2 hours THE UNIVERSITY OF MANCHESTER.?? January 2017??:????:??

Size: px
Start display at page:

Download "2 hours THE UNIVERSITY OF MANCHESTER.?? January 2017??:????:??"

Transcription

1 hours MATH3051 THE UNIVERSITY OF MANCHESTER HYPERBOLIC GEOMETRY?? January 017??:????:?? Answer ALL FOUR questions in Section A (40 marks in all) and TWO of the THREE questions in Section B (30 marks each). If all three questions from Section B are attempted then credit will be given for the two best answers. Electronic calculators may be used, provided that they cannot store text. Notation: Throughout, H denotes the upper half-plane, H denotes the boundary of H, D denotes the Poincaré disc, and D denotes the boundary of D. 1 of 8 P.T.O.

2 SECTION A MATH3051 Answer ALL FOUR questions A1. (i) Let γ(z) = az + b, a, b, c, d R, ad bc > 0 cz + d be a Möbius transformation of H. Recall that z 0 H H is said to be a fixed point of γ if γ(z 0 ) = z 0. Suppose that c 0. Find the fixed points of γ. Explain how the number and location of fixed points can be used to classify Möbius transformations of H (in the case c 0). [4 marks] (ii) Let γ 1 (z) = 5z z + 1, γ (z) = 4z 3 z + 1. Determine whether γ 1, γ are hyperbolic, parabolic or elliptic Möbius transformations. A. Let be a hyperbolic right-angled triangle with sides of hyperbolic length a, b, c where c is the length of the side opposite the right-angle, as illustrated in Figure 1. c b a Figure 1: A hyperbolic right-angled triangle. See Question A. Prove the hyperbolic version of Pythagoras theorem: coshc = cosh a cosh b. (If you reduce the triangle to a special case then you should briefly justify why this is valid.) z w (You may use without proof the formula coshd H (z, w) = 1 + Im(z)Im(w).) of 8 P.T.O.

3 A3. (i) Let S = {a 1,...,a k } be a finite set of symbols and let w 1,...,w m be a finite set of words in symbols chosen from S S 1. Briefly explain how to construct the group Γ = a 1,..., a k w 1 = = w m = e. (Your answer should include: a description of the elements of Γ, a description of the group operation, a description of the group identity, and a brief explanation of how to find the inverse of an element in Γ. You do not need to prove that the group operation is well-defined.) (ii) Let Γ = a, b a 5 = b = (ab) = e. Show that ab = ba 4. Hence show that Γ contains precisely 10 elements. 3 of 8 P.T.O.

4 A4. (i) Consider the hyperbolic dodecagon as illustrated in Figure with all internal angles equal to π/6 and side-pairings as illustrated. Show that there is precisely one elliptic cycle and calculate the elliptic cycle transformation. Figure : Each internal angle is π/6 and the sides are paired as indicated. See Question A4. (ii) It can be shown from Poincaré s Theorem that the side-pairing transformations in this diagram generate a Fuchsian group Γ (you do not need to check this yourself). Sketch a picture of H/Γ. [ marks] 4 of 8 P.T.O.

5 SECTION B MATH3051 Answer TWO of the THREE questions B5. (i) Recall that the set of Möbius transformations of D is defined to be { Möb(D) = γ : D D γ(z) = αz + β } βz + ᾱ, α, β C, α β > 0. Let γ 1, γ Möb(D) and write γ 1 (z) = α 1z + β 1 β 1 z + α 1, γ (z) = α z + β β z + α. Show that the composition γ 1 γ is a Möbius transformation of D. Show that γ 1 1 is a Möbius transformation of D. [10 marks] (ii) Recall that if σ : [a, b] D is a parametrisation of a path in D then the hyperbolic length of σ is defined to be b length D (σ) = 1 σ(t) σ (t) dt. a How can the hyperbolic lengths of paths then be used to define a metric d D on D? (You do not need to prove that d D is a metric.) [ marks] (iii) Let a (0, 1) and consider the path σ along the imaginary axis that joins 0 and ia. Write down a parametrisation of σ. Hence show that ( ) 1 + a length D (σ) = log. 1 a (iv) Hence show that d D (0, ia) = log ( ) 1 + a. 1 a (v) Find the hyperbolic mid-point of the arc of geodesic in D between 0 and 4i/5. [4 marks] 5 of 8 P.T.O.

