10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations

Size: px
Start display at page:

Download "10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations"

Transcription

1 10. Classifying Möbius transformations: conjugacy, trace, and applications to parabolic transformations 10.1 Conjugacy of Möbius transformations Before we start discussing the geometry and classification of Möbius transformations, we introduce a notion of sameness for Möbius transformations. Definition. Let γ 1 and γ 2 be two Möbius transformations. We say that γ 1 and γ 2 are conjugate if there exists another Möbius transformation g such that γ 1 = g 1 γ 2 g. Remarks. (i) Geometrically, if γ 1 and γ 2 are conjugate then the action of γ 1 on H H is the same as the action of γ 2 on g(h H). Thus conjugacy reflects a change in coordinates of H H. (ii) If γ 2 has matrix A 2 SL(2, R) and g has matrix A SL(2, R) then γ 1 has matrix ±A 1 A 2 A. 1

2 Exercise 10.1 (i) Prove that conjugacy between Möbius transformations is an equivalence relation. (ii) Show that if γ 1 and γ 2 are conjugate then they have the same number of fixed points. Hence show that if γ 1 is hyperbolic, parabolic or elliptic then γ 2 is hyperbolic, parabolic or elliptic, respectively The trace of a Möbius transformation Recall that if A is a matrix then the trace of A is defined to be the sum of the diagonal entries of A. That is, if A = (a, b; c, d) then Trace(A) = a + d. Let γ(z) = (az + b)/(cz + d) be a Möbius transformation. By dividing the coefficients a, b, c, d by ad bc, we can always write γ in normalised form. Assume that γ is written in normalised form. Then we can associate to γ a matrix A = (a, b; c, d); as ad bc = 1 we see that A SL(2, R). However, as we saw in Lecture 9, this matrix is not unique; instead we could have associated the matrix A = ( a, b; c, d) to γ. Thus we can define a function τ(γ) = (Trace(A)) 2 = (Trace( A)) 2. Definition. Let γ Möb(H) be a Möbius transformation with γ(z) = (az+b)/(cz+d) where ad bc = 1. We call τ(γ) = (a+d) 2 the trace of γ. The following result says that conjugate Möbius transformations have the same trace. 2

3 Proposition 10.1 Let γ 1 and γ 2 be conjugate Möbius transformations. τ(γ 1 ) = τ(γ 2 ). Then Exercise 10.2 Prove the above proposition. (Hint: show that if A 1, A 2, A SL(2, R) are matrices such that A 1 = A 1 A 2 A then Trace(A 1 ) = Trace(A 1 A 2 A) = Trace(A 2 ). You might first want to show that Trace(AB) = Trace(BA) for any two matrices A, B.) We can now classify the three types of Möbius transformation hyperbolic, parabolic and elliptic in terms of the trace function. Let γ be a Möbius transformation. Suppose for simplicity that is not a fixed point (it follows that c 0). Recall from Lecture 9 that z 0 is a fixed point of γ if and only if z 0 = a d ± (a d) 2 + 4bc. 2c Thus there are two real solutions, one real solution or one complex conjugate pair of solutions depending on whether the term inside the square-root is greater than zero, equal to zero or less than zero, respectively. Using the identities it is easy to see that ad bc = 1, (a + d) 2 = τ(γ) (a d) 2 + 4bc = τ(γ) 4. When c = 0, we must have that is a fixed point. The other fixed point is given by b/(d a). Hence is the only fixed 3

4 point if a = d (in which case we must have that a = 1, d = 1 or a = 1, d = 1 as ad bc = ad = 1); hence τ(γ) = (1 + 1) 2 = 4. If a d then there are two fixed points on H and one can easily see that τ(γ) > 4. Thus we have proved: Proposition 10.2 Let γ be a Möbius transformation and suppose that γ is not the identity. Then: (i) γ is parabolic if and only if τ(γ) = 4; (ii) γ is elliptic if and only if τ(γ) [0, 4); (iii) γ is hyperbolic if and only if τ(γ) (4, ) Parabolic transformations Recall that a Möbius transformation γ is said to be parabolic if it has a unique fixed point and that fixed point lies on H. For example, the Möbius transformation γ(z) = z + 1 is parabolic. Here, the unique fixed point is. In general, a Möbius transformation of the form z z + b is called a translation. Exercise 10.3 Let γ(z) = z + b. If b > 0 then show that γ is conjugate 4

