TILING ABELIAN GROUPS WITH A SINGLE TILE

Size: px
Start display at page:

Download "TILING ABELIAN GROUPS WITH A SINGLE TILE"

Transcription

1 TILING ABELIAN GROUPS WITH A SINGLE TILE S.J. EIGEN AND V.S. PRASAD Abstract. Suppose G is an infinite Abelian group that factorizes as the direct sum G = A B: i.e., the B-translates of the single tile A, evenly tile the group G (B is called the tile set). In this note we consider conditions for another set C G to tile G with the same tile set B. In an earlier paper we answered a question of Sands regarding such tilings of G when A is a finite tile. We consider extensions of Sands s question when A is infinite. We offer two approaches to this question. The first approach involves a combinatorial condition used by Tijdeman and Sands. This condition completely characterizes when a set C can tile G with the tile set B; the condition is applied to simplify the proofs and extend some results of Sands [8]. The second approach is measure theoretic and follows Eigen, Hajian, Ito s work on exhaustive weakly wandering sets for ergodic infinite measure preserving transformations. 1. Introduction Two subsets A and B of an abelian group G induce a tiling (or factorization) of G, if every element of G has a unique representation as a sum a + b with a A and b B, and we write G = A B. Note that this is the same as saying that the sets A and B have the following two properties: (1) The B-translates of the tile A are disjoint; i.e., the sets {A + b : b B} are disjoint. Borrowing terminology from the ergodic theory of infinite measure preserving transformations [1], we say A is weakly wandering under B. (2) The B-translates of A fill up G; i.e., b B (A + b) = G. Again borrowing from ergodic theory, we say that A is exhaustive under B. Throughout this paper we assume that A and B are subsets of G so that our group G = A B. We normalize by requiring that 0 A B. We refer to this as a tiling of G by the single tile A with tile set B. In [8] A.D. Sands asked the following question: suppose the tile A is finite and G is tiled by A with tile set B, and suppose C is any other finite set of the same size as A which satisfies the condition (1) that the B-translates of C are disjoint (i.e., C is weakly wandering under B), must then G be tiled by C with tile set B (i.e., do the B-translates of C exhaust all of G)? Note that if G is finite then the answer to Sands s question is yes and the proof is a straightforward counting argument. A much more careful counting argument provides a positive answer to Sands s question for infinite groups G in [2]. Mike Keane has asked us what happens when the tile A is infinite? We address this question here. Date: January 31, Mathematics Subject Classification. 20K01(primary), 37A05, 28D05(secondary). Key words and phrases. tilings, exhaustive weakly wandering, ergodic infinite measure preserving transformation To appear in Discrete and Continuous Dynamical Systems. 1

2 2 S.J. EIGEN AND V.S. PRASAD Note that if A is an infinite tile which tiles G with tile set B, then simply removing an element from A would provide another infinite tile C of the same size as A which is weakly wandering under B, but clearly not exhaustive under B, so cardinality is not the required condition for infinite tiles A. In this note we give two approaches to Keane s question when A need not be a finite tile. First, in Theorem 2.1, we consider a combinatorial condition due to Tijdemann [10] and obtain a necessary and sufficient condition for C to tile with tile set B. In Corollary 2.5 we use this characterization to simplify some proofs of Sands in [8]. A second approach to Keane s tiling question (following Eigen, Hajian and Ito [1]) provides a solution to a measure theoretic version of Sands s question. We conclude this introduction by noting that problems on the factorization of abelian groups have long been of interest starting with Minkowski s 1907 work on diophantine approximation and the Minkowski conjecture [3] (and the related Keller conjecture [4]) on lattice tilings of Euclidean space with the unit cube. In 1941, the lattice tiling conjecture was shown by Hajós [3] to be equivalent to a group theoretic factorization theorem which Hajós then proved (see also simplifications due to Rédei [6], [7], and recent work of Kolountzakis [5] the latter using a spectral theory approach to show various equivalent forms of Hajós s theorem) An important part of Hajós s work involves replacing a factor A (for a factorization G = A B) by another factor C, with special properties (so that G = C B). A beautiful exposition of the Hajós theorem and many other current tiling problems can be found in Szabo and Stein s Carus Monograph (volume 25), [9]. Factorizations of abelian groups have been considered by many mathematicians including Coven, de Bruijn, Fary, Fuchs, Hajós, Long, Meyerowitz, Rédei, Sands, Stein, Swenson, Szabo, Szele, Tijdeman. An approach to factorizations of Z using the ergodic theory of infinite measure preserving transformations has been developed by Eigen, Hajian, Ito and Kakutani (see for example [1]). 2. Tilings: A combinatorial approach Our first approach involves a condition of Tijdeman [10]. Since G = A B we normalize our sets so that A B = {0}. Each element g G is uniquely written as g A + g B, where g A A and g B B are called the A and B names of g respectively. Sands showed [8, Thm 1] that when A is finite and G = A B, then for each g G: {(g + a) A : a A}. = A where. = means not only are the two sets equal, but also that every element of the left side of. = is uniquely represented as an element of the right side. Suppose G = A B. The next result characterizes sets C which tile G with the same tile set B. It provides our first answer to Keane s question. Theorem 2.1. Suppose the Abelian group G = A B. Let C be any subset of G. Then the following two conditions are equivalent: (1) G = C B (2) For each g G, {(g c) A : c C}. = A This theorem is an immediate consequence of the following Lemmas 2.2 and 2.3 which characterize sets C that are respectively exhaustive and weakly wandering under the tile set B.

