Coupling an Incompressible Fluctuating Fluid with Suspended Structures

Size: px
Start display at page:

Download "Coupling an Incompressible Fluctuating Fluid with Suspended Structures"

Transcription

1 Coupling an Incompressible Fluctuating Fluid with Suspended Structures Aleksandar Donev Courant Institute, New York University & Rafael Delgado-Buscalioni, UAM Florencio Balboa Usabiaga, UAM Boyce Griffith, Courant SIAM Conference on Mathematical Aspects of Materials Science Philadelphia, June 2013 A. Donev (CIMS) IICM 6/9/ / 32

2 Outline 1 Incompressible Inertial Coupling 2 Numerics 3 Results 4 Outlook A. Donev (CIMS) IICM 6/9/ / 32

3 Levels of Coarse-Graining Figure: From Pep Español, Statistical Mechanics of Coarse-Graining A. Donev (CIMS) IICM 6/9/ / 32

4 Incompressible Inertial Coupling Fluid-Structure Coupling We want to construct a bidirectional coupling between a fluctuating fluid and a small spherical Brownian particle (blob). Macroscopic coupling between flow and a rigid sphere: No-slip boundary condition at the surface of the Brownian particle. Force on the bead is the integral of the (fluctuating) stress tensor over the surface. The above two conditions are questionable at nanoscales, but even worse, they are very hard to implement numerically in an efficient and stable manner. We saw already that fluctuations should be taken into account at the continuum level. A. Donev (CIMS) IICM 6/9/ / 32

5 Incompressible Inertial Coupling Brownian Particle Model Consider a Brownian particle of size a with position q(t) and velocity u = q, and the velocity field for the fluid is v(r, t). We do not care about the fine details of the flow around a particle, which is nothing like a hard sphere with stick boundaries in reality anyway. Take an Immersed Boundary Method (IBM) approach and describe the fluid-blob interaction using a localized smooth kernel δ a ( r) with compact support of size a (integrates to unity). Often presented as an interpolation function for point Lagrangian particles but here a is a physical size of the particle (as in the Force Coupling Method (FCM) of Maxey et al [1]). We will call our particles blobs since they are not really point particles. A. Donev (CIMS) IICM 6/9/ / 32

6 Incompressible Inertial Coupling Local Averaging and Spreading Operators Postulate a no-slip condition between the particle and local fluid velocities, q = u = [J (q)] v = δ a (q r) v (r, t) dr, where the local averaging linear operator J(q) averages the fluid velocity inside the particle to estimate a local fluid velocity. The induced force density in the fluid because of the particle is: f = λδ a (q r) = [S (q)] λ, where the local spreading linear operator S(q) is the reverse (adjoint) of J(q). The physical volume of the particle V is related to the shape and width of the kernel function via [ 1 V = (JS) 1 = δa 2 (r) dr]. (1) A. Donev (CIMS) IICM 6/9/ / 32

7 Incompressible Inertial Coupling Fluid-Structure Direct Coupling The equations of motion in our coupling approach are postulated to be [2] ρ ( t v + v v) = π σ [S (q)] λ + thermal drift m e u = F (q) + λ s.t. u = [J (q)] v and v = 0, where λ is the fluid-particle force, F (q) = U (q) is the externally applied force, and m e is the excess mass of the particle. The stress tensor σ = η ( v + T v ) + Σ includes viscous (dissipative) and stochastic contributions. The stochastic stress Σ = (k B T η) 1/2 ( W + W T ) drives the Brownian motion. Note momentum is conserved. In the existing (stochastic) IBM approach [3] inertial effects are ignored, m e = 0 and thus λ = F. A. Donev (CIMS) IICM 6/9/ / 32

8 Incompressible Inertial Coupling Effective Inertia Eliminating λ we get the particle equation of motion m u = V J ( π + σ) + F + blob correction, where the effective mass m = m e + m f includes the mass of the excluded fluid m f = ρ V = ρ (JS) 1. For the fluid we get the effective equation [ ( )] ρ eff t v = ρ (v ) + m e S u q J v π σ + SF where the effective mass density matrix (operator) is ρ eff = ρ + m e PSJP, where P is the L 2 projection operator onto the linear subspace v = 0, with the appropriate BCs. A. Donev (CIMS) IICM 6/9/ / 32

