Geometry and analysis on hyperbolic manifolds

Size: px
Start display at page:

Download "Geometry and analysis on hyperbolic manifolds"

Transcription

1 Outline Geometry and analysis on hyperbolic manifolds Yiannis Petridis 1,2 1 The Graduate Center and Lehman College City University of New York 2 Max-Planck-Institut für Mathematik, Bonn April 20, 2005

2 Outline 1 Physical background 2 Hyperbolic manifolds 3 Eigenfunctions 4 Periodic orbits 5 Free groups

3 Systems in physics Quantum Mechanics Free Particle (non-relativistic) on M satisfies Schrödinger equation i 2 Ψ(x, t) = Ψ(x, t) t 2m Separate variable Ψ(x, t) = e iet/ φ(x). Set = 2m = 1 φ j + E j φ j = 0, E j eigenvalues, φ j eigenfunctions

4 Systems in physics Quantum Mechanics Free Particle (non-relativistic) on M satisfies Schrödinger equation i 2 Ψ(x, t) = Ψ(x, t) t 2m Separate variable Ψ(x, t) = e iet/ φ(x). Set = 2m = 1 φ j + E j φ j = 0, E j eigenvalues, φ j eigenfunctions

5 Systems in physics Quantum Mechanics Free Particle (non-relativistic) on M satisfies Schrödinger equation i 2 Ψ(x, t) = Ψ(x, t) t 2m Separate variable Ψ(x, t) = e iet/ φ(x). Set = 2m = 1 φ j + E j φ j = 0, E j eigenvalues, φ j eigenfunctions

6 Statistical Properties of Solutions Semiclassical limit: E j Classically integrable Barry-Tabor conjecture: E j independent random variables Localization of φ j along periodic orbits Examples Flat tori, Heisenberg manifolds Chaotic systems Bohigas-Giannoni- Schmit conjecture: Random Matrix Theory Random Wave Conjecture for φ j Examples Hyperbolic manifolds, Anosov flows

7 Statistical Properties of Solutions Semiclassical limit: E j Classically integrable Barry-Tabor conjecture: E j independent random variables Localization of φ j along periodic orbits Examples Flat tori, Heisenberg manifolds Chaotic systems Bohigas-Giannoni- Schmit conjecture: Random Matrix Theory Random Wave Conjecture for φ j Examples Hyperbolic manifolds, Anosov flows

8 Statistical Properties of Solutions Semiclassical limit: E j Classically integrable Barry-Tabor conjecture: E j independent random variables Localization of φ j along periodic orbits Examples Flat tori, Heisenberg manifolds Chaotic systems Bohigas-Giannoni- Schmit conjecture: Random Matrix Theory Random Wave Conjecture for φ j Examples Hyperbolic manifolds, Anosov flows

9 Statistical Properties of Solutions Semiclassical limit: E j Classically integrable Barry-Tabor conjecture: E j independent random variables Localization of φ j along periodic orbits Examples Flat tori, Heisenberg manifolds Chaotic systems Bohigas-Giannoni- Schmit conjecture: Random Matrix Theory Random Wave Conjecture for φ j Examples Hyperbolic manifolds, Anosov flows

10 The Hyperbolic Disc Model of hyperbolic geometry H = {z = x + iy C, z < 1} Hyperbolic metric ds 2 = dx 2 + dy 2 (1 (x 2 + y 2 )) 2

11 The Hyperbolic Disc Model of hyperbolic geometry H = {z = x + iy C, z < 1} Hyperbolic metric ds 2 = dx 2 + dy 2 (1 (x 2 + y 2 )) 2

12 Geodesics in Hyperbolic Disc Semicircles perpendicular to boundary Diameters

13 Geodesics in Hyperbolic Disc Semicircles perpendicular to boundary Diameters

14 The group SL 2 (Z) Upper-half space model H = {z = x + iy, y > 0} The fundamental domain of SL 2 (Z) Identifications z z + 1 z 1 z Group: SL 2 (Z) T (z) = az + b, ad bc = 1 cz + d a, b, c, d Z

15 The group SL 2 (Z) Upper-half space model H = {z = x + iy, y > 0} The fundamental domain of SL 2 (Z) Identifications z z + 1 z 1 z Group: SL 2 (Z) T (z) = az + b, ad bc = 1 cz + d a, b, c, d Z

16 The group SL 2 (Z) Upper-half space model H = {z = x + iy, y > 0} The fundamental domain of SL 2 (Z) Identifications z z + 1 z 1 z Group: SL 2 (Z) T (z) = az + b, ad bc = 1 cz + d a, b, c, d Z

17 The group SL 2 (Z) Upper-half space model H = {z = x + iy, y > 0} The fundamental domain of SL 2 (Z) Identifications z z + 1 z 1 z Group: SL 2 (Z) T (z) = az + b, ad bc = 1 cz + d a, b, c, d Z

18 The group SL 2 (Z) Upper-half space model H = {z = x + iy, y > 0} The fundamental domain of SL 2 (Z) Identifications z z + 1 z 1 z Group: SL 2 (Z) T (z) = az + b, ad bc = 1 cz + d a, b, c, d Z

