x = x 0 + vt x = 6000 m + (0.7 m/s)(25 min*60 s/min) = 7050 m I would be between the 7000m mark and the 8000m mark, closer to the 7000m mark.

Size: px
Start display at page:

Download "x = x 0 + vt x = 6000 m + (0.7 m/s)(25 min*60 s/min) = 7050 m I would be between the 7000m mark and the 8000m mark, closer to the 7000m mark."

Transcription

1 PUM Physics II - Kinematics Lesson 6 Solutions Page 1 of Observe and Represent a) The cars were only next to each other at the initial clock reading. This is because Car 2 was moving twice as fast as Car 1. The spacing between dots for Car 2 is twice as wide as for Car 1 meaning that in one second Car 2 went twice as far on the floor compared to Car 1. b) Eugenia circled the dots because they were next to each other on the diagram. However, beyond the first pair of dots the cars were at subsequent dot locations as different times. I would help Eugenia understand my point of view by asking her how often the beanbags were being dropped for each car. Since they were being dropped every second for both cars this must mean that the two cars were moving at different constant velocities, meaning past the initial point the two cars could never be next to each other at the same clock reading. c) Not enough information is provided to know which directions the cars were moving. The diagram doesn t indicate where the cars started. d) Car 1 Car 2 e) The two equations would have the same format with different subscripts perhaps. However, Car 2 was traveling at twice the velocity as Car 1. Therefore the equation for Car 2 would look like: x 2 (t) = 2v 1 t. 6.2 Represent and Reason v = 0.7 m/s Path marked ever 1000 m x 0 =6000 m x = x 0 + vt x = 6000 m + (0.7 m/s)(25 min*60 s/min) = 7050 m I would be between the 7000m mark and the 8000m mark, closer to the 7000m mark.

2 PUM Physics II - Kinematics Lesson 6 Solutions Page 2 of Represent and Reason a) Position vs. Time Graph b) Find the steepness of the position vs. time graph: x/ t = (-10 m 30 m)/(10 s 0 s) = -4.0 m/s Assuming Darshan stays at this constant velocity. x = x 0 + vt (-85.0 m) = 30.0 m + (-4.0 m/s)t t = ( m)/(-4.0 m/s) = 29 s c) Dot Diagram: d) III) m; the problem does not specify but how far in this case means the displacement. 6.4 Equation Jeopardy a) -62 mi/hr Mile Marker x 0 Mile Marker 114

3 PUM Physics II - Kinematics Lesson 6 Solutions Page 3 of 6 b) The Mystery Machine is traveling towards the west on route 44 at a constant velocity of - 62 miles/hour. After traveling 0.35 hours they find themselves at mile marker 114. At which mile marker did they begin their journey? c) Dot Diagram: d) Position vs. Time Graph e) 114mi = (!62 mi hr )(0.35hr) + x 0 x 0 = 114 mi + (62 mi/hr)(0.35 hr) = 136 mi 6.5 Represent and Reason Average Speed: Going there: (200 km)/(90 km/hr) = 2.2 hr Going back: (200 km)/(50 km/hr) = 4.0 hr Path Length / Total Time = (400 km)/(2.2hr + 1.0hr + 4.0hr) = 56 km/hr Average Velocity: Displacement / Total Time = (0 km)/(7.2 hr) = 0 km/hr

4 PUM Physics II - Kinematics Lesson 6 Solutions Page 4 of 6 a) 1hour break b) All unknown quantities were solved for in calculating the average speed. Everything else was given. 6.6 Practice a) Average Speed: First 30 min: (55 mi/hr)(0.5 hr) = 27.5mi Next 30 min: (75 mi/hr)(0.5 hr) = 37.5mi (65 mi)/( 1 hr) = 65 mi/hr b) Average Speed: First 30 mi: (30 mi)/(55 mi/hr) = 0.55hr Next 30 mi: (30 mi)/(75 mi/hr) = 0.40hr (60 mi)/(0.9 hr) = 63 mi/hr 6.7 Equation Jeopardy a) Equation: x = (!62.0 mi )(0.35hr) mi hr -62 mi/hr Mile Marker 4 Mile Marker x b) The Mystery Machine turns onto another road and travels for 0.35 hr to the west at mi/hr. If they started at the 4 mi marker where will they end up at the end of their trip?

