Generating, from scratch, the near-field asymptotic forms of scalar resistance functions for two unequal rigid spheres in low-reynolds-number flow

Size: px
Start display at page:

Download "Generating, from scratch, the near-field asymptotic forms of scalar resistance functions for two unequal rigid spheres in low-reynolds-number flow"

Transcription

1 Generating, from scratch, the near-field asymptotic forms of scalar resistance functions for two unequal rigid spheres in low-reynolds-number flow Adam K. Townsend arxiv:8.86v3 [physics.flu-dyn] 5 Jan 9 Department of Mathematics, UCL, Gower Street, London WCE 6BT, UK 8 January 9 When investigating the behaviour of particle suspensions, for example in the Stokesian dynamics simulation technique, it is sometimes necessary to use near-field asymptotic forms of scalar resistance functions for two unequal rigid spheres, commonly notated X, A X, A Y, A Y, A Y, B Y, B X, C X, C Y, C Y, C X, G X, G Y, G Y, G Y H, Y H, X M, X M, Y M, Y M, Z M, Z M. () The required expressions for generating these scalars were initially published in Jeffrey & Onishi (984) and Jeffrey (99). These important papers suffer from a number of small errors, and furthermore, the reader may find it difficult to generate the required expressions (and therefore the value of these functions) independently, given the omission of intermediate formulae. A partial list of errata has been published by Kengo Ichiki ( net/twobody/errata.html), and some of these errors appear to have been noticed by authors using these papers in their extensions. However, I have not found a comprehensive description of how to fully generate, from scratch, expressions for these functions. This short article is a compilation of the relevant equations, with those originally omitted now added, and with any errors fixed. Equations from Jeffrey & Onishi (984) are labelled (JO.), those from Jeffrey (99) are labelled (J ), and those from the helpful Ichiki et al. (3) are labelled (I ). At the end of the article, the questions how do we know there are errors? and how do we know they are fixed? are addressed. Throughout this article, we use the same notation as these papers. For two spheres of a.townsend@ucl.ac.uk

2 radius a, a a distance s apart, we define the non-dimensional gap and size ratio λ as = The near-field forms are valid for and λ. s a + a, λ = a a. () In order to match the far-field forms, it is necessary to scale the terms by multiplying respectively by X A, Y A, Y B, X C, Y C, X G, Y G, Y H, X M, Y M, Z M (3),, 3, 4 3, 4 3, 3, 3, 4 3, 9, 9, 9. (4) X A terms Here the X A formulae are given in full, with changes from the source material when noted. The same directions for alteration, when required, will be given for the other terms in later sections. Set up the recurrence relations P n = δ n, V n = δ n, n V npq = P npq (n + )(n + 3) q ( n + s P npq = n s= q s= ( n + s n (5) (6) ) P s(q s)(p n ), (7) ) ( n(n + )(ns n s + ) P s(q s)(p n+) (n + )(s )(n + s) n(n ) (n + ) P s(q s)(p n ) n (4n ) (n + )(s + ) V s(q s )(p n+) (JO ). Then define the formulae f k (λ) = k ), (8) k P (k q)q λ q, (9) q= g (λ) = λ ( + λ) 3, () g (λ) = 5 λ( + 7λ + λ )( + λ) 3, () g 3 (λ) = 4 ( + 8λ 9λ + 8λ 3 + λ 4 )( + λ) 3, () m (m) = δ m + (m )( δ m ), (3)

3 (JO 3.5, 3.9); and A X = 4 g + m= m even [ m ( + λ) m f m g m g + 4m m g 3 ], (4) ( + λ)ax = 4 g + g log g 3 + m ( + λ) m f m g m g + 4m (m + ) g 3, (5) m= m odd (JO ), noting the correction from m to m + in A X. Then the resistance scalars are given by X A = g + g log( ) + A X + g 3 log( ), (6) X A = g + g log( ) ( + λ)ax + g 3 log( ), (7) from (JO ) up to O( log( )): note the different factor on X A. Y A terms The recurrence relations are (JO ), but with V npq corrected to V npq = P npq + n (n + )(n + 3) q ( ) n + s P n + s(q s)(p n ), (8) s= noticing the sign change on the in the last subscript. The required intermediate formulae for the f, g and m functions are eq. (9), (JO ), and eq. (3), respectively. Then the A Y formulae, terms are given by (JO ), leaving us with the resistance scalar Y A = g log( ) + A Y + g 3 log( ), (9) Y A = g log( ) ( + λ)ay + g 3 log( ), () from (JO ), with a different factor on Y A. Y B terms The recurrence relations are the same as those for the Y A terms. The required intermediate formulae for the f and g functions are f k (λ) = k+ and (JO between 5.6 and 5.7), respectively. k Q (k q)q λ q, () q= 3