6 B6. (i) Let z 1 = x 1 +iy 1, z = x +iy H. In the course it was proved that the perpendicular bisector of [z 1, z ] is given by {z H d H (z, z 1 ) = d H (z, z )}. Show that the perpendicular bisector can also be written in the form {z H y z z 1 = y 1 z z }. (1) (You may use without proof the formula cosh d H (z, w) = 1 + z w Im(z)Im(w).) [4 marks] (ii) Let n Z. Show from (1) that the perpendicular bisector of [i, 9 n i] is the semi-circle with centre 0 and radius 3 n. (iii) Let Γ be a Fuchsian group. What does it mean to say that an open subset F H is a fundamental domain for Γ? Briefly outline an algorithm, discussed in lectures, that will construct a fundamental domain for Γ. (iv) Using this algorithm and part (ii) above, find a fundamental domain for the Fuchsian group Γ defined by Γ = {γ n γ n (z) = 9 n z, n Z}. Sketch the resulting tessellation of H. What does this tessellation look like in the Poincaré disc model D? (v) Let Γ be a Fuchsian group. A Fuchsian group Γ 1 is said to be conjugate to Γ if there exists a Möbius transformation g Möb(H) such that Γ 1 = g 1 Γg, that is Γ 1 = {g 1 γg γ Γ}. () Suppose that Γ 1 is conjugate to Γ and that g is as in (). Let F be a fundamental domain for Γ. Show that g 1 F is a fundamental domain for Γ 1. 6 of 8 P.T.O.

7 B7. (i) Recall that geodesics in H are either semi-circles with real centres or vertical straight lines in H and that they have equations of the form where α, β, γ R. αz z + βz + β z + γ = 0 (3) Consider the geodesic between 1, (1+i 3)/ and the geodesic between (1+i 3)/, (3+i 3)/. Note that both of these geodesics are contained in semi-circles with real centres. By finding equations of the form (3) or by using geometric intuition, find the centres and radii of these semi-circles. (ii) Let C 1, C be two Euclidean circles with centres c 1, c C and radii r 1, r, respectively. Suppose that C 1, C intersect as illustrated in Figure 3. C C 1 ψ c c 1 Figure 3: Circles C 1, C in C with centres c 1, c and radii r 1, r, respectively. See Question B7(ii). Recall that the Euclidean cosine rule states that in a Euclidean triangle with sides of (Euclidean) length a, b, c and with internal angle γ opposite the side c we have c = a +b ab cosγ. Use the Euclidean cosine rule to show that cosψ = c 1 c (r 1 + r ) r 1 r. (iii) Use the results of (i) and (ii) above to show that the angle θ 1 in Figure 4 below is equal to π/3. You may also assume that θ is equal to π/3 (you do not need to check this yourself).. [4 marks] 7 of 8 P.T.O.

8 (iv) Consider the hyperbolic triangle in Figure 4 below with sides paired as indicated. The sidepairing transformations are given by γ 1 (z) = 1 z +, γ (z) = z z 1. 1+i 3 θ 1 θ γ γ 1 3+i 3 1 Figure 4: A hyperbolic triangle with vertices at 1, Question B7(i), (iii), (iv). 1+i 3, 3+i 3 and internal angles θ 1, θ. See Use Poincaré s Theorem to show that γ 1, γ generate a Fuchsian group Γ. Show that there are two elliptic cycles and one parabolic cycle. Give a presentation of Γ in terms of generators and relations. [ 1+i (You may use, without proof, the fact that the hyperbolic midpoint of ] 3, 3+i 3 occurs at the point 1 + i.) [1 marks] END OF EXAMINATION PAPER 8 of 8

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

How to fail Hyperbolic Geometry

How to fail Hyperbolic Geometry Hyperbolic Geometry 1 Introduction These notes describe some of the most common misunderstandings and mistakes that occur almost every year. The section headings contain the most common mistakes students

More information

MATH32051/42051/ Hyperbolic Geometry. Charles Walkden

MATH32051/42051/ Hyperbolic Geometry. Charles Walkden MATH32051/42051/62051 Hyperbolic Geometry Charles Walkden 4 th September, 2017 Contents Contents 0 Preliminaries 3 1 Where we are going 6 2 Length and distance in hyperbolic geometry 13 3 Circles and lines,

More information

10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations

10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations 10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations 10.1 Conjugacy of Möbius transformations Before we start discussing the geometry and classification