5 to γ(z) = z + 1. If b < 0 then show that γ is conjugate to γ(z) = z 1. Are z z 1, z z + 1 conjugate? Proposition 10.3 Let γ be a Möbius transformation and suppose that γ is not the identity. Then the following are equivalent (i) γ is parabolic; (ii) τ(γ) = 4; (iii) γ is conjugate to a translation; (iv) γ is conjugate either to the translation z z + 1 or to the translation z z 1. Proof. By Proposition 10.2 we know that (i) and (ii) are equivalent. Clearly (iv) implies (iii) and the exercise above implies that (iii) implies (iv). Suppose that (iv) holds. Recall that z z + 1 has a unique fixed point at. Hence if γ is conjugate to z z + 1 then γ has a unique fixed point in H, and is therefore parabolic. The same argument holds for z z 1. Finally, we show that (i) implies (iii). Suppose that γ is parabolic and has a unique fixed point at ζ H. Let g be a Möbius transformation that maps ζ to. Then gγg 1 is a Möbius transformation with a unique fixed point at. We claim that gγg 1 is a translation. Write gγg 1 (z) = az + b cz + d. 5

6 As is a fixed point of gγg 1, we must have that c = 0 (see Lecture 11). Hence gγg 1 (z) = a d z + b d, and it follows that gγg 1 has a fixed point at b/(d a). As gγg 1 has only one fixed point and the fixed point is at we must have that d = a. Thus gγg 1 (z) = z + b for some b R. Hence γ is conjugate to a translation. 6

How to fail Hyperbolic Geometry

How to fail Hyperbolic Geometry Hyperbolic Geometry 1 Introduction These notes describe some of the most common misunderstandings and mistakes that occur almost every year. The section headings contain the most common mistakes students

More information

2 hours THE UNIVERSITY OF MANCHESTER.?? January 2017??:????:??

2 hours THE UNIVERSITY OF MANCHESTER.?? January 2017??:????:?? hours MATH3051 THE UNIVERSITY OF MANCHESTER HYPERBOLIC GEOMETRY?? January 017??:????:?? Answer ALL FOUR questions in Section A (40 marks in all) and TWO of the THREE questions in Section B (30 marks each).

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

Chapter 10: Rational Functions and the Riemann Sphere. By a rational function we mean a function f which can be expressed in the form

Chapter 10: Rational Functions and the Riemann Sphere. By a rational function we mean a function f which can be expressed in the form Chapter 10: Rational Functions and the Riemann Sphere By a rational function we mean a function f which can be expressed in the form f(z) = p(z) q(z) = a nz n +a n 1 z n 1 + +a 1 z +a 0 b m z m +b m 1

More information

Declaration. Heidelberg, June 13, 2016

Declaration. Heidelberg, June 13, 2016 Jørgensen Lemma Fabian Cejka Eingereicht bei Prof. Dr. Anna Wienhard an der Universität Heidelberg Betreuer: Prof. Dr. Anna Wienhard, Dr. Gye-Seon Lee B A C H E L O R A R B E I T im Juni 2016 Declaration

More information

Hyperbolic Transformations

Hyperbolic Transformations C H A P T E R 17 Hyperbolic Transformations Though the text of your article on Crystal Symmetry and Its Generalizations is much too learned for a simple, selfmade pattern man like me, some of the text-illustrations

More information

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1.