4 The B Y terms are given by B Y = g log g 3 + m ( + λ) m f m m g + 4m (m + ) g 3, () m= m odd 4 ( + λ) B Y = g 3 + m ( + λ) m f m m g + 4m (m + ) g 3, (3) m= m even having been corrected from (JO ). Then the resistance scalars are given by Y B = g log( ) + B Y + g 3 log( ), (4) Y B = g log( ) 4 ( + λ) B Y + g 3 log( ), (5) from (JO ), with a different factor on Y B. X C terms Expressions for the resistance scalars can be expressed directly as ( ) X C λ 3 = ( + λ) ζ λ λ 3, 3 + λ 4( + λ) log( ), (6) X C = λ3 ( + λ) ζ(3, ) + λ 3 4( + λ) log( ), (7) (JO ), where X C has been divided by 8/( + λ) 3, and where ζ(z, a) is the Hurwitz zeta function, ζ(z, a) = (k + a). (8) z k= Y C terms The recurrence relations are the same as those for the Y A terms except the initial conditions are replaced by (JO ). The intermediate formula for the f function is f k (λ) = k k Q (k q)q λ q+(k mod ), (9) q= with the g formula given by (JO between 7. and 7.), with the correction to g 5 of g 5 (λ) = 5 λ(43 4λ + 43λ )( + λ) 4. (3) 4

5 Then the C Y terms are C Y = g 3 + m ( + λ) m f m m g + 4m (m + ) g 3, (3) m= m even C Y = g 4 log g m ( + λ) 3 m f m m g 4 + 4m (m + ) g 5, (3) m= m odd noting the corrections to both of (JO 7.-7.). The resistance scalars are finally Y C = g log( ) + C Y + g 3 log( ), (33) 8 ( + λ) Y C 3 = g 4 log( ) + C Y + g 5 log( ), (34) noting the different factor on Y C from (JO ). X G terms The recurrence relations are the same as those for X A, and the f and g functions are (I 94) and (J between 9b and a). The G X terms are given by (J ), noting that in their notation, f(λ) = m f(λ). This gives us expressions for X G of X G = g + g log( ) + G X + g 3 log( ), (35) X G = g g log( ) + 4 ( + λ) G X g 3 log( ), (36) from (J 9) with a different factor on the X G. Y G terms The recurrence relations are the same as those for Y A, and the f and g functions are (I 5) and (J between 7b and 8a). The G Y terms are given by (J 9), giving us expressions for Y G of Y G = g log( ) + G Y + g 3 log( ), (37) Y G = g log( ) + 4 ( + λ) G Y g 3 log( ), (38) from (J 7) with a different factor on the Y G. Y H terms The recurrence relations are the same as those for Y C, and the f and g functions are (I ) and (J between 35b and 36a). The G Y terms are given by (J 37), giving us 5

6 expressions for Y H of Y H = g log( ) + H Y + g 3 log( ), (39) Y H = g 5 log( ) + 8 ( + λ)3 H Y + g 6 log( ), (4) from (J 35) with a different factor on the Y H. X M terms The recurrence relations are the same as those for X A, but with the different initial conditions (J 44). The f and g functions are given by (I 5) and (J between 48b and 49a). The M X terms are given by (J 5), giving us expressions for X M of X M = g + g log( ) + M X + g 3 log( ), (4) X M = g 4 + g 5 log( ) + 8 ( + λ)3 M X + g 6 log( ), (4) from (J 48) with a different factor on the X M. Y M terms The recurrence relations are the same as those for Y A, but with the different initial conditions (J 58). The f and g functions are given by (I 5) and (J between 64b and 65a). The M Y terms are given by (J 66), giving us expressions for Y M of Y M = g log( ) + M Y + g 3 log( ), (43) Y M = g 5 log( ) + 8 ( + λ)3 M Y + g 6 log( ), (44) from (J 64) with a different factor on the Y M. Z M terms The recurrence relations are (J 73 76). The f and g functions are given by (I 3) and (J between 79b and 8a). The M Z terms are given by (J 8), giving us expressions for Z M of from (J 79) with a different factor on the Z M. Z M = M Z + g 3 log( ), (45) Z M = 8 ( + λ)3 M Z g 3 log( ), (46) How do we know there are mistakes? The original articles provide tabulated values of the intermediate scalars A X, etc. The easiest way for the reader to confirm mistakes in the formulae is to confirm that the values computed from these formulae do not match those tabulated. For example: 6

7 value from (JO) formulae value in (JO) tables correct value A X (λ = ) B(λ Y = ) Alternatively, these can be spotted by either deriving the equations independently, or observing that the values provided do not match those in the mid-field; both methods are described below. How do we know they are fixed? The reader is invited to derive and confirm the above formulae themselves, should they wish. The method is perhaps best explained in Jeffrey (99), sections II (starting at the paragraph containing the definition of ), III B & III C, where X G is used as an example. We can also confirm that the formulae produce values of the resistance scalars which match those in the mid-field. Figures to 3 demonstrate the near-field values matching to the mid-field values, which have been computed independently for.4 using the two-sphere method of Wilson (3), based on the solution to Stokes flow given by Lamb (93). Recall that the near-field equations are valid only for λ. Acknowledgements With thanks to Anubhab Roy (IIT Madras), Donald L. Koch (Cornell), Pankaj Rohilla (Texas Tech), Yixiang Luo and Aleksandar Donev (NYU) for correcting my own typos. References Ichiki, K., Kobryn, A. E. & Kovalenko, A. 3 Resistance functions for two unequal spheres in linear flow at low Reynolds number with the Navier slip boundary condition. arxiv:3.46 [cond-mat, physics:physics]. Jeffrey, D. J. 99 The calculation of the low Reynolds number resistance functions for two unequal spheres. Physics of Fluids A: Fluid Dynamics 4 (), 6 9. Jeffrey, D. J. & Onishi, Y. 984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-reynolds-number flow. Journal of Fluid Mechanics 39, 6 9. Lamb, H. 93 Hydrodynamics. Cambridge University Press. Wilson, H. J. 3 Stokes flow past three spheres. Journal of Computational Physics 45,