More information

8. Hyperbolic triangles

8. Hyperbolic triangles 8. Hyperbolic triangles Note: This year, I m not doing this material, apart from Pythagoras theorem, in the lectures (and, as such, the remainder isn t examinable). I ve left the material as Lecture 8

More information

6 6 DISCRETE GROUPS. 6.1 Discontinuous Group Actions

6 6 DISCRETE GROUPS. 6.1 Discontinuous Group Actions 6 6 DISCRETE GROUPS 6.1 Discontinuous Group Actions Let G be a subgroup of Möb(D). This group acts discontinuously on D if, for every compact subset K of D, the set {T G : T (K) K } is finite. Proposition

More information

A crash course the geometry of hyperbolic surfaces

A crash course the geometry of hyperbolic surfaces Lecture 7 A crash course the geometry of hyperbolic surfaces 7.1 The hyperbolic plane Hyperbolic geometry originally developed in the early 19 th century to prove that the parallel postulate in Euclidean

More information

Hyperbolic Transformations

Hyperbolic Transformations C H A P T E R 17 Hyperbolic Transformations Though the text of your article on Crystal Symmetry and Its Generalizations is much too learned for a simple, selfmade pattern man like me, some of the text-illustrations

More information

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31

MATH 434 Fall 2016 Homework 1, due on Wednesday August 31 Homework 1, due on Wednesday August 31 Problem 1. Let z = 2 i and z = 3 + 4i. Write the product zz and the quotient z z in the form a + ib, with a, b R. Problem 2. Let z C be a complex number, and let

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

Part IB. Geometry. Year

Part IB. Geometry. Year Part IB Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2017 17 Paper 1, Section I 3G Give the definition for the area of a hyperbolic triangle with interior angles

More information

Part IB GEOMETRY (Lent 2016): Example Sheet 1

Part IB GEOMETRY (Lent 2016): Example Sheet 1 Part IB GEOMETRY (Lent 2016): Example Sheet 1 (a.g.kovalev@dpmms.cam.ac.uk) 1. Suppose that H is a hyperplane in Euclidean n-space R n defined by u x = c for some unit vector u and constant c. The reflection

More information

Junior Seminar: Hyperbolic Geometry Lecture Notes

Junior Seminar: Hyperbolic Geometry Lecture Notes Junior Seminar: Hyperbolic Geometry Lecture Notes Tim Campion January 20, 2010 1 Motivation Our first construction is very similar in spirit to an analogous one in Euclidean space. The group of isometries

More information

(7) Suppose α, β, γ are nonzero complex numbers such that α = β = γ.

(7) Suppose α, β, γ are nonzero complex numbers such that α = β = γ. January 22, 2011 COMPLEX ANALYSIS: PROBLEMS SHEET -1 M.THAMBAN NAIR (1) Show that C is a field under the addition and multiplication defined for complex numbers. (2) Show that the map f : R C defined by

More information

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1 1 w z k k States or implies that 4 i TBC Uses the definition of argument to write 4 k π tan 1 k 4 Makes an attempt to solve for k, for example 4 + k = k is seen. M1.a Finds k = 6 (4 marks) Pearson Education

More information

274 Curves on Surfaces, Lecture 4

274 Curves on Surfaces, Lecture 4 274 Curves on Surfaces, Lecture 4 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 4 Hyperbolic geometry Last time there was an exercise asking for braids giving the torsion elements in PSL 2 (Z). A 3-torsion

More information

Hyperbolic Analytic Geometry

Hyperbolic Analytic Geometry Chapter 6 Hyperbolic Analytic Geometry 6.1 Saccheri Quadrilaterals Recall the results on Saccheri quadrilaterals from Chapter 4. Let S be a convex quadrilateral in which two adjacent angles are right angles.

More information

9.7 Extension: Writing and Graphing the Equations

9.7 Extension: Writing and Graphing the Equations www.ck12.org Chapter 9. Circles 9.7 Extension: Writing and Graphing the Equations of Circles Learning Objectives Graph a circle. Find the equation of a circle in the coordinate plane. Find the radius and

More information

GLOBAL, GEOMETRICAL COORDINATES ON FALBEL S CROSS-RATIO VARIETY

GLOBAL, GEOMETRICAL COORDINATES ON FALBEL S CROSS-RATIO VARIETY GLOBAL GEOMETRICAL COORDINATES ON FALBEL S CROSS-RATIO VARIETY JOHN R. PARKER & IOANNIS D. PLATIS Abstract. Falbel has shown that four pairwise distinct points on the boundary of complex hyperbolic -space