6 Orthogonal groups. O 2m 1 q. q 2i 1 q 2i. 1 i 1. 1 q 2i 2. O 2m q. q m m 1. 1 q 2i 1 i 1. 1 q 2i. i 1. 2 q 1 q i 1 q i 1. m 1. 6 Orthogonal groups We now turn to the orthogonal groups. These are more difficult, for two related reasons. First, it is not always true that the group of isometries with determinant 1 is equal to its

More information

III.3. Analytic Functions as Mapping, Möbius Transformations

III.3. Analytic Functions as Mapping, Möbius Transformations III.3. Analytic Functions as Mapping, Möbius Transformations 1 III.3. Analytic Functions as Mapping, Möbius Transformations Note. To graph y = f(x) where x,y R, we can simply plot points (x,y) in R 2 (that

More information

274 Curves on Surfaces, Lecture 4

274 Curves on Surfaces, Lecture 4 274 Curves on Surfaces, Lecture 4 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 4 Hyperbolic geometry Last time there was an exercise asking for braids giving the torsion elements in PSL 2 (Z). A 3-torsion

More information

Hyperbolic geometry of Riemann surfaces

Hyperbolic geometry of Riemann surfaces 3 Hyperbolic geometry of Riemann surfaces By Theorem 1.8.8, all hyperbolic Riemann surfaces inherit the geometry of the hyperbolic plane. How this geometry interacts with the topology of a Riemann surface

More information

SOME REMARKS ON NON-DISCRETE MÖBIUS GROUPS

SOME REMARKS ON NON-DISCRETE MÖBIUS GROUPS Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 21, 1996, 69 79 SOME REMARKS ON NON-DISCRETE MÖBIUS GROUPS A. F. Beardon University of Cambridge, Department of Pure Mathematics and Mathematical

More information

Chapter 4. Matrices and Matrix Rings

Chapter 4. Matrices and Matrix Rings Chapter 4 Matrices and Matrix Rings We first consider matrices in full generality, i.e., over an arbitrary ring R. However, after the first few pages, it will be assumed that R is commutative. The topics,

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 36 Complex Analysis Module: 7:

More information

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d

Möbius transformations Möbius transformations are simply the degree one rational maps of C: cz + d : C C. ad bc 0. a b. A = c d Möbius transformations Möbius transformations are simply the degree one rational maps of C: where and Then σ A : z az + b cz + d : C C ad bc 0 ( ) a b A = c d A σ A : GL(2C) {Mobius transformations } is

More information

ISOMETRIES OF THE HYPERBOLIC PLANE

ISOMETRIES OF THE HYPERBOLIC PLANE ISOMETRIES OF THE HYPERBOLIC PLANE ALBERT CHANG Abstract. In this paper, I will explore basic properties of the group P SL(, R). These include the relationship between isometries of H, Möbius transformations,

More information

A crash course the geometry of hyperbolic surfaces

A crash course the geometry of hyperbolic surfaces Lecture 7 A crash course the geometry of hyperbolic surfaces 7.1 The hyperbolic plane Hyperbolic geometry originally developed in the early 19 th century to prove that the parallel postulate in Euclidean

More information

0 A. ... A j GL nj (F q ), 1 j r

0 A. ... A j GL nj (F q ), 1 j r CHAPTER 4 Representations of finite groups of Lie type Let F q be a finite field of order q and characteristic p. Let G be a finite group of Lie type, that is, G is the F q -rational points of a connected

More information

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION Chapter-1 GROUPS 1.1. INTRODUCTION The theory of groups arose from the theory of equations, during the nineteenth century. Originally, groups consisted only of transformations. The group of transformations

More information

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 13 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 13 1 / 8 The coordinate vector space R n We already used vectors in n dimensions

More information

3 HW Unitary group. 3.2 Symplectic Group. ] GL (n, C) to be unitary:

3 HW Unitary group. 3.2 Symplectic Group. ] GL (n, C) to be unitary: 3 HW3 3.1 Unitary group GL (n, C) is a group. U (n) inherits associativity from GL (n, C); evidently 1l 1l = 1l so 1l U (n). We need to check closure & invertibility: SG0) Let U, V U (n). Now (UV) (UV)