8 XA 4 3 ZM.4. XA 4. YM YA YB YC XG 4 XM YM ZM. YH.5 4 YG..5. XC YH YG XM 4 XC.4.35 XG 4 4 YB YC λ= Resistance scalars for YA Figure : Values of the scalar resistance functions over non-dimensional gap,, for size ratio λ =. Those generated from the near-field formulae are represented by hollow circles (#), and those generated from Lamb s solution (Wilson, 3) are filled circles ( ). The dashed vertical line appears at = λ, recalling that the near-field formulae are only valid for λ. XA 3.5 λ =. Resistance scalars for YA YB. XC YC XG 3 YG YH.5 XM 3 YM YA 3 YC XM XC XG 3 YG YH.5 YB XA ZM YM. 3. ZM Figure : Values of the scalar resistance functions over non-dimensional gap,, for size ratio λ =.. Those generated from the near-field formulae are represented by hollow circles (#), and those generated from Lamb s solution (Wilson, 3) are filled circles ( ). The dashed vertical line appears at = λ, recalling that the near-field formulae are only valid for λ. 8

9 Resistance scalars for λ =. X A.5. Y A. Y B X C Y C X G Y G Y H.35 X M Y M 6 +. Z M X A Y A.5 Y B 6 X C Y C X G Y G.5 5 Y H. X M 4 Y M 6 Z M Figure 3: Values of the scalar resistance functions over non-dimensional gap,, for size ratio λ =.. Those generated from the near-field formulae are represented by hollow circles ( ), and those generated from Lamb s solution (Wilson, 3) are filled circles ( ). The dashed vertical line appears at = λ, recalling that the near-field formulae are only valid for λ. 9

Anomalous effect of turning off long-range mobility interactions in Stokesian Dynamics

Anomalous effect of turning off long-range mobility interactions in Stokesian Dynamics Anomalous effect of turning off long-range mobility interactions in Stokesian Dynamics Adam K. Townsend, a), b) and Helen J. Wilson Department of Mathematics, University College London, Gower Street, London

More information

Lubrication Forces. Ranga University of Edinburgh, UK (Dated: June 21, 2017) I. COMPUTING FORCES AND TORQUES

Lubrication Forces. Ranga University of Edinburgh, UK (Dated: June 21, 2017) I. COMPUTING FORCES AND TORQUES Lubrication Forces Ranga University of Edinburgh UK Dated: June 1 017 I. COMPUTING FORCES AND TORQUES The lubrication force between a pair of particles say p = 1 q = are given as a product between the

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

Fast Brownian Dynamics for Colloidal Suspensions

Fast Brownian Dynamics for Colloidal Suspensions Fast Brownian Dynamics for Colloidal Suspensions Aleksandar Donev, CIMS and collaborators: Florencio Balboa CIMS) Andrew Fiore and James Swan MIT) Courant Institute, New York University Modeling Complex

More information

An Accurate Model for Aerodynamic Interactions of Cloud Droplets

An Accurate Model for Aerodynamic Interactions of Cloud Droplets An Accurate Model for Aerodynamic Interactions of Cloud Droplets B. ROSA, 1,2 L.-P. WANG, 1 M. R. MAXEY, 3 and W. W. GRABOWSKI 4 1 Department of Mechanical Engineering, 126 Spencer Laboratory, University

More information

Stokes Flow Past Three Spheres

Stokes Flow Past Three Spheres Stokes Flow Past Three Spheres Helen J. Wilson Mathematics Department, University College London, Gower Street, London WC1E 6BT, UK Abstract In this paper we present a numerical method to calculate the

More information

Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

More information

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER

DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER DIMENSIONAL ANALYSIS IN MOMENTUM TRANSFER FT I Alda Simões Techniques for Dimensional Analysis Fluid Dynamics: Microscopic analysis, theory Physical modelling Differential balances Limited to simple geometries

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test 2 SOLUTIONS 1. Find the radius of convergence of the power series Show your work. x + x2 2 + x3 3 + x4 4 + + xn

More information

Capillary-gravity waves: The effect of viscosity on the wave resistance

Capillary-gravity waves: The effect of viscosity on the wave resistance arxiv:cond-mat/9909148v1 [cond-mat.soft] 10 Sep 1999 Capillary-gravity waves: The effect of viscosity on the wave resistance D. Richard, E. Raphaël Collège de France Physique de la Matière Condensée URA

More information

arxiv: v1 [physics.flu-dyn] 4 Jul 2015

arxiv: v1 [physics.flu-dyn] 4 Jul 2015 Comments on turbulence theory by Qian and by Edwards and McComb R. V. R. Pandya Department of Mechanical Engineering, arxiv:1507.0114v1 [physics.flu-dyn] 4 Jul 015 University of Puerto Rico at Mayaguez,

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 758/0 MATHEMATICS (MEI) Differential Equations THURSDAY 5 JANUARY 007 Additional materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF) Morning Time:

More information

arxiv: v1 [cs.cg] 10 Oct 2018

arxiv: v1 [cs.cg] 10 Oct 2018 The Lamb-Oseen Vortex and Paint Marbling Aubrey G. Jaffer agj@alum.mit.edu arxiv:8.4646v [cs.cg] Oct 8 Abstract The displacement pattern arising from the decay of a two-dimensional Lamb-Oseen vortex in

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 0 Engineering Mechanics: Statics Unit 9. Moments of nertia Definition of Moments of nertia for Areas Parallel-Axis Theorem for an Area Radius of Gyration of an Area Moments of nertia for Composite Areas

More information

arxiv: v3 [gr-qc] 30 Mar 2009

arxiv: v3 [gr-qc] 30 Mar 2009 THE JEANS MECHANISM AND BULK-VISCOSITY EFFECTS Nakia Carlevaro a, b and Giovanni Montani b, c, d, e a Department of Physics, Polo Scientifico Università degli Studi di Firenze, INFN Section of Florence,

More information

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles Aleksandar Donev Courant Institute, New York University APS DFD Meeting San Francisco, CA Nov 23rd 2014 A. Donev (CIMS)

More information

arxiv: v2 [math-ph] 14 Apr 2008

arxiv: v2 [math-ph] 14 Apr 2008 Exact Solution for the Stokes Problem of an Infinite Cylinder in a Fluid with Harmonic Boundary Conditions at Infinity Andreas N. Vollmayr, Jan-Moritz P. Franosch, and J. Leo van Hemmen arxiv:84.23v2 math-ph]

More information

POWER SERIES REVIEW SOLUTIONS

POWER SERIES REVIEW SOLUTIONS POWER SERIES REVIEW SOLUTIONS 1. Convergence of power series: For the following, find the radius of convergence: a) (m + 1)mx m In CME 10, we only teach you the ratio test, so that is the only test you

More information

arxiv: v1 [math.co] 22 May 2014

arxiv: v1 [math.co] 22 May 2014 Using recurrence relations to count certain elements in symmetric groups arxiv:1405.5620v1 [math.co] 22 May 2014 S.P. GLASBY Abstract. We use the fact that certain cosets of the stabilizer of points are

More information

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry Vectors OPTIONAL - I 32 VECTORS In day to day life situations, we deal with physical quantities such as distance, speed, temperature, volume etc. These quantities are sufficient to describe change of position,

More information

2.5 Stokes flow past a sphere

2.5 Stokes flow past a sphere Lecture Notes on Fluid Dynamics.63J/.J) by Chiang C. Mei, MIT 007 Spring -5Stokes.tex.5 Stokes flow past a sphere Refs] Lamb: Hydrodynamics Acheson : Elementary Fluid Dynamics, p. 3 ff One of the fundamental

More information

For more information visit here:

For more information visit here: The length or the magnitude of the vector = (a, b, c) is defined by w = a 2 +b 2 +c 2 A vector may be divided by its own length to convert it into a unit vector, i.e.? = u / u. (The vectors have been denoted

More information

Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum

Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum Bruce M. Boghosian 1 Hui Tang 1 Aaron Brown 1 Spencer Smith 2 Luis Fazendeiro

More information

Boundary layers for the Navier-Stokes equations : asymptotic analysis.

Boundary layers for the Navier-Stokes equations : asymptotic analysis. Int. Conference on Boundary and Interior Layers BAIL 2006 G. Lube, G. Rapin (Eds) c University of Göttingen, Germany, 2006 Boundary layers for the Navier-Stokes equations : asymptotic analysis. M. Hamouda

More information

Point Vortices in a Periodic Box

Point Vortices in a Periodic Box Typeset with jpsj2.cls Letter Point Vortices in a Periodic Bo Makoto Umeki arxiv:physics/0608266v1 [physics.flu-dyn] 28 Aug 2006 Department of Physics, Graduate School of Science, University

More information

A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows

A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows Ocean Engineering 30 (2003) 153 161 www.elsevier.com/locate/oceaneng A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows Y.M. Shen a,, C.-O. Ng b, A.T. Chwang b a State

More information

The Diophantine equation x n = Dy 2 + 1

The Diophantine equation x n = Dy 2 + 1 ACTA ARITHMETICA 106.1 (2003) The Diophantine equation x n Dy 2 + 1 by J. H. E. Cohn (London) 1. Introduction. In [4] the complete set of positive integer solutions to the equation of the title is described

More information

Modeling of Suspension Flow in Pipes and Rheometers

Modeling of Suspension Flow in Pipes and Rheometers Modeling of Suspension Flow in Pipes and Rheometers Nicos S. Martys, Chiara F. Ferraris, William L. George National Institute of Standards and Technology Abstract: Measurement and prediction of the flow

More information

Multicolour Ramsey Numbers of Odd Cycles

Multicolour Ramsey Numbers of Odd Cycles Multicolour Ramsey Numbers of Odd Cycles JOHNSON, JR; Day, A 2017 Elsevier Inc This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Combinatorial Theory, Series

More information

Two Rigid Spheres in Low-Reynolds Number-Gradient Flow

Two Rigid Spheres in Low-Reynolds Number-Gradient Flow Chiang Mai J. Sci. 2010; 37(2) 171 Chiang Mai J. Sci. 2010; 37(2) : 171-184 www.science.cmu.ac.th/journal-science/josci.html Contributed Paper Two Rigid Spheres in Low-Reynolds Number-Gradient Flow Pikul