More information

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Department of mathematical sciences Aalborg University Cergy-Pontoise 26.5.2011 Möbius transformations Definition Möbius

More information

THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE

THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE YONG JAE KIM Abstract. In order to study the geometries of a hyperbolic plane, it is necessary to understand the set of transformations that map from the space

More information

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016

Part IB Geometry. Theorems. Based on lectures by A. G. Kovalev Notes taken by Dexter Chua. Lent 2016 Part IB Geometry Theorems Based on lectures by A. G. Kovalev Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 IV. Conformal Maps 1. Geometric interpretation of differentiability We saw from the definition of complex differentiability that if f

More information

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d Möbius transformations Möbius transformations are simply the degree one rational maps of C: where and Then σ A : z az + b cz + d : C C ad bc 0 ( ) a b A = c d A σ A : GL(2C) {Mobius transformations } is

More information

EdExcel Further Pure 2

EdExcel Further Pure 2 EdExcel Further Pure 2 Complex Numbers Section : Loci in the Argand diagram Multiple Choice Test Questions 1 are about the following loci: P: z i = 2 Q: z i = z R: arg( z i) = S: z i = 2 z 1) Which of

More information

Edexcel New GCE A Level Maths workbook Circle.

Edexcel New GCE A Level Maths workbook Circle. Edexcel New GCE A Level Maths workbook Circle. Edited by: K V Kumaran kumarmaths.weebly.com 1 Finding the Midpoint of a Line To work out the midpoint of line we need to find the halfway point Midpoint

More information

Write on one side of the paper only and begin each answer on a separate sheet. Write legibly; otherwise, you place yourself at a grave disadvantage.

Write on one side of the paper only and begin each answer on a separate sheet. Write legibly; otherwise, you place yourself at a grave disadvantage. MATHEMATICAL TRIPOS Part IB Wednesday 5 June 2002 1.30 to 4.30 PAPER 1 Before you begin read these instructions carefully. Each question in Section II carries twice the credit of each question in Section

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

Models of Hyperbolic Geometry

Models of Hyperbolic Geometry October 23, 2011 Poincaré s Disk Model C O A B N l M Begin with a circle C in the Euclidean plane, and its interior H, as shown in th figure above. The components of this geometry are as follows: Point:

More information

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions Quiz #1. Tuesday, 17 January, 2012. [10 minutes] 1. Given a line segment AB, use (some of) Postulates I V,

More information

Circles, Mixed Exercise 6

Circles, Mixed Exercise 6 Circles, Mixed Exercise 6 a QR is the diameter of the circle so the centre, C, is the midpoint of QR ( 5) 0 Midpoint = +, + = (, 6) C(, 6) b Radius = of diameter = of QR = of ( x x ) + ( y y ) = of ( 5

More information

Homework Assignments Math /02 Fall 2014

Homework Assignments Math /02 Fall 2014 Homework Assignments Math 119-01/02 Fall 2014 Assignment 1 Due date : Friday, September 5 6th Edition Problem Set Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14,

More information

Core Mathematics 2 Coordinate Geometry

Core Mathematics 2 Coordinate Geometry Core Mathematics 2 Coordinate Geometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Coordinate Geometry 1 Coordinate geometry in the (x, y) plane Coordinate geometry of the circle

More information

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo CHAPTER 9 Conformal Mapping and Bilinear Transformation BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4:

More information

Isometries of Hyperbolic Space

Isometries of Hyperbolic Space Isometries of Hyperbolic Space Steven Olsen, Emily Gaudet, Jude Foret, and Willie Austin June 14, 2013 Isometries of Hyperbolic Space June 14, 2013 1 / 37 Isometries and Geodesics Our goal involves finding

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 1 Check the calculations above that the Gaussian curvature of the upper half-plane and Poincaré disk models of the hyperbolic plane is 1. Proof. The calculations

More information

Y. D. Chai and Young Soo Lee

Y. D. Chai and Young Soo Lee Honam Mathematical J. 34 (01), No. 1, pp. 103 111 http://dx.doi.org/10.5831/hmj.01.34.1.103 LOWER BOUND OF LENGTH OF TRIANGLE INSCRIBED IN A CIRCLE ON NON-EUCLIDEAN SPACES Y. D. Chai and Young Soo Lee