More information

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4]. Lecture Notes: Rank of a Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Linear Independence Definition 1. Let r 1, r 2,..., r m

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES CHRISTOPHER HEIL 1. Compact Sets Definition 1.1 (Compact and Totally Bounded Sets). Let X be a metric space, and let E X be

More information

Möbius transformations and its applications

Möbius transformations and its applications Möbius transformation and its applications Every Möbius transformation is the composition of translations, dilations and the inversion. Proof. Let w = S(z) = az + b, ad bc 0 be a Möbius cz + d transformation.

More information

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE

MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE MATH 311: COMPLEX ANALYSIS CONFORMAL MAPPINGS LECTURE 1. Introduction Let D denote the unit disk and let D denote its boundary circle. Consider a piecewise continuous function on the boundary circle, {

More information

MATH32051/42051/ Hyperbolic Geometry. Charles Walkden

MATH32051/42051/ Hyperbolic Geometry. Charles Walkden MATH32051/42051/62051 Hyperbolic Geometry Charles Walkden 4 th September, 2017 Contents Contents 0 Preliminaries 3 1 Where we are going 6 2 Length and distance in hyperbolic geometry 13 3 Circles and lines,

More information

Möbius Transformation

Möbius Transformation Möbius Transformation 1 1 June 15th, 2010 Mathematics Science Center Tsinghua University Philosophy Rigidity Conformal mappings have rigidity. The diffeomorphism group is of infinite dimension in general.

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part IA Tuesday 7 June 2005 1.30 to 4.30 PAPER 3 Before you begin read these instructions carefully. The examination paper is divided into two sections. Each question in Section II

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 1 Check the calculations above that the Gaussian curvature of the upper half-plane and Poincaré disk models of the hyperbolic plane is 1. Proof. The calculations

More information

Riemann sphere and rational maps

Riemann sphere and rational maps Chapter 3 Riemann sphere and rational maps 3.1 Riemann sphere It is sometimes convenient, and fruitful, to work with holomorphic (or in general continuous) functions on a compact space. However, we wish

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations

IV. Conformal Maps. 1. Geometric interpretation of differentiability. 2. Automorphisms of the Riemann sphere: Möbius transformations MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 IV. Conformal Maps 1. Geometric interpretation of differentiability We saw from the definition of complex differentiability that if f

More information

EXERCISE SHEET 2 WITH SOLUTIONS

EXERCISE SHEET 2 WITH SOLUTIONS EXERCISE SHEET 2 WITH SOLUTIONS Some solutions are sketches only. If you want more details, ask me! (E35) Show that, for any prime power q, PG 2 (q) is an abstract projective plane. Answer. If < u > and

More information

612 CLASS LECTURE: HYPERBOLIC GEOMETRY

612 CLASS LECTURE: HYPERBOLIC GEOMETRY 612 CLASS LECTURE: HYPERBOLIC GEOMETRY JOSHUA P. BOWMAN 1. Conformal metrics As a vector space, C has a canonical norm, the same as the standard R 2 norm. Denote this dz one should think of dz as the identity

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

m We can similarly replace any pair of complex conjugate eigenvalues with 2 2 real blocks. = R

m We can similarly replace any pair of complex conjugate eigenvalues with 2 2 real blocks. = R 1 RODICA D. COSTIN Suppose that some eigenvalues are not real. Then the matrices S and are not real either, and the diagonalization of M must be done in C n. Suppose that we want to work in R n only. Recall

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

Simplicity of P SL n (F ) for n > 2

Simplicity of P SL n (F ) for n > 2 Simplicity of P SL n (F ) for n > 2 Kavi Duvvoori October 2015 A Outline To show the simplicity of P SL n (F ) (for n > 3), we will consider a class of linear maps called transvections, or shear mappings

More information

18.S34 linear algebra problems (2007)

18.S34 linear algebra problems (2007) 18.S34 linear algebra problems (2007) Useful ideas for evaluating determinants 1. Row reduction, expanding by minors, or combinations thereof; sometimes these are useful in combination with an induction

More information

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop Eric Sommers 17 July 2009 2 Contents 1 Background 5 1.1 Linear algebra......................................... 5 1.1.1

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

Lecture Figure 4.5. Relating curvature to the circumference of a circle.