5 PUM Physics II - Kinematics Lesson 6 Solutions Page 5 of 6 c) Dot Diagram: d) Position vs. Time Graph e) x = (!62.0 mi )(0.35hr) mi = -18 mile marker hr f) Equation: 114mi = (!v mi )(1.2hr) + (!30.0 mi) hr v mi 114mi Scooby is in trouble! The Mystery Machine starts at the -30 mi marker. Scooby is at the 114 mi marker. If the Mystery Machine gets there in 1.2 hr how fast were they going down the highway? Did they break the speed limit? What assumptions did you make? Dot Diagram:

6 PUM Physics II - Kinematics Lesson 6 Solutions Page 6 of 6 Position vs. Time Graph: 6.8 Practice (very challenging!) a) We don t know what the time is so let s say that the car moved for t minutes (or hours units don t matter here) at 55mph and t minutes at 75mph taking a total of 2t minutes. Distance = Speed*Time Average Speed = Path Length / Total Time [(55 mi/hr)t + (75 mi/hr)t]/2t t(55 mi/hr + 75 mi/hr)/2t (55 mi/hr + 75 mi/hr)/2 (130 mi/hr)/2 = 65 mi/hr b) This time we don t know the distance so let s say the car moved d distance at 55mph then another d distance at 75mph for a total path length of 2d: Time = Distance/Speed Average Speed = Path Length / Total Time = 63 mi/hr

Kinematics 7 Solutions. 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east

Kinematics 7 Solutions. 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east Kinematics 7 Solutions 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east b) For the same motion, a position versus time graph would be a straight line at a

More information

Lesson 7: Slopes and Functions: Speed and Velocity

Lesson 7: Slopes and Functions: Speed and Velocity Lesson 7: Slopes and Functions: Speed and Velocity 7.1 Observe and Represent Another way of comparing trend lines is by calculating the slope of each line and comparing the numerical values of the slopes.

More information

PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16

PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16 PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16 12.1 Hypothesize (Derive a Mathematical Model) Graphically we know that the area beneath a velocity vs. time graph line represents the displacement

More information

9/4/2017. Motion: Acceleration

9/4/2017. Motion: Acceleration Velocity Velocity (m/s) Position Velocity Position 9/4/217 Motion: Acceleration Summary Last : Find your clicker! Scalars: Distance, Speed Vectors: Position velocity Speed = Distance covered/time taken

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

? 4. Like number bonds, a formula is useful because it helps us know what operation to use depending on which pieces of information we have.

? 4. Like number bonds, a formula is useful because it helps us know what operation to use depending on which pieces of information we have. UNIT SIX DECIMALS LESSON 168 PROBLEM-SOLVING You ve covered quite a distance in your journey through our number system, from whole numbers through fractions, to decimals. Today s math mysteries all have

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Sierzega: Kinematics 10 Page 1 of 14

Sierzega: Kinematics 10 Page 1 of 14 Sierzega: Kinematics 10 Page 1 of 14 10.1 Hypothesize (Derive a Mathematical Model) Graphically we know that the area beneath a velocity vs. time graph line represents the displacement of an object. For

More information

Describing Motion Verbally with Distance and Displacement

Describing Motion Verbally with Distance and Displacement Describing Motion Verbally with Distance and Displacement Read from Lesson 1 of the 1-D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/1dkin/u1l1a.cfm http://www.physicsclassroom.com/class/1dkin/u1l1b.cfm

More information

Assumed the acceleration was constant and that the receiver could be modeled as a point particle.