3 TILING ABELIAN GROUPS 3 Lemma 2.2. Suppose that G = A B. Then the tile C is exhaustive with tile set B (i.e., G = C + B) if and only if for each g G, the collection of A-names {(g c) A : c C} = A. Proof. Suppose for each g G, the collection of A-names {(g c) A : c C} = A. Given g G, since 0 A, there is a c C such that (g c) A = 0. Thus g c = (g c) A + (g c) B = 0 + b where b B, and so g = c + b. Thus G = C + B. Conversely, given g G and a A, if G = C + B, then there are elements c C and b B such that g a = c + b g c = a + b. Thus (g c) A = a and we have for each g G, {(g c) A : c C} = A. Lemma 2.3. Suppose that G = A B. Then the tile C is weakly wandering with tile set B (i.e., the B-translates of C are disjoint) if and only if for each g G, the collection of A-names {(g c) A : c C} are distinct. Proof. Assume that the B-translates of C are disjoint. Then (C C) (B B) = {0}. Suppose for some g G, that there are elements c 1, c 2 C so that (g c 1 ) A = (g c 2 ) A. Then g c 1 = (g c 1 ) A + b 1 g c 2 = (g c 2 ) A + b 2. where b 1, b 2 B. Therefore subtracting these two equations, we get c 2 c 1 = b 1 b 2 (C C) (B B). But, since C is weakly wandering under B, c 1 = c 2. Thus the A-names are distinct. Conversely, suppose for each g G, the A-names {(g c) A : c C} are distinct. If, c 1, c 2 C and b 1, b 2 B satisfy then there is a A and b B so that Consequently, c 1 + b 1 = c 2 + b 2 c 1 b 1 = c 2 b 2 = a + b b c 1 = a + b 1 b c 2 = a + b 2. This implies that ( b c 1 ) A = ( b c 2 ) A. The uniqueness of A-names of {( b c) A : c C} implies c 1 = c 2. It then follows that b 1 = b 2 as well. Note that if we apply this condition to C = A we get that for each g G, {(g a) A : a A}. = A. Note it is the A-names, (g C) A that are the object of interest, and not the A-names, (g + C) A, as the following example shows. Example 2.4. Consider the following subsets of the integers: A = SF S{2 2n+1 : n = 0, 1, 2,...} where this means that A is the set of all Sums of Finite Subsets of 2 raised to odd powers (note the sum over the empty subset implies 0 A), and B = SF S{2 2n : n = 0, 1, 2,...}. The following facts are true: Z = A B; if C = A, then C does not tile Z with tile set B, since C B = N, the nonpositive

4 4 S.J. EIGEN AND V.S. PRASAD integers. However the remark before the example implies that for each g Z, {(g + c) A : c C}. = A. Our next result contains Theorems 1 and 2 of Sands [8] and extends those theorems when A need not be a finite tile. Corollary 2.5. Let G = A B. Then the following four conditions are equivalent. (a) G = A ( B) (b) G = ( A) B. (c) {g + a : a A} A = A. (d) {g + b : b B} B = B Furthermore, they are all implied by (e) A <. Proof. (a) (b) Multiply either statement by 1 to obtain the other (and note that neither condition is equivalent to A B = G). (b) (c) Let C = A in our Theorem 2.1. (d) (a) Again this just uses our Theorem 2.1 with C = B and tile set A. (e) (c) Since all elements (g + a) A are distinct as a A varies, then we can state that {(g + a) A : a A}. = A when A is a finite set. This is just Sands s Theorem 1 from [8]. 3. Tilings: A measure theoretic approach We end this note with a measure theoretic approach to Keane s question, thereby providing an answer to an extension of Sands s problem to infinite sets. This method follows the work of Eigen, Hajian, Ito and Kakutani [1] on the ergodic theory of infinite measure preserving transformations (see also [2]). Suppose now that our group G has a translation invariant measure µ defined on it. Note that in this section all statements are assumed to be true modulo a set of µ-measure zero. Here is a measure theoretic version of Sands s question. Suppose that G = A B, where A and B are measurable subsets such that 0 < µ(a) <, for some translation invariant measure µ. If C is a measurable subset with µ(c) = µ(a) and disjoint B-translates, then must G be tiled by C with tile set B? This is clearly true if µ(g) <, so we assume that µ(g) =. The following result is a direct generalization of our main Theorem from [2] and answers this extension of Sands s question. Indeed the proof of this theorem just replaces counting measure in [2] with the translation invariant measure µ and the argument remains exactly the same. Theorem 3.1. Let G be an abelian group with µ a translation invariant measure on G. Let G = A B be a factorization of the abelian group G with measurable subsets A and B where 0 < µ(a) <. Consider the three conditions on a measurable set C G. (1) µ(c) = µ(a). (2) C is weakly wandering under B (i.e., the B-translates of C are disjoint). (3) C is exhaustive under B (i.e., the union of the B-translates of C is G). Then, whenever a subset C satisfies any two of the above conditions it must satisfy the remaining condition. Note, we remind the reader again, that all conclusions and hypotheses are assumed to hold modulo sets of µ-measure 0.

5 TILING ABELIAN GROUPS 5 Proof. The argument in [2] used counting measure which is a translation invariant measure. If we replace cardinality in that proof by µ( ) throughout, then the same arguments, prove this theorem. As in [2], we note that the implication that (ii) and (iii) (i) does not require that µ(a) <. This approach to Sands s questions has its roots in the ergodic theory of infinite measure preserving transformations [1]. Let (X, µ) be an infinite measure space. Let T be an invertible measure preserving transformation of (X, µ), T : (X, µ) (X, µ). A subset W X is said to be weakly wandering for a sequence B of the integers if the collection of sets {T b (W ) : b B} is pairwise disjoint. The set W is called exhaustive for the sequence B if X = b B T b (W ). The following theorem on exhaustive weakly wandering sets was proved by Eigen, Hajian and Ito [1]. Theorem 3.2 ((Eigen Hajian Ito) [1]). Let T be an ergodic infinite measure preserving transformation of the sigma finite measure space (X, µ). Let W X be an exhaustive and weakly wandering set for the sequence of integers B. Suppose µ(w ) <. Consider the following three conditions on some V X (1) µ(v ) = µ(w ). (2) V is weakly wandering for B. (3) V is exhaustive for the set B. Then, when a subset V satisfies any two of the above conditions, it satisfies the third. Furthermore, the implication that the latter two conditions imply the first does not require the assumption that µ(w ) <. Our proof above is just the Eigen-Hajian-Ito proof for the G-action {T g : g G}, when X = G, µ is a translation invariant measure, and G acts on itself by T g (x) = x + g for x G, W = A and V = C. References [1] Eigen, S., Hajian, A., and Ito, Y., Ergodic measure preserving transformations of finite type Tokyo J. Math. 11 (1988), no. 2, [2] Eigen, S., and Prasad, V.S., Solution to a problem of Sands on the factorization of groups, Indagationes Mathematicae (New Series) 14 (2003) [3] Hajós, G., Uber einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Wurfelgitter, Math. Z. 47 (1941), [4] Hajós, G., Sur la factorisation des groupes abéliens, Casopis Pest. Mat. Fys. 74 (1949), [5] Kolountzakis, M., Lattice tilings by cubes: whole, notched and extended, Electronic J. Combin. 5 (1998), Research paper 14, 11p. [6] Rédei, L. Vereinfachter Beweis des Satzes von Minkowski-Hajós, Acta Univ. Szeged. Sci. Math. 13 (1949) [7] Rédei, L. Kurzer Beweis des gruppentheoretischen Satzes von Hajós, Comment. Math. Helv. 23 (1949) [8] A. D. Sands, Replacement of factors by subgroups in the factorization of abelian groups Bull. London Math. Soc. 32 (2000) [9] Stein, S. K. and Szabó, S., Algebra and tiling. Homomorphisms in the service of geometry, Carus Mathematical Monographs, 25, published by Mathematical Association of America, Washington, DC,(1994) [10] R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Number theory, (ed. S. David), (Cambridge University Press, 1995), Northeastern University address: eigen@neu.edu