Lecture Figure 4.5. Relating curvature to the circumference of a circle. Lecture 26 181 Figure 4.5. Relating curvature to the circumference of a circle. the plane with radius r (Figure 4.5). We will see that circumference = 2πr cr 3 + o(r 3 ) where c is a constant related to

More information

INTRODUCTION TO LIE ALGEBRAS. LECTURE 2.

INTRODUCTION TO LIE ALGEBRAS. LECTURE 2. INTRODUCTION TO LIE ALGEBRAS. LECTURE 2. 2. More examples. Ideals. Direct products. 2.1. More examples. 2.1.1. Let k = R, L = R 3. Define [x, y] = x y the cross-product. Recall that the latter is defined

More information

2.3 Lecture 5: polynomials and rational functions

2.3 Lecture 5: polynomials and rational functions 98 CHAPTER 2 CHAPTER II Equivalently, the limit of the modulus of this complex number is zero And since the modulus of a quotient of complex numbers is the quotient of the moduli of those numbers, we can

More information

Schwarz lemma and automorphisms of the disk

Schwarz lemma and automorphisms of the disk Chapter 2 Schwarz lemma and automorphisms of the disk 2.1 Schwarz lemma We denote the disk of radius 1 about 0 by the notation D, that is, D = {z C : z < 1}. Given θ R the rotation of angle θ about 0,

More information

4 Group representations

4 Group representations Physics 9b Lecture 6 Caltech, /4/9 4 Group representations 4. Examples Example : D represented as real matrices. ( ( D(e =, D(c = ( ( D(b =, D(b =, D(c = Example : Circle group as rotation of D real vector

More information

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1 IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1 Let Σ be the set of all symmetries of the plane Π. 1. Give examples of s, t Σ such that st ts. 2. If s, t Σ agree on three non-collinear points, then

More information

1.3 Group Actions. Exercise Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag.

1.3 Group Actions. Exercise Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag. Exercise 1.2.6. Prove that a CAT(1) piecewise spherical simplicial complex is metrically flag. 1.3 Group Actions Definition 1.3.1. Let X be a metric space, and let λ : X X be an isometry. The displacement

More information

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016

Lecture 8. Principal Component Analysis. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 13, 2016 Lecture 8 Principal Component Analysis Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza December 13, 2016 Luigi Freda ( La Sapienza University) Lecture 8 December 13, 2016 1 / 31 Outline 1 Eigen

More information

Chapter 8. Rigid transformations

Chapter 8. Rigid transformations Chapter 8. Rigid transformations We are about to start drawing figures in 3D. There are no built-in routines for this purpose in PostScript, and we shall have to start more or less from scratch in extending

More information

Commensurability between once-punctured torus groups and once-punctured Klein bottle groups

Commensurability between once-punctured torus groups and once-punctured Klein bottle groups Hiroshima Math. J. 00 (0000), 1 34 Commensurability between once-punctured torus groups and once-punctured Klein bottle groups Mikio Furokawa (Received Xxx 00, 0000) Abstract. The once-punctured torus

More information

Classification of Isometries

Classification of Isometries Chapter 3 Classification of Isometries From our work in Chapter 1 we know that reflections, translations, glide reflections and rotations are isometries. Furthermore, the Fundamental Theorem tells us that

More information

Classification of Quadratic Surfaces

Classification of Quadratic Surfaces Classification of Quadratic Surfaces Pauline Rüegg-Reymond June 4, 202 Part I Classification of Quadratic Surfaces Context We are studying the surface formed by unshearable inextensible helices at equilibrium