Assumed the acceleration was constant and that the receiver could be modeled as a point particle. PUM Physics II - Kinematics Lesson 16 Solutions Page 1 of 7 16.1 Regular Problem v o = 10 m/s v = -2.0 m/s t = 0.020 s v = v o + at -2.0 m/s = (10 m/s) + a(0.020 s) a = (-12 m/s)/(0.020 s) = -600 m/s 2

More information

Chapter 2 Motion in One Dimension. Slide 2-1

Chapter 2 Motion in One Dimension. Slide 2-1 Chapter 2 Motion in One Dimension Slide 2-1 MasteringPhysics, PackBack Answers You should be on both by now. MasteringPhysics first reading quiz Wednesday PackBack should have email & be signed up 2014

More information

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Much of the physics we ll learn this semester will deal with the motion of objects We start with the simple case of one-dimensional motion Or, motion in x: As always, we begin by

More information

SECTION 2 - VELOCITY

SECTION 2 - VELOCITY MOTION SECTION 2 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67 mph Why

More information

Describing Motion Verbally with Distance and Displacement

Describing Motion Verbally with Distance and Displacement Name: Describing Motion Verbally with Distance and Displacement Read from Lesson 1 of the 1-D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/1dkin/u1l1a.html http://www.physicsclassroom.com/class/1dkin/u1l1b.html

More information

a) Use the graph above and calculate the slope of the line for each case. Explain how you calculated the slope. How is the slope similar to the index?

a) Use the graph above and calculate the slope of the line for each case. Explain how you calculated the slope. How is the slope similar to the index? Slopes and Expressions: Speed and Velocity 5.1 Observe and Represent Another way of comparing trend lines is by calculating the slope of each line and comparing the numerical values of the slopes. a) Use

More information

Part D: Kinematic Graphing - ANSWERS

Part D: Kinematic Graphing - ANSWERS Part D: Kinematic Graphing - ANSWERS 31. On the position-time graph below, sketch a plot representing the motion of an object which is.... Label each line with the corresponding letter (e.g., "a", "b",

More information

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration Chapter 2 What You Will Learn In This Chapter Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration 2.1 Introduction to kinematics Kinematics is the study

More information

(b) A particle with v > 0 and a < 0 is moving forward with decreasing speed. Example: a car slowing down before exiting an Eastbound freeway.

(b) A particle with v > 0 and a < 0 is moving forward with decreasing speed. Example: a car slowing down before exiting an Eastbound freeway. PHY 302 K. Solutions for Problem set # 2. Non-textbook problem #1: (a) A particle with v > 0 and a > 0 is moving forward (i.e., in the positive direction) with increasing speed. Example: a car entering

More information

Lesson 3A: How Fast Are You Moving?

Lesson 3A: How Fast Are You Moving? Lesson 3A: How Fast Are You Moving? 3.1 Observe and represent Decide on a starting point. You will need 2 cars (or other moving objects). For each car, you will mark its position at each second. Make sure

More information

Accumulated change from rates of change

Accumulated change from rates of change Section 6.1 1 Accumulated change from rates of change Suppose that r(t) measures a rate of change with respect to a time variable t. For example, say that for a two-hour period ( 0 t 2), we have r(t) =

More information

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2008 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 1 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Ch 2. Describing Motion: Kinematics in 1-D.

Ch 2. Describing Motion: Kinematics in 1-D. Ch 2. Describing Motion: Kinematics in 1-D. Introduction Kinematic Equations are mathematic equations that describe the behavior of an object in terms of its motion as a function of time. Kinematics is

More information

Describing and Measuring Motion

Describing and Measuring Motion Describing and Measuring Motion End of Chapter Project In lieu of a test, you are going to write a formal lab report A formal lab report is what scientists use to describe their research in a reproducible

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

P H Y S I C S U N I O N M A T H E M A T I C S. Physics II. Kinematics. Supported by the National Science Foundation (DRL ).