9 Incompressible Inertial Coupling Fluctuation-Dissipation Balance One must ensure fluctuation-dissipation balance in the coupled fluid-particle system. We can eliminate the particle velocity using the no-slip constraint, so only v and q are independent DOFs. This really means that the stationary (equilibrium) distribution must be the Gibbs distribution P (v, q) = Z 1 exp [ βh] where the Hamiltonian (coarse-grained free energy) is u 2 H (v, q) = U (q) + m e 2 + ρ v 2 2 dr. v T ρ = U (q) + eff v dr 2 No entropic contribution to the coarse-grained free energy because our formulation is isothermal and the particles do not have internal structure. A. Donev (CIMS) IICM 6/9/ / 32

10 contd. Incompressible Inertial Coupling A key ingredient of fluctuation-dissipation balance is that that the fluid-particle coupling is non-dissipative, i.e., in the absence of viscous dissipation the kinetic energy H is conserved. Crucial for energy conservation is that J(q) and S(q) are adjoint, S = J, (Jv) u = v (Su) dr = δ a (q r) (v u) dr. (2) The dynamics is not incompressible in phase space and thermal drift correction terms need to be included [4], but they turn out to vanish for incompressible flow (gradient of scalar). The spatial discretization should preserve these properties: discrete fluctuation-dissipation balance (DFDB). A. Donev (CIMS) IICM 6/9/ / 32

11 Numerical Scheme Numerics Both compressible (explicit) and incompressible schemes have been implemented by Florencio Balboa (UAM) on GPUs. Spatial discretization is based on previously-developed staggered schemes for fluctuating hydro [5] and the IBM kernel functions of Charles Peskin. Temporal discretization follows a second-order splitting algorithm (move particle + update momenta), and is limited in stability only by advective CFL. The scheme ensures strict conservation of momentum and (almost exactly) enforces the no-slip condition at the end of the time step. Continuing work on temporal integrators that ensure the correct equilibrium distribution and diffusive (Brownian) dynamics. A. Donev (CIMS) IICM 6/9/ / 32

12 Spatial Discretization Numerics IBM kernel functions of Charles Peskin are used to average Jv { d } φ a [q α (r k ) α ] v k. k grid α=1 Discrete spreading operator S = ( V f ) 1 J (SF) k = ( x y z) 1 { d α=1 φ a [q α (r k ) α ] The discrete kernel function φ a gives translational invariance φ a (q r k ) = 1 and (q r k ) φ a (q r k ) = 0, k grid k grid k grid φ 2 a (q r k ) = V 1 = const., (3) independent of the position of the (Lagrangian) particle q relative to the underlying (Eulerian) velocity grid. A. Donev (CIMS) IICM 6/9/ / 32 } F.

13 Numerics Temporal Discretization Predict particle position at midpoint: q n+ 1 2 = q n + t 2 Jn v n. Solve the coupled constrained momentum conservation equations for v n+1 and u n+1 and the Lagrange multipliers π n+ 1 2 (hard to do efficiently!) λ n+ 1 2 ρ vn+1 v n t + π n+ 1 2 = (ρvv T + σ ) n+ 1 2 S n+ 1 2 λ n+ 1 2 m e u n+1 = m e u n + t F n t λ n+ 1 2 v n+1 = 0 Correct particle position, u n+1 = J n+ 1 2 v n+1 + q n+1 = q n + t 2 Jn+ 1 2 and ( J n+ 1 2 J n ) v n, (4) ( v n+1 + v n). A. Donev (CIMS) IICM 6/9/ / 32