More information

Homework Assignments Math /02 Fall 2017

Homework Assignments Math /02 Fall 2017 Homework Assignments Math 119-01/02 Fall 2017 Assignment 1 Due date : Wednesday, August 30 Section 6.1, Page 178: #1, 2, 3, 4, 5, 6. Section 6.2, Page 185: #1, 2, 3, 5, 6, 8, 10-14, 16, 17, 18, 20, 22,

More information

Analytic Geometry MAT 1035

Analytic Geometry MAT 1035 Analytic Geometry MAT 035 5.09.04 WEEKLY PROGRAM - The first week of the semester, we will introduce the course and given a brief outline. We continue with vectors in R n and some operations including

More information

A FUCHSIAN GROUP PROOF OF THE HYPERELLIPTICITY OF RIEMANN SURFACES OF GENUS 2

A FUCHSIAN GROUP PROOF OF THE HYPERELLIPTICITY OF RIEMANN SURFACES OF GENUS 2 Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 69 74 A FUCHSIAN GROUP PROOF OF THE HYPERELLIPTICITY OF RIEMANN SURFACES OF GENUS 2 Yolanda Fuertes and Gabino González-Diez Universidad

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Lecture Figure 4.5. Relating curvature to the circumference of a circle.

Lecture Figure 4.5. Relating curvature to the circumference of a circle. Lecture 26 181 Figure 4.5. Relating curvature to the circumference of a circle. the plane with radius r (Figure 4.5). We will see that circumference = 2πr cr 3 + o(r 3 ) where c is a constant related to

More information

Activity Sheet 1: Constructions

Activity Sheet 1: Constructions Name ctivity Sheet 1: Constructions Date 1. Constructing a line segment congruent to a given line segment: Given a line segment B, B a. Use a straightedge to draw a line, choose a point on the line, and

More information

Three hours THE UNIVERSITY OF MANCHESTER. 31st May :00 17:00

Three hours THE UNIVERSITY OF MANCHESTER. 31st May :00 17:00 Three hours MATH41112 THE UNIVERSITY OF MANCHESTER ERGODIC THEORY 31st May 2016 14:00 17:00 Answer FOUR of the FIVE questions. If more than four questions are attempted, then credit will be given for the

More information

1 k. cos tan? Higher Maths Non Calculator Practice Practice Paper A. 1. A sequence is defined by the recurrence relation u 2u 1, u 3.

1 k. cos tan? Higher Maths Non Calculator Practice Practice Paper A. 1. A sequence is defined by the recurrence relation u 2u 1, u 3. Higher Maths Non Calculator Practice Practice Paper A. A sequence is defined b the recurrence relation u u, u. n n What is the value of u?. The line with equation k 9 is parallel to the line with gradient

More information

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables Lecture Complex Numbers MATH-GA 245.00 Complex Variables The field of complex numbers. Arithmetic operations The field C of complex numbers is obtained by adjoining the imaginary unit i to the field R

More information

10. Show that the conclusion of the. 11. Prove the above Theorem. [Th 6.4.7, p 148] 4. Prove the above Theorem. [Th 6.5.3, p152]

10. Show that the conclusion of the. 11. Prove the above Theorem. [Th 6.4.7, p 148] 4. Prove the above Theorem. [Th 6.5.3, p152] foot of the altitude of ABM from M and let A M 1 B. Prove that then MA > MB if and only if M 1 A > M 1 B. 8. If M is the midpoint of BC then AM is called a median of ABC. Consider ABC such that AB < AC.

More information

Notes for MATH 434 Geometry and Transformations. Francis Bonahon Fall 2015

Notes for MATH 434 Geometry and Transformations. Francis Bonahon Fall 2015 Notes for MATH 434 Geometry and Transformations Francis Bonahon Fall 2015 Version: October 21, 2016 Department of Mathematics University of Southern California Los Angeles, CA 90089-2532, U.S.A. E-mail

More information

Question 1: Is zero a rational number? Can you write it in the form p, where p and q are integers and q 0?

Question 1: Is zero a rational number? Can you write it in the form p, where p and q are integers and q 0? Class IX - NCERT Maths Exercise (.) Question : Is zero a rational number? Can you write it in the form p, where p and q are integers and q 0? q Solution : Consider the definition of a rational number.