P H Y S I C S U N I O N M A T H E M A T I C S. Physics II. Kinematics. Supported by the National Science Foundation (DRL ). P H Y S I C S U N I O N M A T H E M A T I C S Physics II Kinematics Supported by the National Science Foundation (DRL-0733140). PUM Physics II Kinematics Most of the module activities were adapted from:

More information

SECTION 3 - VELOCITY

SECTION 3 - VELOCITY UNIT 2 MOTION SECTION 3 - VELOCITY How fast do you think we are traveling (orbiting) around the sun? 67,0672 mph How fast do you think we are spinning around our axis as we move around the sun? 1,041.67

More information

AP Physics 1: Summer Assignment

AP Physics 1: Summer Assignment AP Physics 1: Summer Assignment- Part 1 AP Physics 1: Summer Assignment Welcome to AP Physics 1! Attached is the summer assignment, which consists of two parts. The first part is an easy read about the

More information

Logarithmic Differentiation (Sec. 3.6)

Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation Use logarithmic differentiation if you are taking the derivative of a function whose formula has a lot of MULTIPLICATION, DIVISION, and/or

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Lesson 8: Velocity. Displacement & Time

Lesson 8: Velocity. Displacement & Time Lesson 8: Velocity Two branches in physics examine the motion of objects: Kinematics: describes the motion of objects, without looking at the cause of the motion (kinematics is the first unit of Physics

More information

Density. Mass Volume. Density =

Density. Mass Volume. Density = Mass Mass is a property of an object that measures how much matter is there in the object. It doesn t depend on where the object is. It doesn t have a direction. Weight Weight is due to the gravitational

More information

Just as in the previous lesson, all of these application problems should result in a system of equations with two equations and two variables:

Just as in the previous lesson, all of these application problems should result in a system of equations with two equations and two variables: The two methods we have used to solve systems of equations are substitution and elimination. Either method is acceptable for solving the systems of equations that we will be working with in this lesson.

More information

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 19, 2017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

Lesson 24: Introduction to Simultaneous Linear Equations

Lesson 24: Introduction to Simultaneous Linear Equations Classwork Opening Exercise 1. Derek scored 30 points in the basketball game he played and not once did he go to the free throw line. That means that Derek scored two point shots and three point shots.

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

Chapter 3 Vectors in Physics. Copyright 2010 Pearson Education, Inc.

Chapter 3 Vectors in Physics. Copyright 2010 Pearson Education, Inc. Chapter 3 Vectors in Physics Units of Chapter 3 Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors

More information

PICK UP 1. Paper(s) 2. Sign in for attendance 3. CALCULATOR! TURN IN Any late HW!

PICK UP 1. Paper(s) 2. Sign in for attendance 3. CALCULATOR! TURN IN Any late HW! PICK UP 1. Paper(s) 2. Sign in for attendance 3. CALCULATOR! TURN IN Any late HW! DO NOW 1. On a half sheet of paper rearrange this equation to solve for vi a = v f v i t HW: U0 6 (Wed) Next Test: U0 Test

More information

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis.

KINEMATICS WHERE ARE YOU? HOW FAST? VELOCITY OR SPEED WHEN YOU MOVE. Typical Cartesian Coordinate System. usually only the X and Y axis. KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion.

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Lecture 2 Definitions Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Dynamics: The study of the forces that cause motion. Chapter Outline Consider

More information

Calculus Jeopardy Sample

Calculus Jeopardy Sample In the purchased version, the game board has 6 categories and is interactive, allowing you to click on category and money amount to see the answers. In this sample just scroll through the document. www.mastermathmentor.com

More information

PHYS 1401 Homework #1 Solutions

PHYS 1401 Homework #1 Solutions PHYS 1401 Homework #1 Solutions 1. For each of the following, tell whether nm, μm, mm, m, or km is the most appropriate unit. Explain your answer a. The distance from Greeley to Denver km comparable to

More information

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Physical Science Chapter 11. Motion

Physical Science Chapter 11. Motion Physical Science Chapter 11 Motion Motion Definition An object is in motion when its distance from another object is changing. Relative Motion Relative motion is movement in relation to a REFERENCE POINT.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Kinematics Introduction

Kinematics Introduction Kinematics Introduction Kinematics is the study of the motion of bodies. As such it deals with the distance/displacement, speed/velocity, and the acceleration of bodies. Although we are familiar with the

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13

KINEMATICS. File:The Horse in Motion.jpg - Wikimedia Foundation. Monday, June 17, 13 KINEMATICS File:The Horse in Motion.jpg - Wikimedia Foundation 1 WHERE ARE YOU? Typical Cartesian Coordinate System usually only the X and Y axis meters File:3D coordinate system.svg - Wikimedia Foundation