More information

Hamiltonian aspects of fluid dynamics

Hamiltonian aspects of fluid dynamics Hamiltonian aspects of fluid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08, 01/31/08 Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 1 / 34 Outline

More information

arxiv: v4 [cond-mat.soft] 5 Jul 2016

arxiv: v4 [cond-mat.soft] 5 Jul 2016 The Raspberry Model for Hydrodynamic Interactions Revisited. II. The Effect of Confinement arxiv:1503.02681v4 [cond-mat.soft] 5 Jul 2016 Joost de Graaf, 1, Toni Peter, 1 Lukas P. Fischer, 1 and Christian

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

Further Concepts for Advanced Mathematics (FP1) FRIDAY 11 JANUARY 2008

Further Concepts for Advanced Mathematics (FP1) FRIDAY 11 JANUARY 2008 ADVANCED SUBSIDIARY GCE 4755/0 MATHEMATICS (MEI) Further Concepts for Advanced Mathematics (FP) FRIDAY JANUARY 008 Additional materials: Answer Booklet (8 pages) Graph paper MEI Examination Formulae and

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive:

Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive: Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive: a) (x 3 y 6 ) 3 x 4 y 5 = b) 4x 2 (3y) 2 (6x 3 y 4 ) 2 = 2. (2pts) Convert to

More information

Electrostatic and other basic interactions of remote particles

Electrostatic and other basic interactions of remote particles Electrostatic and other basic interactions of remote particles Elena F. Grekova elgreco@pdmi.ras.ru ing of the Russian Academy of Sciences, St. Petersburg Foreign member of the group Electrohydrodynamics

More information

Modeling of colloidal gels

Modeling of colloidal gels Modeling of colloidal gels rheology and contact forces 1 Ryohei Seto, TU München Heiko Briesen, TU München Robert Botet, LPS, Paris-Sud Martine Meireles, LGC, Univ. Paul Sabatier Bernard Cabane, ESPCI

More information

Meet #4. Math League SCASD. Self-study Packet. Problem Categories for this Meet (in addition to topics of earlier meets):

Meet #4. Math League SCASD. Self-study Packet. Problem Categories for this Meet (in addition to topics of earlier meets): Math League SCASD Meet #4 Self-study Packet Problem Categories for this Meet (in addition to topics of earlier meets): 1. Mystery: Problem solving 2. : Properties of Circles 3. Number Theory: Modular Arithmetic,

More information

Borel Summability in PDE initial value problems

Borel Summability in PDE initial value problems Borel Summability in PDE initial value problems Saleh Tanveer (Ohio State University) Collaborator Ovidiu Costin & Guo Luo Research supported in part by Institute for Math Sciences (IC), EPSRC & NSF. Main

More information

Arithmetic Algorithms, Part 1

Arithmetic Algorithms, Part 1 Arithmetic Algorithms, Part 1 DPV Chapter 1 Jim Royer EECS January 18, 2019 Royer Arithmetic Algorithms, Part 1 1/ 15 Multiplication à la Français function multiply(a, b) // input: two n-bit integers a

More information

Inertial migration of a sphere in Poiseuille flow

Inertial migration of a sphere in Poiseuille flow J. Fluid Mech. (1989), vol. 203, pp. 517-524 Printed in Great Britain 517 Inertial migration of a sphere in Poiseuille flow By JEFFREY A. SCHONBERG AND E. J. HINCH Department of Applied Mathematics and

More information

1. INTRODUCTION For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B (t), are defined by means of the generating function

1. INTRODUCTION For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B (t), are defined by means of the generating function CONGRUENCES RELATING RATIONAL VALUES OF BERNOULLI AND EULER POLYNOMIALS Glenn J. Fox Dept. of Mathematics and Computer Science, Emory University, Atlanta, GA 30322 E-mail: fox@mathcs.emory.edu (Submitted

More information

Spacetime Computing. A Dynamical Systems Approach to Turbulence. Bruce M. Boghosian. Department of Mathematics, Tufts University

Spacetime Computing. A Dynamical Systems Approach to Turbulence. Bruce M. Boghosian. Department of Mathematics, Tufts University Spacetime Computing A Dynamical Systems Approach to Turbulence Bruce M. Boghosian, Tufts University Presented at 3rd NA-HPC Roadmap Workshop, Royal Society, London January 26, 2009 Acknowledgements: Hui

More information

MATH 241 Practice Second Midterm Exam - Fall 2012

MATH 241 Practice Second Midterm Exam - Fall 2012 MATH 41 Practice Second Midterm Exam - Fall 1 1. Let f(x = { 1 x for x 1 for 1 x (a Compute the Fourier sine series of f(x. The Fourier sine series is b n sin where b n = f(x sin dx = 1 = (1 x cos = 4

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 May 2000

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 May 2000 arxiv:cond-mat/0005408v1 [cond-mat.stat-mech] 24 May 2000 Non-extensive statistical mechanics approach to fully developed hydrodynamic turbulence Christian Beck School of Mathematical Sciences, Queen Mary

More information

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010 An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010 John P. D Angelo, Univ. of Illinois, Urbana IL 61801.