More information

Year 11 Mathematics: Specialist Course Outline

Year 11 Mathematics: Specialist Course Outline MATHEMATICS LEARNING AREA Year 11 Mathematics: Specialist Course Outline Text: Mathematics Specialist Units 1 and 2 A.J. Unit/time Topic/syllabus entry Resources Assessment 1 Preliminary work. 2 Representing

More information

13 Spherical geometry

13 Spherical geometry 13 Spherical geometry Let ABC be a triangle in the Euclidean plane. From now on, we indicate the interior angles A = CAB, B = ABC, C = BCA at the vertices merely by A, B, C. The sides of length a = BC

More information

Test #1 Geometry MAT 4263

Test #1 Geometry MAT 4263 Test #1 Geometry MAT 4263 I. Consider some of the differences and similarities among the three geometries we looked at with respect to each of the following: 1) geodesics (line segments) 2) triangles (appearance,

More information

CHAPTER 2. CONFORMAL MAPPINGS 58

CHAPTER 2. CONFORMAL MAPPINGS 58 CHAPTER 2. CONFORMAL MAPPINGS 58 We prove that a strong form of converse of the above statement also holds. Please note we could apply the Theorem 1.11.3 to prove the theorem. But we prefer to apply the

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Class IX Chapter 1 Number Sustems Maths

Class IX Chapter 1 Number Sustems Maths Class IX Chapter 1 Number Sustems Maths Exercise 1.1 Question Is zero a rational number? Can you write it in the form 0? and q, where p and q are integers Yes. Zero is a rational number as it can be represented

More information

Plane hyperbolic geometry

Plane hyperbolic geometry 2 Plane hyperbolic geometry In this chapter we will see that the unit disc D has a natural geometry, known as plane hyperbolic geometry or plane Lobachevski geometry. It is the local model for the hyperbolic

More information

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane MATH 100 WORKSHEET 1.1 & 1. Vectors in the Plane Find the vector v where u =, 1 and w = 1, given the equation v = u w. Solution. v = u w =, 1 1, =, 1 +, 4 =, 1 4 = 0, 5 Find the magnitude of v = 4, 3 Solution.

More information

Continued fractions and geodesics on the modular surface

Continued fractions and geodesics on the modular surface Continued fractions and geodesics on the modular surface Chris Johnson Clemson University September 8, 203 Outline The modular surface Continued fractions Symbolic coding References Some hyperbolic geometry

More information

Poincaré Models of Hyperbolic Geometry

Poincaré Models of Hyperbolic Geometry Chapter 9 Poincaré Models of Hyperbolic Geometry 9.1 The Poincaré Upper Half Plane Model The next model of the hyperbolic plane that we will consider is also due to Henri Poincaré. We will be using the

More information

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2.

(x 1, y 1 ) = (x 2, y 2 ) if and only if x 1 = x 2 and y 1 = y 2. 1. Complex numbers A complex number z is defined as an ordered pair z = (x, y), where x and y are a pair of real numbers. In usual notation, we write z = x + iy, where i is a symbol. The operations of

More information

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables Lecture 14 Conformal Mapping MATH-GA 2451.001 Complex Variables 1 Conformality 1.1 Preservation of angle The open mapping theorem tells us that an analytic function such that f (z 0 ) 0 maps a small neighborhood

More information

+ 2gx + 2fy + c = 0 if S

+ 2gx + 2fy + c = 0 if S CIRCLE DEFINITIONS A circle is the locus of a point which moves in such a way that its distance from a fixed point, called the centre, is always a constant. The distance r from the centre is called the

More information

1 Complex numbers and the complex plane

1 Complex numbers and the complex plane L1: Complex numbers and complex-valued functions. Contents: The field of complex numbers. Real and imaginary part. Conjugation and modulus or absolute valued. Inequalities: The triangular and the Cauchy.

More information

Spectral Theory of Orthogonal Polynomials

Spectral Theory of Orthogonal Polynomials Spectral Theory of Orthogonal Polynomials Barry Simon IBM Professor of Mathematics and Theoretical Physics California Institute of Technology Pasadena, CA, U.S.A. Lecture 9: s and Finite Gaps, I Spectral

More information

THE FUNDAMENTAL REGION FOR A FUCHSIAN GROUP*

THE FUNDAMENTAL REGION FOR A FUCHSIAN GROUP* 1925.] REGIONS FOR FUCHSIAN GROUPS 531 THE FUNDAMENTAL REGION FOR A FUCHSIAN GROUP* BY L. R. FORD 1. Introduction. The present paper is an attempt to lay the groundwork of the theory of Fuchsian groups

More information

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i.