19 Arithmetic subgroups of SL 2 (Z) Example Fundamental Domain for Γ 0 (6) Hecke subgroups Γ 0 (N) az + b cz + d SL 2(Z), N c

20 Tesselations T 1 F F TF T 1 JF JF T JF T 2 UTF T 1 U 2 F T 1 UTF U 2 F UTF TU 2 F Figure: Translates of the fundamental domain of SL 2 (Z) Figure: Triangles in the disc

21

22 Contour plots of eigenfunctions of H/Γ 0 (7) Figure: λ = λ =

23 Contour plots of eigenfunctions of H/Γ 0 (3) Figure: λ = λ =

24 Distribution of periodic orbits of H/Γ Periodic orbits are closed geodesics γ. Prime Geodesic Theorem π(x) = {γ, length (γ) e x } π(x) x lnx, x Prime Number Theorem π(x) = {p prime, p x} π(x) x lnx, x

25 Distribution of periodic orbits of H/Γ Periodic orbits are closed geodesics γ. Prime Geodesic Theorem π(x) = {γ, length (γ) e x } π(x) x lnx, x Prime Number Theorem π(x) = {p prime, p x} π(x) x lnx, x

26 Distribution of periodic orbits of H/Γ Periodic orbits are closed geodesics γ. Prime Geodesic Theorem π(x) = {γ, length (γ) e x } π(x) x lnx, x Prime Number Theorem π(x) = {p prime, p x} π(x) x lnx, x

27 Free groups Cayley graph: tree k = 2 1 Vertices= words 2 Edges labelled by A, B, A 1, B 1 gb 1 B 1 ga A Free group G = F(A 1, A 2, A 3,..., A k ) No relations, only A j A 1 j = 1 g B gb A -1 ga 1

28 Free groups Cayley graph: tree k = 2 1 Vertices= words 2 Edges labelled by A, B, A 1, B 1 gb 1 B 1 ga A Free group G = F(A 1, A 2, A 3,..., A k ) No relations, only A j A 1 j = 1 g B gb A -1 ga 1

29 Free groups Cayley graph: tree k = 2 1 Vertices= words 2 Edges labelled by A, B, A 1, B 1 gb 1 B 1 ga A Free group G = F(A 1, A 2, A 3,..., A k ) No relations, only A j A 1 j = 1 g B gb A -1 ga 1

30 Free groups Cayley graph: tree k = 2 1 Vertices= words 2 Edges labelled by A, B, A 1, B 1 gb 1 B 1 ga A Free group G = F(A 1, A 2, A 3,..., A k ) No relations, only A j A 1 j = 1 g B gb A -1 ga 1

31 Discrete Logarithms Definition wl(g) = distance from 1 in the tree log A (g) = sum of the exponents of A in g log B (g) = sum of the exponents of B in g Example log A (B 2 A 3 B 2 A 1 ) = 3 1 = 2 wl(b 2 A 3 B 2 A 1 ) = = 8 Theorem (Y. Petridis, M. S. Risager 2004) Gaussian Law for cyclically reduced g #{g wl(g) x, k 1 wl(g) log A (g) [a, b]} as x #{g wl(g) x} 1 2π b a e u2 /2 du,

32 Discrete Logarithms Definition wl(g) = distance from 1 in the tree log A (g) = sum of the exponents of A in g log B (g) = sum of the exponents of B in g Example log A (B 2 A 3 B 2 A 1 ) = 3 1 = 2 wl(b 2 A 3 B 2 A 1 ) = = 8 Theorem (Y. Petridis, M. S. Risager 2004) Gaussian Law for cyclically reduced g #{g wl(g) x, k 1 wl(g) log A (g) [a, b]} as x #{g wl(g) x} 1 2π b a e u2 /2 du,

33 Discrete Logarithms Definition wl(g) = distance from 1 in the tree log A (g) = sum of the exponents of A in g log B (g) = sum of the exponents of B in g Example log A (B 2 A 3 B 2 A 1 ) = 3 1 = 2 wl(b 2 A 3 B 2 A 1 ) = = 8 Theorem (Y. Petridis, M. S. Risager 2004) Gaussian Law for cyclically reduced g #{g wl(g) x, k 1 wl(g) log A (g) [a, b]} as x #{g wl(g) x} 1 2π b a e u2 /2 du,

34 Back to H/Γ: Cohomological restrictions Let α be a differential 1-form with α = 1. Theorem (Y. Petridis, M. S. Risager 2004) Gaussian Law for periodic orbits γ Let γ have length l(γ). Set [γ, α] = Then, as x, vol(m) α. 2l(γ) γ # {γ π 1 (M) [γ, α] [a, b], l(γ) x} #{γ π 1 (X) l(γ) x} 1 b e u2 /2 du 2π a

35 What are cohomological restrictions Figure: A surface of genus 2 Homology basis A 1, A 2, A 3, A 4. 4 γ = n j A j γ j=1 α = 4 n j α A j j=1 counts (with weights) how many times γ wraps around holes or handles