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

2.4 Slope and Rate of Change

2.4 Slope and Rate of Change 2.4 Slope and Rate of Change Learning Objectives Find positive and negative slopes. Recognize and find slopes for horizontal and vertical lines. Understand rates of change. Interpret graphs and compare

More information

5.1 Area and Estimating with Finite Sums

5.1 Area and Estimating with Finite Sums 5.1 Area and Estimating with Finite Sums Ideas for this section The ideas for this section are Left-Hand Sums Ideas for this section The ideas for this section are Left-Hand Sums Right-Hand Sums Ideas

More information

Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7. Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 PHYS 2211

Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7. Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 PHYS 2211 PHYS 2211 Look over: Chapter 2 Sections 1-9 Sample Problems 1, 2, 5, 7 PHYS 1111 Look over: Chapter 2 Sections 1-7 Examples 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Topics Covered 1) Average Speed 2) Average Velocity

More information

Chapter 2 Describing Motion

Chapter 2 Describing Motion Chapter 2 Describing Motion Chapter 2 Overview In chapter 2, we will try to accomplish two primary goals. 1. Understand and describe the motion of objects. Define concepts like speed, velocity, acceleration,

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator)

( ) for t 0. Rectilinear motion CW. ( ) = t sin t ( Calculator) Rectilinear motion CW 1997 ( Calculator) 1) A particle moves along the x-axis so that its velocity at any time t is given by v(t) = 3t 2 2t 1. The position x(t) is 5 for t = 2. a) Write a polynomial expression

More information

C 2. The average speed of a car that travels 500 km in 5 hours is a. 10 km/h. b km/h. c. 100 km/h. d. 1,000 km/h

C 2. The average speed of a car that travels 500 km in 5 hours is a. 10 km/h. b km/h. c. 100 km/h. d. 1,000 km/h Name: KEY IP 644 lock: Date: / / Review Packet: Position, Distance, Displacement, Motion, Speed and Velocity Multiple Choice C 1. When a driver checks her speedometer, she is checking a. acceleration.

More information

2.1. Model: The car is represented by the particle model as a dot.

2.1. Model: The car is represented by the particle model as a dot. Chapter Physics.. Model: The car is represented by the particle model as a dot. Solve: (a) Time t (s) Position x (m) 0 00 975 85 3 750 4 700 5 650 6 600 7 500 8 300 9 0 (b).8. Model: The bicyclist is a

More information

ANIL TUTORIALS. Motion IMPORTANT NOTES ANIL TUTORIALS,SECTOR-5,DEVENDRA NAGAR,HOUSE NO-D/156,RAIPUR,C.G,PH

ANIL TUTORIALS. Motion IMPORTANT NOTES ANIL TUTORIALS,SECTOR-5,DEVENDRA NAGAR,HOUSE NO-D/156,RAIPUR,C.G,PH Motion 1. Rest : When a body does not change its position with respect to time and its surroundings, the body is said to be at rest. 2. Motion : When a body continuously changes its position with respect

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

an expression, in terms of t, for the distance of the particle from O at time [3]

an expression, in terms of t, for the distance of the particle from O at time [3] HORIZON EDUCATION SINGAPORE Additional Mathematics Practice Questions: Kinematics Set 1 1 A particle moves in a straight line so that t seconds after passing through O, its velocity v cm s -1, is given

More information

Distance and displacement

Distance and displacement In motion unit 3 Distance and displacement Distance What is it? - Total distance travelled Example: Imagine dropping a distance marker (cookie) every step you took today, the total number of cookies is

More information

a t =Bx a v s 4 c. at +2ax Exam 1--PHYS 101--F15 Name: Class: Date:

a t =Bx a v s 4 c. at +2ax Exam 1--PHYS 101--F15 Name: Class: Date: Name: Class: Date: Exam --PHYS 0--F5 Multiple Choice Identify the choice that best completes the statement or answers the question.. Which of these best approximates the volume of a person s head? a. 8

More information

Clock Reading (t) Position (x) Clock Reading (t) Position (x)