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i. 1. Section 5.8 (i) ( 3 + i)(14 i) ( 3)(14 i) + i(14 i) {( 3)14 ( 3)(i)} + i(14) i(i) ( 4 + 6i) + (14i + ) 40 + 0i. (ii) + 3i 1 4i ( + 3i)(1 + 4i) (1 4i)(1 + 4i) (( + 3i) + ( + 3i)(4i) 1 + 4 10 + 11i 10

More information

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Tuesday 10 January 2017 Morning Time: 2 hours

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

Plane geometry Circles: Problems with some Solutions

Plane geometry Circles: Problems with some Solutions The University of Western ustralia SHL F MTHMTIS & STTISTIS UW MY FR YUNG MTHMTIINS Plane geometry ircles: Problems with some Solutions 1. Prove that for any triangle, the perpendicular bisectors of the

More information

Unit 8. ANALYTIC GEOMETRY.

Unit 8. ANALYTIC GEOMETRY. Unit 8. ANALYTIC GEOMETRY. 1. VECTORS IN THE PLANE A vector is a line segment running from point A (tail) to point B (head). 1.1 DIRECTION OF A VECTOR The direction of a vector is the direction of the

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-3: Straight Line and Circle in

More information

Math & 8.7 Circle Properties 8.6 #1 AND #2 TANGENTS AND CHORDS

Math & 8.7 Circle Properties 8.6 #1 AND #2 TANGENTS AND CHORDS Math 9 8.6 & 8.7 Circle Properties 8.6 #1 AND #2 TANGENTS AND CHORDS Property #1 Tangent Line A line that touches a circle only once is called a line. Tangent lines always meet the radius of a circle at

More information

Mathematics Higher Level

Mathematics Higher Level L.7/0 Pre-Leaving Certificate Examination, 06 Mathematics Higher Level Marking Scheme Paper Pg. Paper Pg. 36 Page of 68 exams Pre-Leaving Certificate Examination, 06 Mathematics Higher Level Paper Marking

More information

Möbius Transformation

Möbius Transformation Möbius Transformation 1 1 June 15th, 2010 Mathematics Science Center Tsinghua University Philosophy Rigidity Conformal mappings have rigidity. The diffeomorphism group is of infinite dimension in general.

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Lecture 6 SPHERICAL GEOMETRY

Lecture 6 SPHERICAL GEOMETRY 1 Lecture 6 SPHERICAL GEOMETRY So far we have studied finite and discrete geometries, i.e., geometries in which the main transformation group is either finite or discrete. In this lecture, we begin our

More information

Introduction to Complex Analysis by Hilary Priestley Unofficial Solutions Manual

Introduction to Complex Analysis by Hilary Priestley Unofficial Solutions Manual Introduction to Complex Analysis by Hilary Priestley Unofficial Solutions Manual MOHAMMAD EHTISHAM AKHTAR IMPERIAL COLLEGE LONDON http://akhtarmath.wordpress.com Dedicated to my Parents ii Preface This

More information

Lesson 9.1 Skills Practice

Lesson 9.1 Skills Practice Lesson 9.1 Skills Practice Name Date Earth Measure Introduction to Geometry and Geometric Constructions Vocabulary Write the term that best completes the statement. 1. means to have the same size, shape,

More information

MEI Conference Squaring the Circle and Other Shapes

MEI Conference Squaring the Circle and Other Shapes MEI Conference 2017 Squaring the Circle and Other Shapes Kevin Lord kevin.lord@mei.org.uk Can you prove that the area of the square and the rectangle are equal? Use the triangle HPN to show that area of

More information

Yes zero is a rational number as it can be represented in the

Yes zero is a rational number as it can be represented in the 1 REAL NUMBERS EXERCISE 1.1 Q: 1 Is zero a rational number? Can you write it in the form 0?, where p and q are integers and q Yes zero is a rational number as it can be represented in the form, where p

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 24, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 24, 2011 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

Geometry, Physics, and Harmonic Functions

Geometry, Physics, and Harmonic Functions Geometry, Physics, and Harmonic Functions Robert Huffaker June 3, 2010 1 Introduction Mathematics is a language of rigor and clarity. A plethora of symbols and words litter every student s math textbooks,

More information

Arc Length and Riemannian Metric Geometry

Arc Length and Riemannian Metric Geometry Arc Length and Riemannian Metric Geometry References: 1 W F Reynolds, Hyperbolic geometry on a hyperboloid, Amer Math Monthly 100 (1993) 442 455 2 Wikipedia page Metric tensor The most pertinent parts

More information

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations

Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Chapter 10: Conic Sections; Polar Coordinates; Parametric Equations Section 10.1 Geometry of Parabola, Ellipse, Hyperbola a. Geometric Definition b. Parabola c. Ellipse d. Hyperbola e. Translations f.