6 6 S.J. EIGEN AND V.S. PRASAD University of Massachusetts Lowell address: vidhu

arxiv:math/ v1 [math.ca] 8 Apr 2001

arxiv:math/ v1 [math.ca] 8 Apr 2001 SPECTRAL AND TILING PROPERTIES OF THE UNIT CUBE arxiv:math/0104093v1 [math.ca] 8 Apr 2001 ALEX IOSEVICH AND STEEN PEDERSEN Abstract. Let Q = [0, 1) d denote the unit cube in d-dimensional Euclidean space

More information

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae Commentationes Mathematicae Universitatis Carolinae Keresztély Corrádi; Sándor Szabó A Hajós type result on factoring finite abelian groups by subsets. II Commentationes Mathematicae Universitatis Carolinae,

More information

10 KHALID AMIN 1. Introduction A famous theorem of Hajos [4] is the following: If G = A 1 :::A n is a factorization of a group G, where each of the su

10 KHALID AMIN 1. Introduction A famous theorem of Hajos [4] is the following: If G = A 1 :::A n is a factorization of a group G, where each of the su Acta Mathematica Academiae Paedagogicae Nyregyhaziensis 15 (1999), 9{18 www.bgytf.hu/~amapn THE FACTORIZATION OF ABELIAN GROUPS KHALID AMIN Abstract. If G is a nite abelian group and n > 1 is an integer,

More information

arxiv: v2 [math.ho] 31 Mar 2014

arxiv: v2 [math.ho] 31 Mar 2014 ON THE ENUMERATION OF VUZA CANONS FRANCK JEDRZEJEWSKI arxiv:1304.6609v2 [math.ho] 31 Mar 2014 Abstract. A Vuza canon of Z N is a non periodic factorization of the cyclic group Z N in two factors. The aim

More information

Exhaustive Weakly Wandering Sequences for Alpha Type Transformations. A Dissertation Presented by. John Lindhe. to The Department of Mathematics

Exhaustive Weakly Wandering Sequences for Alpha Type Transformations. A Dissertation Presented by. John Lindhe. to The Department of Mathematics Exhaustive Weakly Wandering Sequences for Alpha Type Transformations A Dissertation Presented by John Lindhe to The Department of Mathematics in partial fulfillment of the requirements for the degree of

More information

Universally bad Integers and the 2-adics. S. Eigen, Y. Ito, V.S. Prasad

Universally bad Integers and the 2-adics. S. Eigen, Y. Ito, V.S. Prasad Universally bad Integers and the 2-adics S. Eigen, Y. Ito, V.S. Prasad 2003 Good Pairs of Integers S = {0, 1, 4, 5, 16, 17, 20, 21, } i.e., sums of finite subsets of the even powers of 2. Fact: Z = S 2S

More information

Bricklaying and the Hermite Normal Form

Bricklaying and the Hermite Normal Form Bricklaying and the Hermite Normal Form William J. Gilbert Pure Mathematics Department University of Waterloo Waterloo, Ontario Canada N2L 3G1 AMS Classifications: Primary: 15A36 Appeared in the American

More information

Unions of Dominant Chains of Pairwise Disjoint, Completely Isolated Subsemigroups

Unions of Dominant Chains of Pairwise Disjoint, Completely Isolated Subsemigroups Palestine Journal of Mathematics Vol. 4 (Spec. 1) (2015), 490 495 Palestine Polytechnic University-PPU 2015 Unions of Dominant Chains of Pairwise Disjoint, Completely Isolated Subsemigroups Karen A. Linton

More information

Standard deviation of recurrence times for piecewise linear transformations

Standard deviation of recurrence times for piecewise linear transformations University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part B Faculty of Engineering and Information Sciences 2017 Standard deviation of recurrence times for

More information

Universally bad integers and the 2-adics

Universally bad integers and the 2-adics Journal of Number Theory 17 (24) 322 334 http://www.elsevier.com/locate/jnt Universally bad integers and the 2-adics S.J. Eigen, a Y. Ito, b and V.S. Prasad c, a Northeastern University, Boston, MA 2115,

More information

ON SPECTRAL CANTOR MEASURES. 1. Introduction

ON SPECTRAL CANTOR MEASURES. 1. Introduction ON SPECTRAL CANTOR MEASURES IZABELLA LABA AND YANG WANG Abstract. A probability measure in R d is called a spectral measure if it has an orthonormal basis consisting of exponentials. In this paper we study

More information

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract Permutation groups Whatever you have to do with a structure-endowed entity Σ try to determine its group of automorphisms... You can expect to gain a deep insight into the constitution of Σ in this way.