More information

arxiv: v1 [physics.flu-dyn] 21 Jan 2015

arxiv: v1 [physics.flu-dyn] 21 Jan 2015 January 2015 arxiv:1501.05620v1 [physics.flu-dyn] 21 Jan 2015 Vortex solutions of the generalized Beltrami flows to the incompressible Euler equations Minoru Fujimoto 1, Kunihiko Uehara 2 and Shinichiro

More information

arxiv: v1 [physics.flu-dyn] 16 May 2014

arxiv: v1 [physics.flu-dyn] 16 May 2014 The Flow of Newtonian and power law fluids in elastic tubes Taha Sochi University College London, Department of Physics & Astronomy, Gower Street, London, WC1E 6BT Email: t.sochi@ucl.ac.uk. Abstract arxiv:145.4115v1

More information

Asymptotic formulae for the number of repeating prime sequences less than N

Asymptotic formulae for the number of repeating prime sequences less than N otes on umber Theory and Discrete Mathematics Print ISS 30 532, Online ISS 2367 8275 Vol. 22, 206, o. 4, 29 40 Asymptotic formulae for the number of repeating prime sequences less than Christopher L. Garvie

More information

A note on interior vs. boundary-layer damping of surface waves in a circular cylinder

A note on interior vs. boundary-layer damping of surface waves in a circular cylinder J. Fluid Mech. (1998), vol. 364, pp. 319 323. Printed in the United Kingdom c 1998 Cambridge University Press 319 A note on interior vs. boundary-layer damping of surface waves in a circular cylinder By

More information

Drag Force Simulations of Particle Agglomerates with the Lattice-Boltzmann Method

Drag Force Simulations of Particle Agglomerates with the Lattice-Boltzmann Method Drag Force Simulations of Particle Agglomerates with the Lattice-Boltzmann Method Christian Feichtinger, Nils Thuerey, Ulrich Ruede Christian Binder, Hans-Joachim Schmid, Wolfgang Peukert Friedrich-Alexander-Universität

More information

of Classical Constants Philippe Flajolet and Ilan Vardi February 24, 1996 Many mathematical constants are expressed as slowly convergent sums

of Classical Constants Philippe Flajolet and Ilan Vardi February 24, 1996 Many mathematical constants are expressed as slowly convergent sums Zeta Function Expansions of Classical Constants Philippe Flajolet and Ilan Vardi February 24, 996 Many mathematical constants are expressed as slowly convergent sums of the form C = f( ) () n n2a for some

More information

Soft lubrication, lift and optimality

Soft lubrication, lift and optimality QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Soft lubrication, lift and optimality QuickTime

More information

A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos" l u T H I S COMMl'NiTY IN Wilcox

A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos l u T H I S COMMl'NiTY IN Wilcox G 093 < 87 G 9 G 4 4 / - G G 3 -!! - # -G G G : 49 q» - 43 8 40 - q - z 4 >» «9 0-9 - - q 00! - - q q!! ) 5 / : \ 0 5 - Z : 9 [ -?! : ) 5 - - > - 8 70 / q - - - X!! - [ 48 - -!

More information

Mark Scheme (Results) January 2007

Mark Scheme (Results) January 2007 Mark Scheme (Results) January 007 GCE GCE Mathematics Core Mathematics C (666) Edexcel Limited. Registered in England and Wales No. 96750 Registered Office: One90 High Holborn, London WCV 7BH January 007

More information

(Refer Slide Time: 02:11 to 04:19)

(Refer Slide Time: 02:11 to 04:19) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 24 Analog Chebyshev LPF Design This is the 24 th lecture on DSP and

More information

MAT 243 Test 2 SOLUTIONS, FORM A

MAT 243 Test 2 SOLUTIONS, FORM A MAT 24 Test 2 SOLUTIONS, FORM A 1. [1 points] Prove the following using Mathematical Induction. L 2 i = L n L n+1 + 2 where L is the Lucas sequence: L 0 = 2 L 1 = 1 L n = L n 1 + L n 2, n 2 Solution: Let

More information

Form #221 Page 1 of 7

Form #221 Page 1 of 7 Version Quiz #2 Form #221 Name: A Physics 2212 GH Spring 2016 Recitation Section: Print your name, quiz form number (3 digits at the top of this form), and student number (9 digit Georgia Tech ID number)

More information

Supplementary Material

Supplementary Material Mangili et al. Supplementary Material 2 A. Evaluation of substrate Young modulus from AFM measurements 3 4 5 6 7 8 Using the experimental correlations between force and deformation from AFM measurements,

More information

Discontinuous Shear Thickening

Discontinuous Shear Thickening Discontinuous Shear Thickening dynamic jamming transition Ryohei Seto, Romain Mari, Jeffrey F. Morris, Morton M. Denn Levich Institute, City College of New York First experimental data Williamson and Hecker

More information

Stochastic Stokes drift of a flexible dumbbell

Stochastic Stokes drift of a flexible dumbbell Stochastic Stokes drift of a flexible dumbbell Kalvis M. Jansons arxiv:math/0607797v4 [math.pr] 22 Mar 2007 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK January

More information

Ridge analysis of mixture response surfaces

Ridge analysis of mixture response surfaces Statistics & Probability Letters 48 (2000) 3 40 Ridge analysis of mixture response surfaces Norman R. Draper a;, Friedrich Pukelsheim b a Department of Statistics, University of Wisconsin, 20 West Dayton