36 What are cohomological restrictions Figure: A surface of genus 2 Homology basis A 1, A 2, A 3, A 4. 4 γ = n j A j γ j=1 α = 4 n j α A j j=1 counts (with weights) how many times γ wraps around holes or handles

37 What are cohomological restrictions Figure: A surface of genus 2 Homology basis A 1, A 2, A 3, A 4. 4 γ = n j A j γ j=1 α = 4 n j α A j j=1 counts (with weights) how many times γ wraps around holes or handles

38 Duality between periods and eigenvalues Periods Eigenvalues

39 Duality between periods and eigenvalues Periods Trace Formulae Eigenvalues

40 Duality between periods and eigenvalues Periods Trace Formulae Eigenvalues Lengths of closed geodesics Selberg Trace formula Laplace eigenvalues

41 Duality between periods and eigenvalues Periods Trace Formulae Eigenvalues Lengths of closed geodesics Lengths of words Selberg Trace formula Ihara Trace formula Laplace eigenvalues Eigenvalues of adjacency matrix

42 Berry s Gaussian conjecture vol(z A, φ j (z) E) vol(a) 1 2πσ σ 2 = E 1 vol(h/γ) exp( u 2 /2σ) du, j

43 Credits for the pictures 1 V. Golovshanski, N. Motrov: preprint, Inst. Appl. Math. Khabarovsk (1982) 2 D. Hejhal, B. Rackner: On the topography of Maass waveforms for PSL(2, Z ). Experiment. Math. 1 (1992), no. 4, A. Krieg: F. Stromberg: fredrik/research/gallery/ 6 H. Verrill: verrill/

The distribution of prime geodesics for Γ \ H and analogues for free groups

The distribution of prime geodesics for Γ \ H and analogues for free groups Outline The distribution of prime geodesics for Γ \ H and analogues for free groups Yiannis Petridis 1 Morten S. Risager 2 1 The Graduate Center and Lehman College City University of New York 2 Aarhus

More information

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi Arithmetic quantum chaos and random wave conjecture 9th Mathematical Physics Meeting Goran Djankovi University of Belgrade Faculty of Mathematics 18. 9. 2017. Goran Djankovi Random wave conjecture 18.

More information

Continued fractions and geodesics on the modular surface

Continued fractions and geodesics on the modular surface Continued fractions and geodesics on the modular surface Chris Johnson Clemson University September 8, 203 Outline The modular surface Continued fractions Symbolic coding References Some hyperbolic geometry

More information

Chaos, Quantum Mechanics and Number Theory

Chaos, Quantum Mechanics and Number Theory Chaos, Quantum Mechanics and Number Theory Peter Sarnak Mahler Lectures 2011 Hamiltonian Mechanics (x, ξ) generalized coordinates: x space coordinate, ξ phase coordinate. H(x, ξ), Hamiltonian Hamilton

More information

Quantum chaos on graphs

Quantum chaos on graphs Baylor University Graduate seminar 6th November 07 Outline 1 What is quantum? 2 Everything you always wanted to know about quantum but were afraid to ask. 3 The trace formula. 4 The of Bohigas, Giannoni

More information

x #{ p=prime p x }, as x logx

x #{ p=prime p x }, as x logx 1 The Riemann zeta function for Re(s) > 1 ζ s -s ( ) -1 2 duality between primes & complex zeros of zeta using Hadamard product over zeros prime number theorem x #{ p=prime p x }, as x logx statistics

More information

Ihara zeta functions and quantum chaos

Ihara zeta functions and quantum chaos Ihara zeta functions and quantum chaos Audrey Terras Vancouver AMS Meeting October, 2008 Joint work with H. M. Stark, M. D. Horton, etc. Outline 1. Riemann zeta 2. Quantum Chaos 3. Ihara zeta 4. Picture

More information

Eigenvalue statistics and lattice points

Eigenvalue statistics and lattice points Eigenvalue statistics and lattice points Zeév Rudnick Abstract. One of the more challenging problems in spectral theory and mathematical physics today is to understand the statistical distribution of eigenvalues

More information

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor)

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor) Universality Many quantum properties of chaotic systems are universal and agree with predictions from random matrix theory, in particular the statistics of energy levels. (Bohigas, Giannoni, Schmit 84;

More information

2 hours THE UNIVERSITY OF MANCHESTER.?? January 2017??:????:??

2 hours THE UNIVERSITY OF MANCHESTER.?? January 2017??:????:?? hours MATH3051 THE UNIVERSITY OF MANCHESTER HYPERBOLIC GEOMETRY?? January 017??:????:?? Answer ALL FOUR questions in Section A (40 marks in all) and TWO of the THREE questions in Section B (30 marks each).