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

E2 212: Matrix Theory (Fall 2010) Solutions to Test - 1

E2 212: Matrix Theory (Fall 2010) Solutions to Test - 1 E2 212: Matrix Theory (Fall 2010) s to Test - 1 1. Let X = [x 1, x 2,..., x n ] R m n be a tall matrix. Let S R(X), and let P be an orthogonal projector onto S. (a) If X is full rank, show that P can be

More information

Notes on complex hyperbolic triangle groups of

Notes on complex hyperbolic triangle groups of Notes on complex hyperbolic triangle groups of type (m, n, ) Lijie Sun Graduate School of Information Sciences, Tohoku University Osaka University. Feb. 15, 2015 Lijie Sun Complex Triangle Groups 1 / 25

More information

Spring 2018 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 3

Spring 2018 CIS 610. Advanced Geometric Methods in Computer Science Jean Gallier Homework 3 Spring 2018 CIS 610 Advanced Geometric Methods in Computer Science Jean Gallier Homework 3 March 20; Due April 5, 2018 Problem B1 (80). This problem is from Knapp, Lie Groups Beyond an Introduction, Introduction,

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs A counterexample to a continued fraction conjecture Journal Item How to cite: Short, Ian (2006).

More information

Supplementary Notes March 23, The subgroup Ω for orthogonal groups

Supplementary Notes March 23, The subgroup Ω for orthogonal groups The subgroup Ω for orthogonal groups 18.704 Supplementary Notes March 23, 2005 In the case of the linear group, it is shown in the text that P SL(n, F ) (that is, the group SL(n) of determinant one matrices,

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

The complex projective line

The complex projective line 17 The complex projective line Now we will to study the simplest case of a complex projective space: the complex projective line. We will see that even this case has already very rich geometric interpretations.

More information

DISCRETE MATH (A LITTLE) & BASIC GROUP THEORY - PART 3/3. Contents

DISCRETE MATH (A LITTLE) & BASIC GROUP THEORY - PART 3/3. Contents DISCRETE MATH (A LITTLE) & BASIC GROUP THEORY - PART 3/3 T.K.SUBRAHMONIAN MOOTHATHU Contents 1. Cayley s Theorem 1 2. The permutation group S n 2 3. Center of a group, and centralizers 4 4. Group actions

More information

Math 814 HW 3. October 16, p. 54: 9, 14, 18, 24, 25, 26

Math 814 HW 3. October 16, p. 54: 9, 14, 18, 24, 25, 26 Math 814 HW 3 October 16, 2007 p. 54: 9, 14, 18, 24, 25, 26 p.54, Exercise 9. If T z = az+b, find necessary and sufficient conditions for T to cz+d preserve the unit circle. T preserves the unit circle

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

ALGEBRAIC TOPOLOGY N. P. STRICKLAND

ALGEBRAIC TOPOLOGY N. P. STRICKLAND ALGEBRAIC TOPOLOGY N. P. STRICKLAND 1. Introduction In this course, we will study metric spaces (which will often be subspaces of R n for some n) with interesting topological structure. Here are some examples

More information

Lecture 11: Differential Geometry

Lecture 11: Differential Geometry Lecture 11: Differential Geometry c Bryan S. Morse, Brigham Young University, 1998 2000 Last modified on February 28, 2000 at 8:45 PM Contents 11.1 Introduction..............................................