More information

Additive Combinatorics Lecture 12

Additive Combinatorics Lecture 12 Additive Combinatorics Lecture 12 Leo Goldmakher Scribe: Gal Gross April 4th, 2014 Last lecture we proved the Bohr-to-gAP proposition, but the final step was a bit mysterious we invoked Minkowski s second

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information

Fuchs Problem When Torsion-Free Abelian Rank-One Groups are Slender

Fuchs Problem When Torsion-Free Abelian Rank-One Groups are Slender Irish Math. Soc. Bulletin 64 (2009), 79 83 79 Fuchs Problem When Torsion-Free Abelian Rank-One Groups are Slender PAVLOS TZERMIAS Abstract. We combine Baer s classification in [Duke Math. J. 3 (1937),

More information

A note on a construction of J. F. Feinstein

A note on a construction of J. F. Feinstein STUDIA MATHEMATICA 169 (1) (2005) A note on a construction of J. F. Feinstein by M. J. Heath (Nottingham) Abstract. In [6] J. F. Feinstein constructed a compact plane set X such that R(X), the uniform

More information

NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS. 1. Introduction

NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS. 1. Introduction NORMAL GENERATION OF UNITARY GROUPS OF CUNTZ ALGEBRAS BY INVOLUTIONS A. AL-RAWASHDEH Page 1 of 10 Abstract. In purely infinite factors, P. de la Harpe proved that a normal subgroup of the unitary group

More information

ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR COMPOSITION SQUARES. 0. Introduction

ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR COMPOSITION SQUARES. 0. Introduction Acta Math. Univ. Comenianae Vol. LXXI, 2(2002), pp. 201 210 201 ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR COMPOSITION SQUARES G. R. GOODSON Abstract. We investigate the question of when an ergodic automorphism

More information

INTERVAL PARTITIONS AND STANLEY DEPTH

INTERVAL PARTITIONS AND STANLEY DEPTH INTERVAL PARTITIONS AND STANLEY DEPTH CSABA BIRÓ, DAVID M. HOWARD, MITCHEL T. KELLER, WILLIAM. T. TROTTER, AND STEPHEN J. YOUNG Abstract. In this paper, we answer a question posed by Herzog, Vladoiu, and

More information

Homotopy and homology groups of the n-dimensional Hawaiian earring

Homotopy and homology groups of the n-dimensional Hawaiian earring F U N D A M E N T A MATHEMATICAE 165 (2000) Homotopy and homology groups of the n-dimensional Hawaiian earring by Katsuya E d a (Tokyo) and Kazuhiro K a w a m u r a (Tsukuba) Abstract. For the n-dimensional

More information

Thompson s group. Yael Algom Kfir. February 5, 2006

Thompson s group. Yael Algom Kfir. February 5, 2006 Thompson s group Yael Algom Kfir February 5, 006 In these notes, we follow Introductory notes on Richard Thompson s groups by J. W. Cannon, W. J. Floyd and W. R. Parry published in L Enseignement Mathématique,

More information

Löwenheim-Skolem Theorems, Countable Approximations, and L ω. David W. Kueker (Lecture Notes, Fall 2007)

Löwenheim-Skolem Theorems, Countable Approximations, and L ω. David W. Kueker (Lecture Notes, Fall 2007) Löwenheim-Skolem Theorems, Countable Approximations, and L ω 0. Introduction David W. Kueker (Lecture Notes, Fall 2007) In its simplest form the Löwenheim-Skolem Theorem for L ω1 ω states that if σ L ω1

More information

Finite pseudocomplemented lattices: The spectra and the Glivenko congruence

Finite pseudocomplemented lattices: The spectra and the Glivenko congruence Finite pseudocomplemented lattices: The spectra and the Glivenko congruence T. Katriňák and J. Guričan Abstract. Recently, Grätzer, Gunderson and Quackenbush have characterized the spectra of finite pseudocomplemented

More information

ON COHERENCE OF GRAPH PRODUCTS AND COXETER GROUPS

ON COHERENCE OF GRAPH PRODUCTS AND COXETER GROUPS ON COHERENCE OF GRAPH PRODUCTS AND COXETER GROUPS OLGA VARGHESE Abstract. Graph products and Coxeter groups are defined via vertex-edge-labeled graphs. We show that if the graph has a special shape, then

More information

IRRATIONAL ROTATION OF THE CIRCLE AND THE BINARY ODOMETER ARE FINITARILY ORBIT EQUIVALENT

IRRATIONAL ROTATION OF THE CIRCLE AND THE BINARY ODOMETER ARE FINITARILY ORBIT EQUIVALENT IRRATIONAL ROTATION OF THE CIRCLE AND THE BINARY ODOMETER ARE FINITARILY ORBIT EQUIVALENT MRINAL KANTI ROYCHOWDHURY Abstract. Two invertible dynamical systems (X, A, µ, T ) and (Y, B, ν, S) where X, Y

More information

arxiv: v1 [math.co] 10 Jan 2019

arxiv: v1 [math.co] 10 Jan 2019 THE LARGEST ()-SUM-FREE SETS IN COMPACT ABELIAN GROUPS arxiv:90.03233v [math.co] 0 Jan 209 NOAH KRAVITZ Abstract. A subset A of a finite abelian group is called ()-sum-free if ka la =. In thie paper, we

More information

On tiling the integers with 4-sets of the same gap sequence

On tiling the integers with 4-sets of the same gap sequence On tiling the integers with -sets of the same gap sequence arxiv:05.0v [math.co] May 0 Ilkyoo Choi Junehyuk Jung Minki Kim May, 0 Abstract Partitioning a set into similar, if not, identical, parts is a

More information

COMPLEX NUMBERS WITH BOUNDED PARTIAL QUOTIENTS

COMPLEX NUMBERS WITH BOUNDED PARTIAL QUOTIENTS COMPLEX NUMBERS WITH BOUNDED PARTIAL QUOTIENTS WIEB BOSMA AND DAVID GRUENEWALD Abstract. Conjecturally, the only real algebraic numbers with bounded partial quotients in their regular continued fraction

More information

A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY. 1. Motivation

A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY. 1. Motivation Acta Math. Univ. Comenianae Vol. LXXIV, 2(2005), pp. 243 254 243 A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY L. HALBEISEN Abstract. For any set S let seq (S) denote the cardinality