More information

Lecture 1: Riemann, Dedekind, Selberg, and Ihara Zetas

Lecture 1: Riemann, Dedekind, Selberg, and Ihara Zetas Lecture 1: Riemann, Dedekind, Selberg, and Ihara Zetas Audrey Terras U.C.S.D. 2008 more details can be found in my webpage: www.math.ucsd.edu /~aterras/ newbook.pdf First the Riemann Zeta 1 The Riemann

More information

The Berry-Tabor conjecture

The Berry-Tabor conjecture The Berry-Tabor conjecture Jens Marklof Abstract. One of the central observations of quantum chaology is that statistical properties of quantum spectra exhibit surprisingly universal features, which seem

More information

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications Quantum Billiards Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications University of Bristol, June 21-24 2010 Most pictures are courtesy of Arnd Bäcker

More information

On the sup-norm problem for arithmetic hyperbolic 3-manifolds

On the sup-norm problem for arithmetic hyperbolic 3-manifolds On the sup-norm problem for arithmetic hyperbolic 3-manifolds Gergely Harcos Alfréd Rényi Institute of Mathematics http://www.renyi.hu/ gharcos/ 29 September 2014 Analytic Number Theory Workshop University

More information

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Etienne Le Masson (Joint work with Tuomas Sahlsten) School of Mathematics University of Bristol, UK August 26, 2016 Hyperbolic

More information

A gentle introduction to Quantum Ergodicity

A gentle introduction to Quantum Ergodicity A gentle introduction to Quantum Ergodicity Tuomas Sahlsten University of Bristol, UK 7 March 2017 Arithmetic study group, Durham, UK Joint work with Etienne Le Masson (Bristol) Supported by the EU: Horizon

More information

Hyperbolic volumes and zeta values An introduction

Hyperbolic volumes and zeta values An introduction Hyperbolic volumes and zeta values An introduction Matilde N. Laĺın University of Alberta mlalin@math.ulberta.ca http://www.math.ualberta.ca/~mlalin Annual North/South Dialogue in Mathematics University

More information

Zeros and Nodal Lines of Modular Forms

Zeros and Nodal Lines of Modular Forms Zeros and Nodal Lines of Modular Forms Peter Sarnak Mahler Lectures 2011 Zeros of Modular Forms Classical modular forms Γ = SL 2 (Z) acting on H. z γ az + b [ ] a b cz + d, γ = Γ. c d (i) f (z) holomorphic

More information

Bending deformation of quasi-fuchsian groups

Bending deformation of quasi-fuchsian groups Bending deformation of quasi-fuchsian groups Yuichi Kabaya (Osaka University) Meiji University, 30 Nov 2013 1 Outline The shape of the set of discrete faithful representations in the character variety

More information

Letter to J. Mozzochi on Linking Numbers of Modular Geodesics

Letter to J. Mozzochi on Linking Numbers of Modular Geodesics Letter to J. Mozzochi on Linking Numbers of Modular Geodesics January, 008 from Peter Sarnak Dear Jeff, Here are some remarks in connection with Ghys spectacular ICM 006 talk [1]. I indicate what the tools

More information

Polylogarithms and Hyperbolic volumes Matilde N. Laĺın

Polylogarithms and Hyperbolic volumes Matilde N. Laĺın Polylogarithms and Hyperbolic volumes Matilde N. Laĺın University of British Columbia and PIMS, Max-Planck-Institut für Mathematik, University of Alberta mlalin@math.ubc.ca http://www.math.ubc.ca/~mlalin

More information

Relating Hyperbolic Braids and PSL 2 (Z)

Relating Hyperbolic Braids and PSL 2 (Z) Relating Hyperbolic Braids and PSL 2 (Z) Cat Weiss August 19, 2015 Abstract We focus on hyperbolic braids in B 3. In particular we find properties belonging to hyperblic and non-hyperbolic mapping tori

More information

(5) N #{j N : X j+1 X j [a, b]}

(5) N #{j N : X j+1 X j [a, b]} ARITHETIC QUANTU CHAOS JENS ARKLOF. Introduction The central objective in the study of quantum chaos is to characterize universal properties of quantum systems that reflect the regular or chaotic features

More information

Chaotic Scattering on Hyperbolic Manifolds

Chaotic Scattering on Hyperbolic Manifolds Chaotic Scattering on Hyperbolic Manifolds Peter A Perry University of Kentucky 9 March 2015 With thanks to: The organizers for the invitation David Borthwick for help with figures The Participants for

More information

Zeta functions of buildings and Shimura varieties

Zeta functions of buildings and Shimura varieties Zeta functions of buildings and Shimura varieties Jerome William Hoffman January 6, 2008 0-0 Outline 1. Modular curves and graphs. 2. An example: X 0 (37). 3. Zeta functions for buildings? 4. Coxeter systems.