More information

LIE ALGEBRAS AND LIE BRACKETS OF LIE GROUPS MATRIX GROUPS QIZHEN HE

LIE ALGEBRAS AND LIE BRACKETS OF LIE GROUPS MATRIX GROUPS QIZHEN HE LIE ALGEBRAS AND LIE BRACKETS OF LIE GROUPS MATRIX GROUPS QIZHEN HE Abstract. The goal of this paper is to study Lie groups, specifically matrix groups. We will begin by introducing two examples: GL n

More information

THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE

THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE THE AUTOMORPHISM GROUP ON THE RIEMANN SPHERE YONG JAE KIM Abstract. In order to study the geometries of a hyperbolic plane, it is necessary to understand the set of transformations that map from the space

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and 7.2 - Quadratic Forms quadratic form on is a function defined on whose value at a vector in can be computed by an expression of the form, where is an symmetric matrix. The matrix R n Q R n x R n Q(x) =

More information

Junior Seminar: Hyperbolic Geometry Lecture Notes

Junior Seminar: Hyperbolic Geometry Lecture Notes Junior Seminar: Hyperbolic Geometry Lecture Notes Tim Campion January 20, 2010 1 Motivation Our first construction is very similar in spirit to an analogous one in Euclidean space. The group of isometries

More information

Trace fields of knots

Trace fields of knots JT Lyczak, February 2016 Trace fields of knots These are the knotes from the seminar on knot theory in Leiden in the spring of 2016 The website and all the knotes for this seminar can be found at http://pubmathleidenunivnl/

More information

WEYL S LAW FOR HYPERBOLIC RIEMANN SURFACES

WEYL S LAW FOR HYPERBOLIC RIEMANN SURFACES WEYL S LAW OR HYPERBOLIC RIEMANN SURACES MATTHEW STEVENSON Abstract. These are notes for a talk given in Dima Jakobson s class on automorphic forms at McGill University. This is a brief survey of the results

More information

IDEAL CLASSES AND SL 2

IDEAL CLASSES AND SL 2 IDEAL CLASSES AND SL 2 KEITH CONRAD Introduction A standard group action in complex analysis is the action of GL 2 C on the Riemann sphere C { } by linear fractional transformations Möbius transformations:

More information

LEC 5: Two Dimensional Linear Discriminant Analysis

LEC 5: Two Dimensional Linear Discriminant Analysis LEC 5: Two Dimensional Linear Discriminant Analysis Dr. Guangliang Chen March 8, 2016 Outline Last time: LDA/QDA (classification) Today: 2DLDA (dimensionality reduction) HW3b and Midterm Project 3 What

More information

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 5 Please write neatly, and in complete sentences when possible.

Math 460: Complex Analysis MWF 11am, Fulton Hall 425 Homework 5 Please write neatly, and in complete sentences when possible. Math 460: Complex Analysis MWF am, Fulton Hall 425 Homework 5 Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.8, 2.6., 2.6.3, 2.6.4, 2.6.5 The

More information

CLASSIFICATION OF TORSION-FREE GENUS ZERO CONGRUENCE GROUPS

CLASSIFICATION OF TORSION-FREE GENUS ZERO CONGRUENCE GROUPS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 9, Pages 2517 2527 S 0002-9939(01)06176-7 Article electronically published on April 17, 2001 CLASSIFICATION OF TORSION-FREE GENUS ZERO

More information

9.1 Mean and Gaussian Curvatures of Surfaces

9.1 Mean and Gaussian Curvatures of Surfaces Chapter 9 Gauss Map II 9.1 Mean and Gaussian Curvatures of Surfaces in R 3 We ll assume that the curves are in R 3 unless otherwise noted. We start off by quoting the following useful theorem about self

More information

MATH 422, CSUSM. SPRING AITKEN

MATH 422, CSUSM. SPRING AITKEN CHAPTER 3 SUMMARY: THE INTEGERS Z (PART I) MATH 422, CSUSM. SPRING 2009. AITKEN 1. Introduction This is a summary of Chapter 3 from Number Systems (Math 378). The integers Z included the natural numbers

More information

(II.B) Basis and dimension

(II.B) Basis and dimension (II.B) Basis and dimension How would you explain that a plane has two dimensions? Well, you can go in two independent directions, and no more. To make this idea precise, we formulate the DEFINITION 1.