More information

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C p-stability OF DEGENERATE SECOND-ORDER RECURRENCES Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C. 20064 Walter Carlip Department of Mathematics and Computer

More information

SUMS OF UNITS IN SELF-INJECTIVE RINGS

SUMS OF UNITS IN SELF-INJECTIVE RINGS SUMS OF UNITS IN SELF-INJECTIVE RINGS ANJANA KHURANA, DINESH KHURANA, AND PACE P. NIELSEN Abstract. We prove that if no field of order less than n + 2 is a homomorphic image of a right self-injective ring

More information

On addition of two distinct sets of integers

On addition of two distinct sets of integers ACTA ARITHMETICA LXX.1 (1995) On addition of two distinct sets of integers by Vsevolod F. Lev (Tel-Aviv) and Pavel Y. Smeliansky (Wollongong, N.S.W.) What is the structure of a pair of finite integers

More information

Maximal perpendicularity in certain Abelian groups

Maximal perpendicularity in certain Abelian groups Acta Univ. Sapientiae, Mathematica, 9, 1 (2017) 235 247 DOI: 10.1515/ausm-2017-0016 Maximal perpendicularity in certain Abelian groups Mika Mattila Department of Mathematics, Tampere University of Technology,

More information

Lebesgue Measure on R n

Lebesgue Measure on R n CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

Jónsson posets and unary Jónsson algebras

Jónsson posets and unary Jónsson algebras Jónsson posets and unary Jónsson algebras Keith A. Kearnes and Greg Oman Abstract. We show that if P is an infinite poset whose proper order ideals have cardinality strictly less than P, and κ is a cardinal

More information

LECTURES MATH370-08C

LECTURES MATH370-08C LECTURES MATH370-08C A.A.KIRILLOV 1. Groups 1.1. Abstract groups versus transformation groups. An abstract group is a collection G of elements with a multiplication rule for them, i.e. a map: G G G : (g

More information

CONSTRAINED PERCOLATION ON Z 2

CONSTRAINED PERCOLATION ON Z 2 CONSTRAINED PERCOLATION ON Z 2 ZHONGYANG LI Abstract. We study a constrained percolation process on Z 2, and prove the almost sure nonexistence of infinite clusters and contours for a large class of probability

More information

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION. In Ho Jeon and B. P. Duggal. 1. Introduction

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION. In Ho Jeon and B. P. Duggal. 1. Introduction J. Korean Math. Soc. 41 (2004), No. 4, pp. 617 627 ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION In Ho Jeon and B. P. Duggal Abstract. Let A denote the class of bounded linear Hilbert space operators with

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

PERIODIC POINTS OF THE FAMILY OF TENT MAPS

PERIODIC POINTS OF THE FAMILY OF TENT MAPS PERIODIC POINTS OF THE FAMILY OF TENT MAPS ROBERTO HASFURA-B. AND PHILLIP LYNCH 1. INTRODUCTION. Of interest in this article is the dynamical behavior of the one-parameter family of maps T (x) = (1/2 x

More information

Rapporto di Ricerca CS G. Busetto, E. Jabara

Rapporto di Ricerca CS G. Busetto, E. Jabara UNIVERSITÀ CA FOSCARI DI VENEZIA Dipartimento di Informatica Technical Report Series in Computer Science Rapporto di Ricerca CS-2005-12 Ottobre 2005 G. Busetto, E. Jabara Some observations on factorized

More information

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA

PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS. A. M. Blokh. Department of Mathematics, Wesleyan University Middletown, CT , USA PERIODS IMPLYING ALMOST ALL PERIODS FOR TREE MAPS A. M. Blokh Department of Mathematics, Wesleyan University Middletown, CT 06459-0128, USA August 1991, revised May 1992 Abstract. Let X be a compact tree,

More information

TRANSITIVE AND ABSORBENT FILTERS OF LATTICE IMPLICATION ALGEBRAS

TRANSITIVE AND ABSORBENT FILTERS OF LATTICE IMPLICATION ALGEBRAS J. Appl. Math. & Informatics Vol. 32(2014), No. 3-4, pp. 323-330 http://dx.doi.org/10.14317/jami.2014.323 TRANSITIVE AND ABSORBENT FILTERS OF LATTICE IMPLICATION ALGEBRAS M. SAMBASIVA RAO Abstract. The

More information

This paper was published in Connections in Discrete Mathematics, S. Butler, J. Cooper, and G. Hurlbert, editors, Cambridge University Press,

This paper was published in Connections in Discrete Mathematics, S. Butler, J. Cooper, and G. Hurlbert, editors, Cambridge University Press, This paper was published in Connections in Discrete Mathematics, S Butler, J Cooper, and G Hurlbert, editors, Cambridge University Press, Cambridge, 2018, 200-213 To the best of my knowledge, this is the

More information

The Number of Independent Sets in a Regular Graph

The Number of Independent Sets in a Regular Graph Combinatorics, Probability and Computing (2010) 19, 315 320. c Cambridge University Press 2009 doi:10.1017/s0963548309990538 The Number of Independent Sets in a Regular Graph YUFEI ZHAO Department of Mathematics,

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

SELECTIVELY BALANCING UNIT VECTORS AART BLOKHUIS AND HAO CHEN

SELECTIVELY BALANCING UNIT VECTORS AART BLOKHUIS AND HAO CHEN SELECTIVELY BALANCING UNIT VECTORS AART BLOKHUIS AND HAO CHEN Abstract. A set U of unit vectors is selectively balancing if one can find two disjoint subsets U + and U, not both empty, such that the Euclidean

More information

Maximal non-commuting subsets of groups

Maximal non-commuting subsets of groups Maximal non-commuting subsets of groups Umut Işık March 29, 2005 Abstract Given a finite group G, we consider the problem of finding the maximal size nc(g) of subsets of G that have the property that no

More information

RANK AND PERIOD OF PRIMES IN THE FIBONACCI SEQUENCE. A TRICHOTOMY

RANK AND PERIOD OF PRIMES IN THE FIBONACCI SEQUENCE. A TRICHOTOMY RANK AND PERIOD OF PRIMES IN THE FIBONACCI SEQUENCE. A TRICHOTOMY Christian Ballot Université de Caen, Caen 14032, France e-mail: ballot@math.unicaen.edu Michele Elia Politecnico di Torino, Torino 10129,

More information

Topological groups with dense compactly generated subgroups

Topological groups with dense compactly generated subgroups Applied General Topology c Universidad Politécnica de Valencia Volume 3, No. 1, 2002 pp. 85 89 Topological groups with dense compactly generated subgroups Hiroshi Fujita and Dmitri Shakhmatov Abstract.