More information

A simple and compact approach to hydrodynamic using geometric algebra. Abstract

A simple and compact approach to hydrodynamic using geometric algebra. Abstract A simple and compact approach to hydrodynamic using geometric algebra Xiong Wang (a) Center for Chaos and Complex Networks (b) Department of Electronic Engineering, City University of Hong Kong, Hong Kong

More information

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Pradipto and Hisao Hayakawa Yukawa Insitute for Theoretical Physics Kyoto University Rheology of disordered

More information

Computational Fluid Dynamics Prof. Sreenivas Jayanti Department of Computer Science and Engineering Indian Institute of Technology, Madras

Computational Fluid Dynamics Prof. Sreenivas Jayanti Department of Computer Science and Engineering Indian Institute of Technology, Madras Computational Fluid Dynamics Prof. Sreenivas Jayanti Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 20 Equations governing fluid flow with chemical reactions

More information

arxiv: v1 [math.co] 22 Apr 2014

arxiv: v1 [math.co] 22 Apr 2014 Groups of otating Squares avi Montenegro David A. Huckaby Elaine White Harmon arxiv:1404.5455v1 [math.co] Apr 014 Abstract This paper discusses the permutations that are generated by rotating k k blocks

More information

Section 5.2 Series Solution Near Ordinary Point

Section 5.2 Series Solution Near Ordinary Point DE Section 5.2 Series Solution Near Ordinary Point Page 1 of 5 Section 5.2 Series Solution Near Ordinary Point We are interested in second order homogeneous linear differential equations with variable

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

STOKESIAN DYNAMICS AND THE SETTLING BEHAVIOUR OF PARTICLE-FIBRE-MIXTURES

STOKESIAN DYNAMICS AND THE SETTLING BEHAVIOUR OF PARTICLE-FIBRE-MIXTURES STOKESIAN DYNAMICS AND THE SETTLING BEHAVIOUR OF PARTICLE-FIBRE-MIXTURES Dipl.-Math. techn. Markus Feist*, Dipl.-Math. techn. Florian Keller*, Prof. Dr. Willy Dörfler**, Prof. Dr.-Ing. Herman Nirschl*

More information

Energy minimization for the flow in ducts and networks

Energy minimization for the flow in ducts and networks Energy minimization for the flow in ducts and networks Taha Sochi University College London, Department of Physics & Astronomy, Gower Street, London, WC1E 6BT Email: t.sochi@ucl.ac.uk. Abstract The present

More information

HANDOUT ABOUT THE TABLE OF SIGNS METHOD. The method To find the sign of a rational (including polynomial) function

HANDOUT ABOUT THE TABLE OF SIGNS METHOD. The method To find the sign of a rational (including polynomial) function HANDOUT ABOUT THE TABLE OF SIGNS METHOD NIKOS APOSTOLAKIS The method To find the sign of a rational (including polynomial) function = p(x) q(x) where p(x) and q(x) have no common factors proceed as follows:

More information

Volume of n-dimensional ellipsoid

Volume of n-dimensional ellipsoid Sciencia Acta Xaveriana Volume 1 ISSN. 0976-115 No. 1 pp. 101 106 Volume of n-dimensional ellipsoid A. John Wilson Department of Mathematics, Coimbatore Institute of Technology, Coimbatore 641014. India.

More information

arxiv: v1 [cond-mat.soft] 25 Jun 2007

arxiv: v1 [cond-mat.soft] 25 Jun 2007 Continuous breakdown of Purcell s scallop theorem with inertia Eric Lauga Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. (Dated: June 13,

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 4755/01 MATHEMATICS (MEI) Further Concepts for Advanced Mathematics (FP1) MONDAY 11 JUNE 2007 Additional materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae

More information

Teddy Einstein Math 4320

Teddy Einstein Math 4320 Teddy Einstein Math 4320 HW4 Solutions Problem 1: 2.92 An automorphism of a group G is an isomorphism G G. i. Prove that Aut G is a group under composition. Proof. Let f, g Aut G. Then f g is a bijective

More information

Seakeeping of Ships. { ζ + a } 3 ζ 3, ζ = ξ + i η (1)

Seakeeping of Ships. { ζ + a } 3 ζ 3, ζ = ξ + i η (1) Seakeeping of Ships By Professor Masashi KASHIWAGI Problem Set: No. Date: 27 January 2010 Due: 28 February 2010 By using the computer program (iem2d.f) for the boundary-element (Green function) method

More information

( ) = ( ) ( ) = ( ) = + = = = ( ) Therefore: , where t. Note: If we start with the condition BM = tab, we will have BM = ( x + 2, y + 3, z 5)

( ) = ( ) ( ) = ( ) = + = = = ( ) Therefore: , where t. Note: If we start with the condition BM = tab, we will have BM = ( x + 2, y + 3, z 5) Chapter Exercise a) AB OB OA ( xb xa, yb ya, zb za),,, 0, b) AB OB OA ( xb xa, yb ya, zb za) ( ), ( ),, 0, c) AB OB OA x x, y y, z z (, ( ), ) (,, ) ( ) B A B A B A ( ) d) AB OB OA ( xb xa, yb ya, zb za)

More information

Team Solutions. November 19, qr = (m + 2)(m 2)

Team Solutions. November 19, qr = (m + 2)(m 2) Team s November 19, 2017 1. Let p, q, r, and s be four distinct primes such that p + q + r + s is prime, and the numbers p 2 + qr and p 2 + qs are both perfect squares. What is the value of p + q + r +

