department of Aeronautics and Astronautics Stanford University Ph.D. Oral Examination, Stanford

More information

Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustr. 7, D Berlin - Dahlem

Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustr. 7, D Berlin - Dahlem Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustr. 7, D-14195 Berlin - Dahlem Rainald Ehrig Ulrich Nowak Peter Deuhard Highly Scalable Parallel Linearly-Implicit Extrapolation Algorithms Technical

More information

Numerical Solution of Stiff and Singularly Perturbed Problems for Ordinary Differential and Volterra-type Equations

Numerical Solution of Stiff and Singularly Perturbed Problems for Ordinary Differential and Volterra-type Equations UNIVERSITÀ DEGLI STUDI DI BARI ALDO MORO Dottorato di Ricerca in Matematica XXIV Ciclo A.A. 200/20 Settore Scientifico-Disciplinare: MAT/08 Analisi Numerica Tesi di Dottorato Numerical Solution of Stiff

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

V j+1 W j+1 Synthesis. ψ j. ω j. Ψ j. V j

V j+1 W j+1 Synthesis. ψ j. ω j. Ψ j. V j MORPHOLOGICAL PYRAMIDS AND WAVELETS BASED ON THE QUINCUNX LATTICE HENK J.A.M. HEIJMANS CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands and JOHN GOUTSIAS Center for Imaging Science, Dept. of Electrical

More information

Monte Carlo Lecture Notes II, Jonathan Goodman. Courant Institute of Mathematical Sciences, NYU. January 29, 1997

Monte Carlo Lecture Notes II, Jonathan Goodman. Courant Institute of Mathematical Sciences, NYU. January 29, 1997 Monte Carlo Lecture Notes II, Jonathan Goodman Courant Institute of Mathematical Sciences, NYU January 29, 1997 1 Introduction to Direct Sampling We think of the computer \random number generator" as an

More information

Name: October 24, 2014 ID Number: Fall Midterm I. Number Total Points Points Obtained Total 40

Name: October 24, 2014 ID Number: Fall Midterm I. Number Total Points Points Obtained Total 40 Math 307O: Introduction to Differential Equations Name: October 24, 204 ID Number: Fall 204 Midterm I Number Total Points Points Obtained 0 2 0 3 0 4 0 Total 40 Instructions.. Show all your work and box

More information

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation.

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation. Section.3.5.3, #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation dq = 1 4 (1 + sin(t) ) + Q, Q(0) = 50. (1) 100 (a) The differential equation given

More information

Reactive transport in porous media: formulations, non-linear solvers and preconditioners

Reactive transport in porous media: formulations, non-linear solvers and preconditioners Reactive transport in porous media: formulations, non-linear solvers and preconditioners Michel Kern with L. Amir, B. Gueslin, A. Taakili Institut National de Recherche en Informatique et Automatique High

More information

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs First Order DE 2.4 Linear vs. Nonlinear DE We recall the general form of the First Oreder DEs (FODE): dy = f(t, y) (1) dt where f(t, y) is a function

More information

Functional Analysis HW 2

Functional Analysis HW 2 Brandon Behring Functional Analysis HW 2 Exercise 2.6 The space C[a, b] equipped with the L norm defined by f = b a f(x) dx is incomplete. If f n f with respect to the sup-norm then f n f with respect

More information

c Society for Industrial and Applied Mathematics

c Society for Industrial and Applied Mathematics To appear in SIAM J. Sci. Comp. Vol.?, No.?, c Society for Industrial and Applied Mathematics EXPLOITING INVARIANTS IN THE NUMERICAL SOLUTION OF MULTIPOINT BOUNDARY VALUE PROBLEMS FOR DAE * VOLKER H. SCHULZ

More information

Student Instruction Sheet: Unit 3 Lesson 3. Using First Differences

Student Instruction Sheet: Unit 3 Lesson 3. Using First Differences Student Instruction Sheet: Unit Lesson Suggested time: 75 min Using First Differences What s important in this lesson: Interpret the meaning of a point on a scatterplot. Describe trends and relationships

More information