14 Numerics Temporal Integrator (sketch) Predict particle position at midpoint: q n+ 1 2 = q n + t 2 Jn v n. Solve unperturbed fluid equation using stochastic Crank-Nicolson for viscous+stochastic: ρṽn+1 v n + π t = η ( 2 2 ṽ n+1 + v n) + Σ n + S n+ 1 2 F n adv. ṽ n+1 = 0, where we use the Adams-Bashforth method for the advective (kinetic) fluxes, and the discretization of the stochastic flux is described in Ref. [5], ( ) Σ n kb T η 1/2 [ ] = (W n ) + (W n ) T, V t where W n is a (symmetrized) collection of i.i.d. unit normal variates. A. Donev (CIMS) IICM 6/9/ / 32

15 contd. Numerics Solve for inertial velocity perturbation from the particle v (too technical to present), and update: v n+1 = ṽ n+1 + v. If neutrally-buyoant m e = 0 this is a non-step, v = 0. Update particle velocity in a momentum conserving manner, Correct particle position, u n+1 = J n+ 1 2 v n+1 + slip correction. q n+1 = q n + t ( 2 Jn+ 1 2 v n+1 + v n). A. Donev (CIMS) IICM 6/9/ / 32

16 Implementation Numerics With periodic boundary conditions all required linear solvers (Poisson, Helmholtz) can be done using FFTs only. Florencio Balboa has implemented the algorithm on GPUs using CUDA in a public-domain code (combines compressible and incompressible algorithms): Our implicit algorithm is able to take a rather large time step size, as measured by the advective and viscous CFL numbers: α = V t x, β = ν t x 2, (5) where V is a typical advection speed. Note that for compressible flow there is a sonic CFL number α s = c t/ x α, where c is the speed of sound. Our scheme should be used with α 1. The scheme is stable for any β, but to get the correct thermal dynamics one should use β 1. A. Donev (CIMS) IICM 6/9/ / 32

17 Results Equilibrium Radial Correlation Function Figure: Equilibrium radial distribution function g 2 (r) for a suspension of blobs interacting with a repulsive LJ (WCA) potential. A. Donev (CIMS) IICM 6/9/ / RDF g(r) m e =0 m e =m f Monte Carlo r / σ

18 Results Hydrodynamic Interactions 20 F / F Stokes m e =m f, α=0.01 m e =m f, α=0.1 m e =m f, α=0.25 Rotne-Prager (RP) RP + Lubrication RPY Distance d/r H Figure: Effective hydrodynamic force between two approaching blobs at small F Reynolds numbers, F St = 2F0 6πηR H v r. A. Donev (CIMS) IICM 6/9/ / 32

19 Results Velocity Autocorrelation Function We investigate the velocity autocorrelation function (VACF) for the immersed particle C(t) = u(t 0 ) u(t 0 + t) From equipartition theorem C(0) = u 2 = d k BT m. However, for an incompressible fluid the kinetic energy of the particle that is less than equipartition, u 2 = [ ] m 1 ( f 1 + d k ) BT, (d 1)m m as predicted also for a rigid sphere a long time ago, m f /m = ρ /ρ. Hydrodynamic persistence (conservation) gives a long-time power-law tail C(t) (kt /m)(t/t visc ) 3/2 not reproduced in Brownian dynamics. A. Donev (CIMS) IICM 6/9/ / 32

20 Numerical VACF Results C(t) / (kt/m) Rigid sphere c=16 c=8 c=4 c=2 c=1 Incompress t / t ν Figure: VACF for a blob with m e = m f = ρ V. A. Donev (CIMS) IICM 6/9/ / 32

21 Diffusive Dynamics Results At long times, the motion of the particle is diffusive with a diffusion coefficient χ = lim t χ(t) = t=0 C(t)dt, where χ(t) = q2 (t) 2t The Stokes-Einstein relation predicts = 1 2dt [q(t) q(0)]2. χ = k BT µ (Einstein) and χ SE = k BT 6πηR H (Stokes), (6) where for our blob with the 3-point kernel function R H 0.9 x. The dimensionless Schmidt number S c = ν/χ SE controls the separation of time scales between v (r, t) and q(t). Self-consistent theory [6] predicts a correction to Stokes-Einstein s relation for small S c, ( χ ν + χ ) = k BT. 2 6πρR H A. Donev (CIMS) IICM 6/9/ / 32