More information

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 An introduction to arithmetic groups Lizhen Ji CMS, Zhejiang University Hangzhou 310027, China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 June 27, 2006 Plan. 1. Examples of arithmetic groups

More information

Bianchi Orbifolds of Small Discriminant. A. Hatcher

Bianchi Orbifolds of Small Discriminant. A. Hatcher Bianchi Orbifolds of Small Discriminant A. Hatcher Let O D be the ring of integers in the imaginary quadratic field Q( D) of discriminant D

More information

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Department of mathematical sciences Aalborg University Cergy-Pontoise 26.5.2011 Möbius transformations Definition Möbius

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

Research Statement. Jayadev S. Athreya. November 7, 2005

Research Statement. Jayadev S. Athreya. November 7, 2005 Research Statement Jayadev S. Athreya November 7, 2005 1 Introduction My primary area of research is the study of dynamics on moduli spaces. The first part of my thesis is on the recurrence behavior of

More information

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES IGOR PROKHORENKOV 1. Introduction to the Selberg Trace Formula This is a talk about the paper H. P. McKean: Selberg s Trace Formula as applied to a

More information

274 Curves on Surfaces, Lecture 4

274 Curves on Surfaces, Lecture 4 274 Curves on Surfaces, Lecture 4 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 4 Hyperbolic geometry Last time there was an exercise asking for braids giving the torsion elements in PSL 2 (Z). A 3-torsion

More information

The quantum billiards near cosmological singularities of (super-)gravity theories

The quantum billiards near cosmological singularities of (super-)gravity theories The quantum billiards near cosmological singularities of (super-)gravity theories 8. Kosmologietag, IBZ, Universität Bielefeld 25. April 2013 Michael Koehn Max Planck Institut für Gravitationsphysik Albert

More information

On the topology of H(2)

On the topology of H(2) On the topology of H(2) Duc-Manh Nguyen Max-Planck-Institut für Mathematik Bonn, Germany July 19, 2010 Translation surface Definition Translation surface is a flat surface with conical singularities such

More information

Spectral Theory on Hyperbolic Surfaces

Spectral Theory on Hyperbolic Surfaces Spectral Theory on Hyperbolic Surfaces David Borthwick Emory University July, 2010 Outline Hyperbolic geometry Fuchsian groups Spectral theory Selberg trace formula Arithmetic surfaces I. Hyperbolic Geometry

More information

Chapter 1 Why Quadratic Diophantine Equations?

Chapter 1 Why Quadratic Diophantine Equations? Chapter 1 Why Quadratic Diophantine Equations? In order to motivate the study of quadratic type equations, in this chapter we present several problems from various mathematical disciplines leading to such

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Alan Turing and the Riemann hypothesis. Andrew Booker

Alan Turing and the Riemann hypothesis. Andrew Booker Alan Turing and the Riemann hypothesis Andrew Booker Introduction to ζ(s) and the Riemann hypothesis The Riemann ζ-function is defined for a complex variable s with real part R(s) > 1 by ζ(s) := n=1 1

More information

HUBER S THEOREM FOR HYPERBOLIC ORBISURFACES

HUBER S THEOREM FOR HYPERBOLIC ORBISURFACES HUBER S THEOREM FOR HYPERBOLIC ORBISURFACES EMILY B. DRYDEN AND ALEXANDER STROHMAIER Abstract. We show that for compact orientable hyperbolic orbisurfaces, the Laplace spectrum determines the length spectrum

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Dynamics and Geometry of Flat Surfaces

Dynamics and Geometry of Flat Surfaces IMPA - Rio de Janeiro Outline Translation surfaces 1 Translation surfaces 2 3 4 5 Abelian differentials Abelian differential = holomorphic 1-form ω z = ϕ(z)dz on a (compact) Riemann surface. Adapted local

More information

Fluctuation statistics for quantum star graphs

Fluctuation statistics for quantum star graphs Contemporary Mathematics Fluctuation statistics for quantum star graphs J.P. Keating Abstract. Star graphs are examples of quantum graphs in which the spectral and eigenfunction statistics can be determined

More information

Genericity of contracting elements in groups

Genericity of contracting elements in groups Genericity of contracting elements in groups Wenyuan Yang (Peking University) 2018 workshop on Algebraic and Geometric Topology July 29, 2018 Southwest Jiaotong University, Chengdu Wenyuan Yang Genericity

More information

Spectral theory, geometry and dynamical systems

Spectral theory, geometry and dynamical systems Spectral theory, geometry and dynamical systems Dmitry Jakobson 8th January 2010 M is n-dimensional compact connected manifold, n 2. g is a Riemannian metric on M: for any U, V T x M, their inner product

More information

Nodal domain distributions for quantum maps

Nodal domain distributions for quantum maps LETTER TO THE EDITOR Nodal domain distributions for uantum maps JPKeating, F Mezzadri and A G Monastra School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK Department of

More information

What is quantum unique ergodicity?

What is quantum unique ergodicity? What is quantum unique ergodicity? Andrew Hassell 1 Abstract A (somewhat) nontechnical presentation of the topic of quantum unique ergodicity (QUE) is attempted. I define classical ergodicity and unique

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Introduction to Selberg Trace Formula.