Clock Reading (t) Position (x) Clock Reading (t) Position (x) How Fast are you Moving? 2.1 Observe and represent Find a starting position on the floor. You will need to use 2 cars for this experiment (try to use one fast and one slow). Practice releasing the car

More information

What is Motion? any physical movement or change in position or place, relative to a reference point. Movement. Reference Point

What is Motion? any physical movement or change in position or place, relative to a reference point. Movement. Reference Point Motion What is Motion? any physical movement or change in position or place, relative to a reference point Movement Reference Point Distance = how far an object has moved. Measured in meters, kilometers

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

Section 5.1. Areas and Distances. (1) The Area Problem (2) The Distance Problem (3) Summation Notation

Section 5.1. Areas and Distances. (1) The Area Problem (2) The Distance Problem (3) Summation Notation Section 5.1 Areas and Distances (1) The Area Problem (2) The Distance Problem (3) Summation Notation MATH 125 (Section 5.1) Areas and Distances The University of Kansas 1 / 19 Area Area is a measure of

More information

Motion, Speed, Velocity & Acceleration. Physical Science Bella Vista Middle School

Motion, Speed, Velocity & Acceleration. Physical Science Bella Vista Middle School Motion, Speed, Velocity & Acceleration Physical Science Bella Vista Middle School What Is Motion? Motion is when an object changes place or position. To properly describe motion, you need to use the following:

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integral Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Distance And Velocity. The graph below shows the velocity, v, of an object (in meters/sec). Estimate

More information

Constant Acceleration

Constant Acceleration Constant Acceleration Ch. in your text book Objectives Students will be able to: ) Write the definition of acceleration, either in words or as an equation ) Create an equation for the movement of an object

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

Chapter 2 Motion Along A Straight Line

Chapter 2 Motion Along A Straight Line Chapter 2 Motion Along A Straight Line Kinematics: Description of Motion Motion in one dimension (1-D) Motion of point particles Treat larger objects as particles center of mass Chapter 2 Motion in 1-D

More information

Describing Motion with Diagrams

Describing Motion with Diagrams Describing Motion with Diagrams Read from Lesson of the -D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/dkin/ula.html http://www.physicsclassroom.com/class/dkin/ulb.html

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Lesson 5: Solving Linear Systems Problem Solving Assignment solutions

Lesson 5: Solving Linear Systems Problem Solving Assignment solutions Write inequalities to represent the following problem, and then solve to answer the question. 1. The Rent-A-Lemon Car Rental Company charges $60 a day to rent a car and an additional $0.40 per mile. Alex

More information

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction.

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction. Name: Science Teacher: Reporting Category 2: Force, Motion, and Energy Unbalanced Forces 8.6A A is a push or a pull in a specific direction. The combination of all forces acting on an object is called.

More information

Use your hypothesis (the mathematical model you created) from activity 4.1 to predict the man s position for the following scenarios:

Use your hypothesis (the mathematical model you created) from activity 4.1 to predict the man s position for the following scenarios: 4.1 Hypothesize Lesson 4: The Moving Man An object is moving in the positive direction at constant velocity v. It starts at clock reading t = 0 sec, at a position x 0. How would you write a function that

More information

MT 1810 Calculus II Course Activity I.7: Velocity and Distance Travelled

MT 1810 Calculus II Course Activity I.7: Velocity and Distance Travelled MT 1810 Calculus II, CA I.7 P a g e 1 MT 1810 Calculus II Course Activity I.7: Velocity and Distance Travelled Name: Purpose: To investigate how to calculate the distance travelled by an object if you

More information

Physic 231 Lecture 3. Main points of today s lecture. for constant acceleration: a = a; assuming also t0. v = lim

Physic 231 Lecture 3. Main points of today s lecture. for constant acceleration: a = a; assuming also t0. v = lim Physic 231 Lecture 3 Main points of today s lecture Δx v = ; Δ t = t t0 for constant acceleration: a = a; assuming also t0 = 0 Δ x = v v= v0 + at Δx 1 v = lim Δ x = Δ t 0 ( v+ vo ) t 2 Δv 1 2 a = ; Δ v=