22 Results Stokes-Einstein Corrections 1 χ / χ SE Self-consistent theory From VACF integral From mobility Schmidt number S c Figure: Corrections to Stokes-Einstein with changing viscosity ν = η/ρ, m e = m f = ρ V. A. Donev (CIMS) IICM 6/9/ / 32

23 Results Stokes-Einstein Corrections (2D) pt kernel 4pt kernel χ (ν+χ/2) = const χ (ν+χ) = const χ / SE Approximate Sc=ν/χ SE Figure: Corrections to Stokes-Einstein with changing viscosity ν = η/ρ, m e = m f = ρ V. A. Donev (CIMS) IICM 6/9/ / 32

24 Outlook Overdamped Limit (m e = 0) [With Eric Vanden-Eijnden] In the overdamped limit, in which momentum diffuses much faster than the particles, the motion of the blob at the diffusive time scale can be described by the fluid-free Stratonovich stochastic differential equation q = µf + J (q) v (r, t) where the random advection velocity is a white-in-time process is the solution of the steady Stokes equation ( ) π = ν 2 v + 2νρ 1 k B T W such that v = 0, and the blob mobility is given by the Stokes solution operator L 1, µ (q) = J (q) L 1 S (q). A. Donev (CIMS) IICM 6/9/ / 32

25 Outlook Brownian Dynamics (BD) For multi-particle suspensions the mobility matrix M (Q) = { } µ ij depends on the positions of all particles Q = {q i }, and the limiting equation in the Ito formulation is the usual Brownian Dynamics equation Q = MF + ( ) 2k B T M 1 2 W+kB T Q M. It is possible to construct temporal integrators for the overdamped equations, without ever constructing M 1 2 W (work in progress). The limiting equation when excess inertia is included has not been derived though it is believed inertia does not enter in the overdamped equations. A. Donev (CIMS) IICM 6/9/ / 32

26 Outlook BD without Green s Functions The following algorithm can be shown to solve the Brownian Dynamics SDE: Solve a steady-state Stokes problem (here δ 1) Gπ n = η 2 v n + Σ n + S n F (q n ) + k [ ( BT S q n + δ δ 2 W n) ( S q n δ 2 W n)] Wn Dv n = 0. Predict particle position: Correct particle position, q n+1 = q n + tj n v n. q n+1 = q n + t 2 ( J n + J n+1) v n. A. Donev (CIMS) IICM 6/9/ / 32

27 Conclusions Outlook Fluctuating hydrodynamics seems to be a very good coarse-grained model for fluids, and can be coupled to immersed particles to model Brownian suspensions. The minimally-resolved blob approach provides a low-cost but reasonably-accurate representation of rigid particles in flow. Particle inertia can be included in the coupling between blob particles and a fluctuating incompressible fluid. Stokes-Einstein s relation only holds for large Schmidt numbers. Overdamped limit can be handled just by changing the temporal integrator. More complex particle shapes can be built out of a collection of blobs. A. Donev (CIMS) IICM 6/9/ / 32

28 References Outlook S. Lomholt and M.R. Maxey. Force-coupling method for particulate two-phase flow: Stokes flow. J. Comp. Phys., 184(2): , F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Inertial Coupling Method for particles in an incompressible fluctuating fluid. Submitted, code available at P. J. Atzberger, P. R. Kramer, and C. S. Peskin. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales. J. Comp. Phys., 224: , P. J. Atzberger. Stochastic Eulerian-Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations. J. Comp. Phys., 230: , F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin. Staggered Schemes for Incompressible Fluctuating Hydrodynamics. SIAM J. Multiscale Modeling and Simulation, 10(4): , A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell. Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations. J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, A. Donev (CIMS) IICM 6/9/ / 32

Coupling an Incompressible Fluctuating Fluid with Suspended Structures

Coupling an Incompressible Fluctuating Fluid with Suspended Structures Coupling an Incompressible Fluctuating Fluid with Suspended Structures Aleksandar Donev Courant Institute, New York University & Rafael Delgado-Buscalioni, UAM Florencio Balboa Usabiaga, UAM Boyce Griffith,