Introduction to Selberg Trace Formula. Introduction to Selberg Trace Formula. Supriya Pisolkar Abstract These are my notes of T.I.F.R. Student Seminar given on 30 th November 2012. In this talk we will first discuss Poisson summation formula

More information

Almost Invariant Sets. M. J. Dunwoody. July 18, 2011

Almost Invariant Sets. M. J. Dunwoody. July 18, 2011 Almost Invariant Sets M. J. Dunwoody July 18, 2011 Introduction Let G be a finitely generated group with finite generating set S and let X = Cay(G, S) be the Cayley graph of G with respect to S. We say

More information

LECTURE 4. PROOF OF IHARA S THEOREM, EDGE CHAOS. Ihara Zeta Function. ν(c) ζ(u,x) =(1-u ) det(i-au+qu t(ia )

LECTURE 4. PROOF OF IHARA S THEOREM, EDGE CHAOS. Ihara Zeta Function. ν(c) ζ(u,x) =(1-u ) det(i-au+qu t(ia ) LCTUR 4. PROOF OF IHARA S THORM, DG ZTAS, QUANTUM CHAOS Ihara Zeta Function ν(c) ( ) - ζ(u,x)= -u [C] prime ν(c) = # edges in C converges for u complex, u small Ihara s Theorem. - 2 r- 2 ζ(u,x) =(-u )

More information

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF

THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF THE FUNDAMENTAL GROUP OF THE DOUBLE OF THE FIGURE-EIGHT KNOT EXTERIOR IS GFERF D. D. LONG and A. W. REID Abstract We prove that the fundamental group of the double of the figure-eight knot exterior admits

More information

Counting geodesic arcs in a fixed conjugacy class on negatively curved surfaces with boundary

Counting geodesic arcs in a fixed conjugacy class on negatively curved surfaces with boundary Counting geodesic arcs in a fixed conjugacy class on negatively curved surfaces with boundary Mark Pollicott Abstract We show how to derive an asymptotic estimates for the number of closed arcs γ on a

More information

The Geometrization Theorem

The Geometrization Theorem The Geometrization Theorem Matthew D. Brown Wednesday, December 19, 2012 In this paper, we discuss the Geometrization Theorem, formerly Thurston s Geometrization Conjecture, which is essentially the statement

More information

Plane hyperbolic geometry

Plane hyperbolic geometry 2 Plane hyperbolic geometry In this chapter we will see that the unit disc D has a natural geometry, known as plane hyperbolic geometry or plane Lobachevski geometry. It is the local model for the hyperbolic

More information

Logarithm and Dilogarithm

Logarithm and Dilogarithm Logarithm and Dilogarithm Jürg Kramer and Anna-Maria von Pippich 1 The logarithm 1.1. A naive sequence. Following D. Zagier, we begin with the sequence of non-zero complex numbers determined by the requirement

More information

Mahler measure of the A-polynomial

Mahler measure of the A-polynomial Mahler measure of the A-polynomial Abhijit Champanerkar University of South Alabama International Conference on Quantum Topology Institute of Mathematics, VAST Hanoi, Vietnam Aug 6-12, 2007 Outline History

More information

TitleQuantum Chaos in Generic Systems.

TitleQuantum Chaos in Generic Systems. TitleQuantum Chaos in Generic Systems Author(s) Robnik, Marko Citation 物性研究 (2004), 82(5): 662-665 Issue Date 2004-08-20 URL http://hdl.handle.net/2433/97885 Right Type Departmental Bulletin Paper Textversion

More information

MATH 797MF PROBLEM LIST

MATH 797MF PROBLEM LIST MATH 797MF PROBLEM LIST PAUL E. GUNNELLS Please complete 20 of these problems. You can hand them in at any time, but please try to submit them in groups of 5 at a time. The problems cover a lot of different

More information

EIGENVALUE SPACINGS FOR REGULAR GRAPHS. 1. Introduction

EIGENVALUE SPACINGS FOR REGULAR GRAPHS. 1. Introduction EIGENVALUE SPACINGS FOR REGULAR GRAPHS DMITRY JAKOBSON, STEPHEN D. MILLER, IGOR RIVIN AND ZEÉV RUDNICK Abstract. We carry out a numerical study of fluctuations in the spectrum of regular graphs. Our experiments

More information

Spectra, dynamical systems, and geometry. Fields Medal Symposium, Fields Institute, Toronto. Tuesday, October 1, 2013

Spectra, dynamical systems, and geometry. Fields Medal Symposium, Fields Institute, Toronto. Tuesday, October 1, 2013 Spectra, dynamical systems, and geometry Fields Medal Symposium, Fields Institute, Toronto Tuesday, October 1, 2013 Dmitry Jakobson April 16, 2014 M = S 1 = R/(2πZ) - a circle. f (x) - a periodic function,

More information

Jacobians of degenerate Riemann surfaces and graphs

Jacobians of degenerate Riemann surfaces and graphs Jacobians of degenerate Riemann surfaces and graphs Peter Buser Eran Makover Björn Mützel Mika Seppälä Robert Silhol Graph Theory and Interactions Durham July 2013 In physics we learned the following rule

More information

Spectral Deformations and Eisenstein Series Associated with Modular Symbols

Spectral Deformations and Eisenstein Series Associated with Modular Symbols IMRN International Mathematics Research Notices 2002, No. 19 Spectral Deformations and Eisenstein Series Associated with Modular Symbols Yiannis N. Petridis 1 Introduction Let fz) be a holomorphic cusp

More information

Write on one side of the paper only and begin each answer on a separate sheet. Write legibly; otherwise, you place yourself at a grave disadvantage.