More information

Items to pick-up: Admit Ticket/Exit Ticket (3) Cornell Note Sheets

Items to pick-up: Admit Ticket/Exit Ticket (3) Cornell Note Sheets Items to pick-up: Admit Ticket/Exit Ticket (3) Cornell Note Sheets DUE TODAY!!! COMPOSITION NOTEBOOK CHECK (Journal Entries will begin next week) MONDAY AUGUST 8, 2016 All Periods will meet in Lab 2 Admit

More information

Physics 280 Closing Arguments

Physics 280 Closing Arguments Summer 2016 1 1 Department of Physics Drexel University August 26, 2016 Where have we gone We learned that everything we learned in Physics II leads to the conclusion that all inertial observers will measure

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

7-1A. Relationships Between Two Variables. Vocabulary. Using the Formula d = r t. Lesson

7-1A. Relationships Between Two Variables. Vocabulary. Using the Formula d = r t. Lesson Chapter 7 Lesson 7-1A Relationships Between Two Variables Vocabulary independent variable dependent variable BIG IDEA In equations where there are two variables, it is often the case that the value of

More information

Algebra Based Physics Uniform Circular Motion

Algebra Based Physics Uniform Circular Motion 1 Algebra Based Physics Uniform Circular Motion 2016 07 20 www.njctl.org 2 Uniform Circular Motion (UCM) Click on the topic to go to that section Period, Frequency and Rotational Velocity Kinematics of

More information

Math Exam 1 Answers Fall Circle the LETTER of the correct answer for #1-3.

Math Exam 1 Answers Fall Circle the LETTER of the correct answer for #1-3. Math 1800 Exam 1 Answers Fall 011 Circle the LETTER of the correct answer for #1-. (7 pts)1. An eight inch candle burns at a rate of 1 in/min; a twelve inch candle burns at a rate of 1 in/min. Which candle

More information

Physics 101 Discussion Week 3 Explanation (2011)

Physics 101 Discussion Week 3 Explanation (2011) Physics 101 Discussion Week 3 Explanation (2011) D3-1. Velocity and Acceleration A. 1: average velocity. Q1. What is the definition of the average velocity v? Let r(t) be the total displacement vector

More information

Grade 7/8 Math Circles March 8 & Physics

Grade 7/8 Math Circles March 8 & Physics Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles March 8 & 9 2016 Physics Physics is the study of how the universe behaves. This

More information

Chapter 2. One Dimensional Motion

Chapter 2. One Dimensional Motion Chapter One Dimensional Motion Motion in One Dimension Displacement, Velocity and Speed Acceleration Motion with Constant Acceleration MFMcGraw-PHY 45 Chap_0b One Dim Motion-Revised 1/16/011 Introduction

More information

Student Outcomes. Classwork. Example 1 (6 minutes)

Student Outcomes. Classwork. Example 1 (6 minutes) Student Outcomes Students know the definition of constant rate in varied contexts as expressed using two variables where one is representing a time interval. Students graph points on a coordinate plane

More information

One-Dimensional Motion

One-Dimensional Motion One-Dimensional Motion 1. No. The path is nearly circular when viewed from the north celestial pole, indicating a two-dimensional motion.. The tracks could be used to create a motion diagram, but there

More information

Unit I Review Worksheet Key

Unit I Review Worksheet Key Unit I Review Workheet Key 1. Which of the following tatement about vector and calar are TRUE? Anwer: CD a. Fale - Thi would never be the cae. Vector imply are direction-conciou, path-independent quantitie

More information

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates Math 1241, Spring 2014 Section 3.3 Rates of Change Average vs. Instantaneous Rates Average Speed The concept of speed (distance traveled divided by time traveled) is a familiar instance of a rate of change.

More information

KEY CONCEPTS AND PROCESS SKILLS

KEY CONCEPTS AND PROCESS SKILLS Measuring 74 40- to 2-3 50-minute sessions ACTIVITY OVERVIEW L A B O R AT O R Y Students use a cart, ramp, and track to measure the time it takes for a cart to roll 100 centimeters. They then calculate

More information