More information

TEST GROUPS FOR WHITEHEAD GROUPS

TEST GROUPS FOR WHITEHEAD GROUPS TEST GROUPS FOR WHITEHEAD GROUPS PAUL C. EKLOF, LÁSZLÓ FUCHS, AND SAHARON SHELAH Abstract. We consider the question of when the dual of a Whitehead group is a test group for Whitehead groups. This turns

More information

Entropy, mixing, and independence

Entropy, mixing, and independence Entropy, mixing, and independence David Kerr Texas A&M University Joint work with Hanfeng Li Let (X, µ) be a probability space. Two sets A, B X are independent if µ(a B) = µ(a)µ(b). Suppose that we have

More information

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99 ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS N. HEGYVÁRI, F. HENNECART AND A. PLAGNE Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements

More information

ALMOST DISJOINT AND INDEPENDENT FAMILIES. 1. introduction. is infinite. Fichtenholz and Kantorovich showed that there is an independent family

ALMOST DISJOINT AND INDEPENDENT FAMILIES. 1. introduction. is infinite. Fichtenholz and Kantorovich showed that there is an independent family ALMOST DISJOINT AND INDEPENDENT FAMILIES STEFAN GESCHKE Abstract. I collect a number of proofs of the existence of large almost disjoint and independent families on the natural numbers. This is mostly

More information

A Crash Course in Topological Groups

A Crash Course in Topological Groups A Crash Course in Topological Groups Iian B. Smythe Department of Mathematics Cornell University Olivetti Club November 8, 2011 Iian B. Smythe (Cornell) Topological Groups Nov. 8, 2011 1 / 28 Outline 1

More information

Math 676. A compactness theorem for the idele group. and by the product formula it lies in the kernel (A K )1 of the continuous idelic norm

Math 676. A compactness theorem for the idele group. and by the product formula it lies in the kernel (A K )1 of the continuous idelic norm Math 676. A compactness theorem for the idele group 1. Introduction Let K be a global field, so K is naturally a discrete subgroup of the idele group A K and by the product formula it lies in the kernel

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

Exhaustive weakly wandering sequences

Exhaustive weakly wandering sequences Indag. Mathem., N.S., 18 (4), 527-538 December 17, 2007 Exhaustive weakly wandering sequences by S. Eigen and A. Hajian Northeastern University, Boston, USA Communicated by Prof. M.S. Keane at the meeting

More information

SOME ADDITIVE DARBOUX LIKE FUNCTIONS

SOME ADDITIVE DARBOUX LIKE FUNCTIONS Journal of Applied Analysis Vol. 4, No. 1 (1998), pp. 43 51 SOME ADDITIVE DARBOUX LIKE FUNCTIONS K. CIESIELSKI Received June 11, 1997 and, in revised form, September 16, 1997 Abstract. In this note we

More information

Unique Difference Bases of Z

Unique Difference Bases of Z 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 14 (011), Article 11.1.8 Unique Difference Bases of Z Chi-Wu Tang, Min Tang, 1 and Lei Wu Department of Mathematics Anhui Normal University Wuhu 41000 P.

More information

EXHAUSTIVE DETERMINATION OF (511, 255, 127)-CYCLIC DIFFERENCE SETS

EXHAUSTIVE DETERMINATION OF (511, 255, 127)-CYCLIC DIFFERENCE SETS EXHAUSTIVE DETERMINATION OF (511, 255, 127)-CYCLIC DIFFERENCE SETS ROLAND B. DREIER AND KENNETH W. SMITH 1. Introduction In this paper we describe an exhaustive search for all cyclic difference sets with

More information

Algebraic Structures Exam File Fall 2013 Exam #1

Algebraic Structures Exam File Fall 2013 Exam #1 Algebraic Structures Exam File Fall 2013 Exam #1 1.) Find all four solutions to the equation x 4 + 16 = 0. Give your answers as complex numbers in standard form, a + bi. 2.) Do the following. a.) Write

More information

Van der Corput sets with respect to compact groups

Van der Corput sets with respect to compact groups Van der Corput sets with respect to compact groups Michael Kelly and Thái Hoàng Lê Abstract. We study the notion of van der Corput sets with respect to general compact groups. Mathematics Subject Classification

More information

THE NUMBER OF SQUARE ISLANDS ON A RECTANGULAR SEA

THE NUMBER OF SQUARE ISLANDS ON A RECTANGULAR SEA THE NUMBER OF SQUARE ISLANDS ON A RECTANGULAR SEA ESZTER K. HORVÁTH, GÁBOR HORVÁTH, ZOLTÁN NÉMETH, AND CSABA SZABÓ Abstract. The aim of the present paper is to carry on the research of Czédli in determining

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

On reducible and primitive subsets of F p, II

On reducible and primitive subsets of F p, II On reducible and primitive subsets of F p, II by Katalin Gyarmati Eötvös Loránd University Department of Algebra and Number Theory and MTA-ELTE Geometric and Algebraic Combinatorics Research Group H-1117

More information

MULTIPLICITIES OF MONOMIAL IDEALS

MULTIPLICITIES OF MONOMIAL IDEALS MULTIPLICITIES OF MONOMIAL IDEALS JÜRGEN HERZOG AND HEMA SRINIVASAN Introduction Let S = K[x 1 x n ] be a polynomial ring over a field K with standard grading, I S a graded ideal. The multiplicity of S/I