Write on one side of the paper only and begin each answer on a separate sheet. Write legibly; otherwise, you place yourself at a grave disadvantage. MATHEMATICAL TRIPOS Part IB Wednesday 5 June 2002 1.30 to 4.30 PAPER 1 Before you begin read these instructions carefully. Each question in Section II carries twice the credit of each question in Section

More information

Extended Moduli Spaces and a corresponding Moduli Space Size Conjecture. Recall the Weak Gravity Conjecture for axions: f < M P.

Extended Moduli Spaces and a corresponding Moduli Space Size Conjecture. Recall the Weak Gravity Conjecture for axions: f < M P. Extended Moduli Spaces and a corresponding Moduli Space Size Conjecture Outline Arthur Hebecker (Heidelberg) based on work with Philipp Henkenjohann and Lukas Witkowski Recall the Weak Gravity Conjecture

More information

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31 Homework 1, due on Wednesday August 31 Problem 1. Let z = 2 i and z = 3 + 4i. Write the product zz and the quotient z z in the form a + ib, with a, b R. Problem 2. Let z C be a complex number, and let

More information

(Ortho)spectra and identities TIT 2012

(Ortho)spectra and identities TIT 2012 (Ortho)spectra and identities TIT 2012 Greg McShane September 13, 2012 Nightmare Bad dreams... Nightmare: forgot the plane Nightmare: forgot the train Nightmare: forgot the exam Nightmare Forgotten to

More information

dynamical zeta functions: what, why and what are the good for?

dynamical zeta functions: what, why and what are the good for? dynamical zeta functions: what, why and what are the good for? Predrag Cvitanović Georgia Institute of Technology November 2 2011 life is intractable in physics, no problem is tractable I accept chaos

More information

GRAPH QUANTUM MECHANICS

GRAPH QUANTUM MECHANICS GRAPH QUANTUM MECHANICS PAVEL MNEV Abstract. We discuss the problem of counting paths going along the edges of a graph as a toy model for Feynman s path integral in quantum mechanics. Let Γ be a graph.

More information

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

Min-max methods in Geometry. André Neves

Min-max methods in Geometry. André Neves Min-max methods in Geometry André Neves Outline 1 Min-max theory overview 2 Applications in Geometry 3 Some new progress Min-max Theory Consider a space Z and a functional F : Z [0, ]. How to find critical

More information

A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE

A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE KOJI FUJIWARA AND KEVIN WHYTE Abstract. Let X be a geodesic metric space with H 1(X) uniformly generated. If X has asymptotic dimension one then X is quasi-isometric

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

On Spectrum and Arithmetic

On Spectrum and Arithmetic On Spectrum and Arithmetic C. S. Rajan School of Mathematics, Tata Institute of Fundamental Research, Mumbai rajan@math.tifr.res.in 11 August 2010 C. S. Rajan (TIFR) On Spectrum and Arithmetic 11 August

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Intersection theory on moduli spaces of curves via hyperbolic geometry

Intersection theory on moduli spaces of curves via hyperbolic geometry Intersection theory on moduli spaces of curves via hyperbolic geometry The University of Melbourne In the past few decades, moduli spaces of curves have become the centre of a rich confluence of rather

More information

Recent developments in mathematical Quantum Chaos, I

Recent developments in mathematical Quantum Chaos, I Recent developments in mathematical Quantum Chaos, I Steve Zelditch Johns Hopkins and Northwestern Harvard, November 21, 2009 Quantum chaos of eigenfunction Let {ϕ j } be an orthonormal basis of eigenfunctions

More information

arxiv: v1 [math.dg] 4 Feb 2013

arxiv: v1 [math.dg] 4 Feb 2013 BULGING DEFORMATIONS OF CONVEX RP 2 -MANIFOLDS arxiv:1302.0777v1 [math.dg] 4 Feb 2013 WILLIAM M. GOLDMAN Abstract. We define deformations of convex RP 2 -surfaces. A convex RP 2 -manifold is a representation

More information

Random Walks on Hyperbolic Groups III

Random Walks on Hyperbolic Groups III Random Walks on Hyperbolic Groups III Steve Lalley University of Chicago January 2014 Hyperbolic Groups Definition, Examples Geometric Boundary Ledrappier-Kaimanovich Formula Martin Boundary of FRRW on

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Uniform dessins on Shimura curves

Uniform dessins on Shimura curves Uniform dessins on Shimura curves Jürgen Wolfart joint work with Ernesto Girondo Sirvent and David Torres Teigéll, UAM Madrid Math. Zeitschrift 2011 + work in progress Mathematisches Seminar, Goethe Universität

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 1 Check the calculations above that the Gaussian curvature of the upper half-plane and Poincaré disk models of the hyperbolic plane is 1. Proof. The calculations

More information

DEFORMATIONS OF MAASS FORMS

DEFORMATIONS OF MAASS FORMS MATHEMATICS OF COMPUTATION Volume 74, Number 252, Pages 1967 1982 S 0025-5718(05)01746-1 Article electronically published on April 15, 2005 DEFORMATIONS OF MAASS FORMS D. W. FARMER AND S. LEMURELL Abstract.