More information

arxiv: v1 [nucl-th] 21 Nov 2018

arxiv: v1 [nucl-th] 21 Nov 2018 arxiv:8.0889v [nucl-th] 2 Nov 208 Strongly intensive fluctuations and correlations in ultrarelativistic nuclear collisions in the model with string fusion Vladimir Kovalenko, Saint Petersburg State University

More information

arxiv:physics/ v1 [physics.flu-dyn] 28 Feb 2003

arxiv:physics/ v1 [physics.flu-dyn] 28 Feb 2003 Experimental Lagrangian Acceleration Probability Density Function Measurement arxiv:physics/0303003v1 [physics.flu-dyn] 28 Feb 2003 N. Mordant, A. M. Crawford and E. Bodenschatz Laboratory of Atomic and

More information

"APPENDIX. Properties and Construction of the Root Loci " E-1 K ¼ 0ANDK ¼1POINTS

APPENDIX. Properties and Construction of the Root Loci  E-1 K ¼ 0ANDK ¼1POINTS Appendix-E_1 5/14/29 1 "APPENDIX E Properties and Construction of the Root Loci The following properties of the root loci are useful for constructing the root loci manually and for understanding the root

More information

Coupling an Incompressible Fluctuating Fluid with Suspended Structures

Coupling an Incompressible Fluctuating Fluid with Suspended Structures Coupling an Incompressible Fluctuating Fluid with Suspended Structures Aleksandar Donev Courant Institute, New York University & Rafael Delgado-Buscalioni, UAM Florencio Balboa Usabiaga, UAM Boyce Griffith,

More information

Threshold of singularity formation in the semilinear wave equation

Threshold of singularity formation in the semilinear wave equation PHYSICAL REVIEW D 71, 044019 (2005) Threshold of singularity formation in the semilinear wave equation Steven L. Liebling Department of Physics, Long Island University-C.W. Post Campus, Brookville, New

More information

Fig. 3.1? Hard core potential

Fig. 3.1? Hard core potential 6 Hard Sphere Gas The interactions between the atoms or molecules of a real gas comprise a strong repulsion at short distances and a weak attraction at long distances Both of these are important in determining

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach Florencio Balboa Usabiaga, 1 Bakytzhan Kallemov, 1, 2 Blaise Delmotte, 1 Amneet Pal Singh Bhalla, 3 Boyce

More information

Approximating MAX-E3LIN is NP-Hard

Approximating MAX-E3LIN is NP-Hard Approximating MAX-E3LIN is NP-Hard Evan Chen May 4, 2016 This lecture focuses on the MAX-E3LIN problem. We prove that approximating it is NP-hard by a reduction from LABEL-COVER. 1 Introducing MAX-E3LIN

More information

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: W: tssm.com.au E: TSSM 2011 Page 1 of 8

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: W: tssm.com.au E: TSSM 2011 Page 1 of 8 MATHEMATICAL METHODS CAS Teach Yourself Series Topic 3: Functions and Relations Inverse Functions, Hybrid Functions, Modulus Functions, Composite Functions and Functional Equations A: Level 4, 474 Flinders

More information

Chapter 1: Concept of similarity. Similarity and Transport Phenomena in Fluid Dynamics Christophe Ancey

Chapter 1: Concept of similarity. Similarity and Transport Phenomena in Fluid Dynamics Christophe Ancey Chapter 1: Concept of similarity Similarity and Transport Phenomena in Fluid Dynamics Christophe Ancey Chapter 1: Concept of similarity A few definitions Geometrical similarity Fractal similarity Physical

More information

A wall-function approach to incorporating Knudsen-layer effects in gas micro flow simulations

A wall-function approach to incorporating Knudsen-layer effects in gas micro flow simulations A wall-function approach to incorporating Knudsen-layer effects in gas micro flow simulations D. A. Lockerby 1, J. M. Reese 2 and M. A. Gallis 3 1 Department of Mechanical Engineering, King s College London,

More information

Complex Analysis Slide 9: Power Series

Complex Analysis Slide 9: Power Series Complex Analysis Slide 9: Power Series MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Slide 9: Power Series 1 / 37 Learning Outcome of this Lecture We learn Sequence

More information

Moments of Inertia (7 pages; 23/3/18)

Moments of Inertia (7 pages; 23/3/18) Moments of Inertia (7 pages; 3/3/8) () Suppose that an object rotates about a fixed axis AB with angular velocity θ. Considering the object to be made up of particles, suppose that particle i (with mass

More information

Initial position, x p (0)/L

Initial position, x p (0)/L .4 ) xp().2 ) ( 2L 2 xp Dc ( Displacement, /L.2.4.5.5 Initial position, x p ()/L Supplementary Figure Computed displacements of (red) positively- and (blue) negatively-charged particles at several CO 2

More information

Accelerated Stokesian Dynamics simulations

Accelerated Stokesian Dynamics simulations J. Fluid Mech. (2001), vol. 448, pp. 115 146. c 2001 Cambridge University Press DOI: 10.1017/S0022112001005912 Printed in the United Kingdom 115 Accelerated Stokesian Dynamics simulations By ASIMINA SIEROU

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 4761/01 MATHEMATICS (MEI) Mechanics 1 WEDNESDAY 10 JANUARY 007 Additional materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF) Afternoon

More information