More information

Squares in products with terms in an arithmetic progression

Squares in products with terms in an arithmetic progression ACTA ARITHMETICA LXXXVI. (998) Squares in products with terms in an arithmetic progression by N. Saradha (Mumbai). Introduction. Let d, k 2, l 2, n, y be integers with gcd(n, d) =. Erdős [4] and Rigge

More information

Ergodic Theory and Topological Groups

Ergodic Theory and Topological Groups Ergodic Theory and Topological Groups Christopher White November 15, 2012 Throughout this talk (G, B, µ) will denote a measure space. We call the space a probability space if µ(g) = 1. We will also assume

More information

INVARIANT PROBABILITIES ON PROJECTIVE SPACES. 1. Introduction

INVARIANT PROBABILITIES ON PROJECTIVE SPACES. 1. Introduction INVARIANT PROBABILITIES ON PROJECTIVE SPACES YVES DE CORNULIER Abstract. Let K be a local field. We classify the linear groups G GL(V ) that preserve an probability on the Borel subsets of the projective

More information

inv lve a journal of mathematics 2009 Vol. 2, No. 1 Equidissections of kite-shaped quadrilaterals mathematical sciences publishers

inv lve a journal of mathematics 2009 Vol. 2, No. 1 Equidissections of kite-shaped quadrilaterals mathematical sciences publishers inv lve a journal of mathematics Equidissections of kite-shaped quadrilaterals Charles H. Jepsen, Trevor Sedberry and Rolf Hoyer mathematical sciences publishers 2009 Vol. 2, No. 1 INVOLVE 2:1(2009) Equidissections

More information

New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups

New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups New Negative Latin Square Type Partial Difference Sets in Nonelementary Abelian 2-groups and 3-groups John Polhill Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg,

More information

Lecture 17: Invertible Topological Quantum Field Theories

Lecture 17: Invertible Topological Quantum Field Theories Lecture 17: Invertible Topological Quantum Field Theories In this lecture we introduce the notion of an invertible TQFT. These arise in both topological and non-topological quantum field theory as anomaly

More information

FULLY COMMUTATIVE ELEMENTS AND KAZHDAN LUSZTIG CELLS IN THE FINITE AND AFFINE COXETER GROUPS. Jian-yi Shi

FULLY COMMUTATIVE ELEMENTS AND KAZHDAN LUSZTIG CELLS IN THE FINITE AND AFFINE COXETER GROUPS. Jian-yi Shi FULLY COMMUTATIVE ELEMENTS AND KAZHDAN LUSZTIG CELLS IN THE FINITE AND AFFINE COXETER GROUPS Jian-yi Shi Abstract. The main goal of the paper is to show that the fully commutative elements in the affine

More information

On an algebra related to orbit-counting. Peter J. Cameron. Queen Mary and Westeld College. London E1 4NS U.K. Abstract

On an algebra related to orbit-counting. Peter J. Cameron. Queen Mary and Westeld College. London E1 4NS U.K. Abstract On an algebra related to orbit-counting Peter J. Cameron School of Mathematical Sciences Queen Mary and Westeld College London E1 4NS U.K. Abstract With any permutation group G on an innite set is associated

More information

arxiv: v3 [math.nt] 29 Mar 2016

arxiv: v3 [math.nt] 29 Mar 2016 arxiv:1602.06715v3 [math.nt] 29 Mar 2016 STABILITY RESULT FOR SETS WITH 3A Z n 5 VSEVOLOD F. LEV Abstract. As an easy corollary of Kneser s Theorem, if A is a subset of the elementary abelian group Z n

More information

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming Yuval Filmus April 4, 2017 Abstract The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of

More information

Approximate Transitivity for Zero Entropy Systems

Approximate Transitivity for Zero Entropy Systems Ergod. Th. & Dynam. Sys. (200?),??, 1 11 Printed in the United Kingdom c 200? Cambridge University Press Approximate Transitivity for Zero Entropy Systems A. Dooley and Anthony Quas School of Mathematics,

More information

THE KNASTER KURATOWSKI MAZURKIEWICZ THEOREM AND ALMOST FIXED POINTS. Sehie Park. 1. Introduction

THE KNASTER KURATOWSKI MAZURKIEWICZ THEOREM AND ALMOST FIXED POINTS. Sehie Park. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 16, 2000, 195 200 THE KNASTER KURATOWSKI MAZURKIEWICZ THEOREM AND ALMOST FIXED POINTS Sehie Park Abstract. From the

More information

ERGODIC AVERAGES FOR INDEPENDENT POLYNOMIALS AND APPLICATIONS

ERGODIC AVERAGES FOR INDEPENDENT POLYNOMIALS AND APPLICATIONS ERGODIC AVERAGES FOR INDEPENDENT POLYNOMIALS AND APPLICATIONS NIKOS FRANTZIKINAKIS AND BRYNA KRA Abstract. Szemerédi s Theorem states that a set of integers with positive upper density contains arbitrarily

More information

SOME USES OF SET THEORY IN ALGEBRA. Stanford Logic Seminar February 10, 2009

SOME USES OF SET THEORY IN ALGEBRA. Stanford Logic Seminar February 10, 2009 SOME USES OF SET THEORY IN ALGEBRA Stanford Logic Seminar February 10, 2009 Plan I. The Whitehead Problem early history II. Compactness and Incompactness III. Deconstruction P. Eklof and A. Mekler, Almost

More information

Solving a linear equation in a set of integers II

Solving a linear equation in a set of integers II ACTA ARITHMETICA LXXII.4 (1995) Solving a linear equation in a set of integers II by Imre Z. Ruzsa (Budapest) 1. Introduction. We continue the study of linear equations started in Part I of this paper.