More information

Conformal Mapping, Möbius Transformations. Slides-13

Conformal Mapping, Möbius Transformations. Slides-13 , Möbius Transformations Slides-13 Let γ : [a, b] C be a smooth curve in a domain D. Let f be a function defined at all points z on γ. Let C denotes the image of γ under the transformation w = f (z).

More information

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction NONCOMMUTATIVE POLYNOMIAL EQUATIONS Edward S Letzter Introduction My aim in these notes is twofold: First, to briefly review some linear algebra Second, to provide you with some new tools and techniques

More information

13. Forms and polar spaces

13. Forms and polar spaces 58 NICK GILL In this section V is a vector space over a field k. 13. Forms and polar spaces 13.1. Sesquilinear forms. A sesquilinear form on V is a function β : V V k for which there exists σ Aut(k) such

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

Algebra I Fall 2007

Algebra I Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary

More information

Invariants under simultaneous conjugation of SL 2 matrices

Invariants under simultaneous conjugation of SL 2 matrices Invariants under simultaneous conjugation of SL 2 matrices Master's colloquium, 4 November 2009 Outline 1 The problem 2 Classical Invariant Theory 3 Geometric Invariant Theory 4 Representation Theory 5

More information

1 Introduction. or equivalently f(z) =

1 Introduction. or equivalently f(z) = Introduction In this unit on elliptic functions, we ll see how two very natural lines of questions interact. The first, as we have met several times in Berndt s book, involves elliptic integrals. In particular,

More information

Solutions to Assignment 3

Solutions to Assignment 3 Solutions to Assignment 3 Question 1. [Exercises 3.1 # 2] Let R = {0 e b c} with addition multiplication defined by the following tables. Assume associativity distributivity show that R is a ring with

More information

CHAPTER 2. CONFORMAL MAPPINGS 58

CHAPTER 2. CONFORMAL MAPPINGS 58 CHAPTER 2. CONFORMAL MAPPINGS 58 We prove that a strong form of converse of the above statement also holds. Please note we could apply the Theorem 1.11.3 to prove the theorem. But we prefer to apply the

More information

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n 6 Chapter 2. CAUCHY S THEOREM AND ITS APPLICATIONS Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω + that extends continuously to I and such that f is real-valued

More information

REU 2007 Apprentice Class Lecture 8

REU 2007 Apprentice Class Lecture 8 REU 2007 Apprentice Class Lecture 8 Instructor: László Babai Scribe: Ian Shipman July 5, 2007 Revised by instructor Last updated July 5, 5:15 pm A81 The Cayley-Hamilton Theorem Recall that for a square

More information

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016

Linear models. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. October 5, 2016 Linear models Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark October 5, 2016 1 / 16 Outline for today linear models least squares estimation orthogonal projections estimation

More information

Introductory Lectures on SL(2, Z) and modular forms.

Introductory Lectures on SL(2, Z) and modular forms. Introductory Lectures on SL(2, Z) and modular forms. W.J. Harvey, King s College London December 2008. 1 Introduction to the main characters. (1.1) We begin with a definition. The modular group is the

More information

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals

Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Highly complex: Möbius transformations, hyperbolic tessellations and pearl fractals Department of mathematical sciences Aalborg University Cergy-Pontoise 26.5.2011 Möbius transformations Definition Möbius

More information

Math 306 Topics in Algebra, Spring 2013 Homework 7 Solutions

Math 306 Topics in Algebra, Spring 2013 Homework 7 Solutions Math 306 Topics in Algebra, Spring 203 Homework 7 Solutions () (5 pts) Let G be a finite group. Show that the function defines an inner product on C[G]. We have Also Lastly, we have C[G] C[G] C c f + c

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013 As usual, a curve is a smooth projective (geometrically irreducible) variety of dimension one and k is a perfect field. 23.1

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background Lecture notes on Quantum Computing Chapter 1 Mathematical Background Vector states of a quantum system with n physical states are represented by unique vectors in C n, the set of n 1 column vectors 1 For

More information