More information

Applications of homogeneous dynamics: from number theory to statistical mechanics

Applications of homogeneous dynamics: from number theory to statistical mechanics Applications of homogeneous dynamics: from number theory to statistical mechanics A course in ten lectures ICTP Trieste, 27-31 July 2015 Jens Marklof and Andreas Strömbergsson Universities of Bristol and

More information

Finite Models for Arithmetical Quantum Chaos

Finite Models for Arithmetical Quantum Chaos Finite Models for Arithmetical Quantum Chaos Audrey Terras Math. Dept., U.C.S.D., San Diego, Ca 92093-0112 Abstract. Physicists have long studied spectra of Schrödinger operators and random matrices thanks

More information

Automorphic forms and scattering theory

Automorphic forms and scattering theory Automorphic forms and scattering theory Werner Müller University of Bonn Institute of Mathematics December 5, 2007 Introduction Harmonic analysis on locally symmetric spaces Γ\G/K of finite volume is closely

More information

Introductory Lectures on SL(2, Z) and modular forms.

Introductory Lectures on SL(2, Z) and modular forms. Introductory Lectures on SL(2, Z) and modular forms. W.J. Harvey, King s College London December 2008. 1 Introduction to the main characters. (1.1) We begin with a definition. The modular group is the

More information

MATHEMATICS: CONCEPTS, AND FOUNDATIONS - Introduction To Mathematical Aspects of Quantum Chaos - Dieter Mayer

MATHEMATICS: CONCEPTS, AND FOUNDATIONS - Introduction To Mathematical Aspects of Quantum Chaos - Dieter Mayer ITRODUCTIO TO MATHEMATICAL ASPECTS OF QUATUM CHAOS Dieter University of Clausthal, Clausthal-Zellerfeld, Germany Keywords: arithmetic quantum chaos, Anosov system, Berry-Tabor conjecture, Bohigas-Giannoni-Schmit

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

A crash course the geometry of hyperbolic surfaces

A crash course the geometry of hyperbolic surfaces Lecture 7 A crash course the geometry of hyperbolic surfaces 7.1 The hyperbolic plane Hyperbolic geometry originally developed in the early 19 th century to prove that the parallel postulate in Euclidean

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 24, 2011 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

Super-Apollonian Continued Fractions

Super-Apollonian Continued Fractions Super-Apollonian Continued Fractions Sneha Chaubey Elena Fuchs Robert Hines* Katherine Stange University of Illinois, Urbana-Champaign University of California, Davis University of Colorado, Boulder* University

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

arxiv:nlin/ v1 [nlin.cd] 8 Jan 2001

arxiv:nlin/ v1 [nlin.cd] 8 Jan 2001 The Riemannium P. Leboeuf, A. G. Monastra, and O. Bohigas Laboratoire de Physique Théorique et Modèles Statistiques, Bât. 100, Université de Paris-Sud, 91405 Orsay Cedex, France Abstract arxiv:nlin/0101014v1

More information

What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs?

What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs? What is the Riemann Hypothesis for Zeta Functions of Irregular Graphs? Audrey Terras Banff February, 2008 Joint work with H. M. Stark, M. D. Horton, etc. Introduction The Riemann zeta function for Re(s)>1

More information

Periodic Orbits in Arithmetical Chaos

Periodic Orbits in Arithmetical Chaos DESY 92-104 ISSN 0418-9833 July 1992 Periodic Orbits in Arithmetical Chaos Jens Bolte II. Institut für Theoretische Physik Universität Hamburg Luruper Chaussee 149, 2000 Hamburg 50 Fed. Rep. Germany Abstract

More information

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d Möbius transformations Möbius transformations are simply the degree one rational maps of C: where and Then σ A : z az + b cz + d : C C ad bc 0 ( ) a b A = c d A σ A : GL(2C) {Mobius transformations } is

More information

Super-Apollonian Continued Fractions

Super-Apollonian Continued Fractions Super-Apollonian Continued Fractions Sneha Chaubey Elena Fuchs Robert Hines* Katherine Stange University of Illinois, Urbana-Champaign University of California, Davis University of Colorado, Boulder* University

More information

A class of non-holomorphic modular forms

A class of non-holomorphic modular forms A class of non-holomorphic modular forms Francis Brown All Souls College, Oxford (IHES, Bures-Sur-Yvette) Modular forms are everywhere MPIM 22nd May 2017 1 / 35 Two motivations 1 Do there exist modular

More information

Centre de recherches mathématiques

Centre de recherches mathématiques Centre de recherches mathématiques Université de Montréal Atelier «Aspects mathématiques du chaos quantique» Du 2 au 6 juin 2008 Workshop Mathematical aspects of quantum chaos June 2-6, 2008 HORAIRE /

More information

Applications of measure rigidity: from number theory to statistical mechanics

Applications of measure rigidity: from number theory to statistical mechanics Applications of measure rigidity: from number theory to statistical mechanics Simons Lectures, Stony Brook October 2013 Jens Marklof University of Bristol http://www.maths.bristol.ac.uk supported by Royal

More information