More information

Alhazen s Hyperbolic Billiard Problem

Alhazen s Hyperbolic Billiard Problem Alhazen s Hyperbolic Billiard Problem Nathan Poirier and Michael McDaniel Aquinas College May 2011 Alhazen s billiard problem, rst posed in 150 BC, starts with a given circle and two points A and B inside.

More information

Jakarta International School 8 th Grade AG1

Jakarta International School 8 th Grade AG1 Jakarta International School 8 th Grade AG1 Practice Test - Black Points, Lines, and Planes Name: Date: Score: 40 Goal 5: Solve problems using visualization and geometric modeling Section 1: Points, Lines,

More information

Circle geometry investigation: Student worksheet

Circle geometry investigation: Student worksheet Circle geometry investigation: Student worksheet http://topdrawer.aamt.edu.au/geometric-reasoning/good-teaching/exploringcircles/explore-predict-confirm/circle-geometry-investigations About these activities

More information

612 CLASS LECTURE: HYPERBOLIC GEOMETRY

612 CLASS LECTURE: HYPERBOLIC GEOMETRY 612 CLASS LECTURE: HYPERBOLIC GEOMETRY JOSHUA P. BOWMAN 1. Conformal metrics As a vector space, C has a canonical norm, the same as the standard R 2 norm. Denote this dz one should think of dz as the identity

More information

DESK Secondary Math II

DESK Secondary Math II Mathematical Practices The Standards for Mathematical Practice in Secondary Mathematics I describe mathematical habits of mind that teachers should seek to develop in their students. Students become mathematically

More information

Middle School Mathematics Trimester 1 Subject Overview

Middle School Mathematics Trimester 1 Subject Overview 1 Class 7 Topics Number Algebraic Expressions Solving Equations Angles Content Recognise multiples, factors, common factors, primes (all less than 100), making use of simple tests of divisibility; find

More information

III.3. Analytic Functions as Mapping, Möbius Transformations

III.3. Analytic Functions as Mapping, Möbius Transformations III.3. Analytic Functions as Mapping, Möbius Transformations 1 III.3. Analytic Functions as Mapping, Möbius Transformations Note. To graph y = f(x) where x,y R, we can simply plot points (x,y) in R 2 (that

More information

ISOMETRIES OF THE HYPERBOLIC PLANE

ISOMETRIES OF THE HYPERBOLIC PLANE ISOMETRIES OF THE HYPERBOLIC PLANE ALBERT CHANG Abstract. In this paper, I will explore basic properties of the group P SL(, R). These include the relationship between isometries of H, Möbius transformations,

More information

COMPLEX NUMBERS

COMPLEX NUMBERS COMPLEX NUMBERS 1. Any number of the form x+iy where x, y R and i -1 is called a Complex Number.. In the complex number x+iy, x is called the real part and y is called the imaginary part of the complex

More information

STEP Support Programme. STEP 2 Complex Numbers: Solutions

STEP Support Programme. STEP 2 Complex Numbers: Solutions STEP Support Programme STEP Complex Numbers: Solutions i Rewriting the given relationship gives arg = arg arg = α. We can then draw a picture as below: The loci is therefore a section of the circle between

More information

HYPERBOLIC GEOMETRY AND PARALLEL TRANSPORT IN R 2 +

HYPERBOLIC GEOMETRY AND PARALLEL TRANSPORT IN R 2 + HYPERBOLIC GEOMETRY ND PRLLEL TRNSPORT IN R + VINCENT GLORIOSO, BRITTNY LNDRY, ND PHILLIP WHITE bstract. We will examine the parallel transport of tangent vectors along a hyperbolic triangle containing

More information

Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Senior Secondary Australian Curriculum Specialist Mathematics Glossary Unit 1 Combinatorics Arranging n objects in an ordered list The number of ways to arrange n different objects in an ordered list is

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

MathCity.org Merging man and maths

MathCity.org Merging man and maths Mathity.org Merging man and maths Exercise 7.3 (s)page 349 alculus and nalytic Geometry, MTHEMTIS 1 @ http://www.mathcity.org, Version vailable online: 3.0 Question # 1 Find the cosine of the angle θ between

More information