More information

RELATION BETWEEN TWO WEIGHTED ZERO-SUM CONSTANTS. Sukumar Das Adhikari Harish-Chandra Research Institute, Jhusi, Allahabad, India

RELATION BETWEEN TWO WEIGHTED ZERO-SUM CONSTANTS. Sukumar Das Adhikari Harish-Chandra Research Institute, Jhusi, Allahabad, India #A20 INTEGERS 16 (2016) RELATION BETWEEN TWO WEIGHTED ZERO-SUM CONSTANTS Sukumar Das Adhikari Harish-Chandra Research Institute, Jhusi, Allahabad, India adhikari@hri.res.in Eshita Mazumdar Harish-Chandra

More information

NILPOTENT NUMBERS JONATHAN PAKIANATHAN AND KRISHNAN SHANKAR

NILPOTENT NUMBERS JONATHAN PAKIANATHAN AND KRISHNAN SHANKAR NILPOTENT NUMBERS JONATHAN PAKIANATHAN AND KRISHNAN SHANKAR Introduction. One of the first things we learn in abstract algebra is the notion of a cyclic group. For every positive integer n, we have Z n,

More information

ALGORITHMS FOR TRANSLATIONAL TILING

ALGORITHMS FOR TRANSLATIONAL TILING ALGORITHMS FOR TRANSLATIONAL TILING MIHAIL N. KOLOUNTZAKIS & MÁTÉ MATOLCSI Abstract. In this paper we study algorithms for tiling problems. We show that the conditions (T 1) and (T 2) of Coven and Meyerowitz

More information

THE CLASSIFICATION OF TILING SPACE FLOWS

THE CLASSIFICATION OF TILING SPACE FLOWS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 THE CLASSIFICATION OF TILING SPACE FLOWS by Alex Clark Abstract. We consider the conjugacy of the natural flows on one-dimensional tiling

More information

ISOMORPHISM OF MODULAR GROUP ALGEBRAS OF ABELIAN GROUPS WITH SEMI-COMPLETE p-primary COMPONENTS

ISOMORPHISM OF MODULAR GROUP ALGEBRAS OF ABELIAN GROUPS WITH SEMI-COMPLETE p-primary COMPONENTS Commun. Korean Math. Soc. 22 (2007), No. 2, pp. 157 161 ISOMORPHISM OF MODULAR GROUP ALGEBRAS OF ABELIAN GROUPS WITH SEMI-COMPLETE p-primary COMPONENTS Peter Danchev Reprinted from the Communications of

More information

THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I

THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I J Korean Math Soc 46 (009), No, pp 95 311 THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I Sung Sik Woo Abstract The purpose of this paper is to identify the group of units of finite local rings of the

More information

A Characterization of (3+1)-Free Posets

A Characterization of (3+1)-Free Posets Journal of Combinatorial Theory, Series A 93, 231241 (2001) doi:10.1006jcta.2000.3075, available online at http:www.idealibrary.com on A Characterization of (3+1)-Free Posets Mark Skandera Department of

More information

Automorphism Groups of Simple Moufang Loops over Perfect Fields

Automorphism Groups of Simple Moufang Loops over Perfect Fields Automorphism Groups of Simple Moufang Loops over Perfect Fields By GÁBOR P. NAGY SZTE Bolyai Institute Aradi vértanúk tere 1, H-6720 Szeged, Hungary e-mail: nagyg@math.u-szeged.hu PETR VOJTĚCHOVSKÝ Department

More information

Houston Journal of Mathematics. c 2007 University of Houston Volume 33, No. 1, 2007

Houston Journal of Mathematics. c 2007 University of Houston Volume 33, No. 1, 2007 Houston Journal of Mathematics c 2007 University of Houston Volume 33, No. 1, 2007 ROUPS WITH SPECIFIC NUMBER OF CENTRALIZERS A. ABDOLLAHI, S.M. JAFARIAN AMIRI AND A. MOHAMMADI HASSANABADI Communicated

More information

Law of total probability and Bayes theorem in Riesz spaces

Law of total probability and Bayes theorem in Riesz spaces Law of total probability and Bayes theorem in Riesz spaces Liang Hong Abstract. This note generalizes the notion of conditional probability to Riesz spaces using the order-theoretic approach. With the

More information

arxiv: v2 [math.gr] 4 Nov 2015

arxiv: v2 [math.gr] 4 Nov 2015 arxiv:1511.01019v2 [math.gr] 4 Nov 2015 A Paradoxical Decomposition of the Real Line Shelley Kandola and Sam Vandervelde Abstract. In this paper we demonstrate how to partition the real number line into

More information

On Sidon sequences of even orders

On Sidon sequences of even orders ACTA ARITHMETICA LXIV.4 (1993 On Sidon sequences of even orders by Sheng Chen (San Marcos, TX Let h 2 be an integer. A set A of positive integers is called a B h - sequence if all sums a 1 +... + a h,

More information

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS CARRIE E. FINCH AND LENNY JONES Abstract. Let G be a finite group and let x G. Define the order subset of G determined by x to be the set of all elements in

More information

CONVERGENCE OF MULTIPLE ERGODIC AVERAGES FOR SOME COMMUTING TRANSFORMATIONS

CONVERGENCE OF MULTIPLE ERGODIC AVERAGES FOR SOME COMMUTING TRANSFORMATIONS CONVERGENCE OF MULTIPLE ERGODIC AVERAGES FOR SOME COMMUTING TRANSFORMATIONS NIKOS FRANTZIKINAKIS AND BRYNA KRA Abstract. We prove the L 2 convergence for the linear multiple ergodic averages of commuting

More information

arxiv: v4 [math.gr] 17 Jun 2015

arxiv: v4 [math.gr] 17 Jun 2015 On finite groups all of whose cubic Cayley graphs are integral arxiv:1409.4939v4 [math.gr] 17 Jun 2015 Xuanlong Ma and Kaishun Wang Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, 100875,

More information

Tiling Proofs of Recent Sum Identities Involving Pell Numbers

Tiling Proofs of Recent Sum Identities Involving Pell Numbers Tiling Proofs of Recent Sum Identities Involving Pell Numbers Arthur T. Benjamin Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 E-mail: benjamin@hmc.edu Sean S. Plott Department of

More information

DIRECTIONAL ERGODICITY AND MIXING FOR ACTIONS OF Z d

DIRECTIONAL ERGODICITY AND MIXING FOR ACTIONS OF Z d DIRECTIONAL ERGODICITY AND MIXING FOR ACTIONS OF Z d E. ARTHUR ROBINSON JR, JOSEPH ROSENBLATT, AND AYŞE A. ŞAHİN 1. Introduction In this paper we define directional ergodicity and directional weak mixing

More information