More information

Stochastic Simulation of Complex Fluid Flows

Stochastic Simulation of Complex Fluid Flows Stochastic Simulation of Complex Fluid Flows Aleksandar Donev Courant Institute, New York University & Alejandro L. Garcia, SJSU John B. Bell, LBNL Florencio Balboa Usabiaga, UAM Rafael Delgado-Buscalioni,

More information

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles Aleksandar Donev Courant Institute, New York University APS DFD Meeting San Francisco, CA Nov 23rd 2014 A. Donev (CIMS)

More information

Inertial Coupling Method for particles in an incompressible fluctuating fluid

Inertial Coupling Method for particles in an incompressible fluctuating fluid Inertial Coupling Method for particles in an incompressible fluctuating fluid Florencio Balboa Usabiaga, 1 Rafael Delgado-Buscalioni, 1 Boyce E. Griffith,, 3 and Aleksandar Donev 3, 1 Departamento de Física

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

The Truth about diffusion (in liquids)

The Truth about diffusion (in liquids) The Truth about diffusion (in liquids) Aleksandar Donev Courant Institute, New York University & Eric Vanden-Eijnden, Courant In honor of Berni Julian Alder LLNL, August 20th 2015 A. Donev (CIMS) Diffusion

More information

Multiscale Methods for Hydrodynamics of Complex Fluids

Multiscale Methods for Hydrodynamics of Complex Fluids 1 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-PRES-408395). A. Donev (LLNL) Complex Fluids Nov.

More information

Fast Brownian Dynamics for Colloidal Suspensions

Fast Brownian Dynamics for Colloidal Suspensions Fast Brownian Dynamics for Colloidal Suspensions Aleksandar Donev, CIMS and collaborators: Florencio Balboa CIMS) Andrew Fiore and James Swan MIT) Courant Institute, New York University Modeling Complex

More information

arxiv: v2 [math.na] 23 Nov 2015

arxiv: v2 [math.na] 23 Nov 2015 An Immersed Boundary Method for Rigid Bodies Bakytzhan Kallemov, 1 Amneet Pal Singh Bhalla, 2 Boyce E. Griffith, 3 and Aleksandar Donev 1, 1 Courant Institute of Mathematical Sciences, New York University,

More information

Temporal Integrators for Langevin Equations with Applications to Fluctuating Hydrodynamics and Brownian Dynamics

Temporal Integrators for Langevin Equations with Applications to Fluctuating Hydrodynamics and Brownian Dynamics Temporal Integrators for Langevin Equations with Applications to Fluctuating Hydrodynamics and Brownian Dynamics by Steven Delong A dissertation submitted in partial fulfillment of the requirements for

More information

Staggered Schemes for Fluctuating Hydrodynamics

Staggered Schemes for Fluctuating Hydrodynamics Staggered Schemes for Fluctuating Hydrodynamics Florencio Balboa Usabiaga, 1 John B. Bell, Rafael Delgado-Buscalioni, 1 Aleksandar Donev, 3, Thomas G. Fai, 3 Boyce E. Griffith, 4 and Charles S. Peskin

More information

Fluctuating hydrodynamics of complex fluid flows

Fluctuating hydrodynamics of complex fluid flows Fluctuating hydrodynamics of complex fluid flows Aleksandar Donev Courant Institute, New York University CECAM Workshop Molecular Dynamics meets Fluctuating Hydrodynamics Madrid, May 11th 2015 A. Donev

More information

Reversible Diffusive Mixing by Thermal Velocity FluctuationsThe importance of hydrodynamic fluctuations to diffusion in liquids

Reversible Diffusive Mixing by Thermal Velocity FluctuationsThe importance of hydrodynamic fluctuations to diffusion in liquids Reversible Diffusive Mixing by Thermal Velocity FluctuationsThe importance of hydrodynamic fluctuations to diffusion in liquids Aleksandar Donev, 1, Thomas G. Fai, 1 and Eric Vanden-Eijnden 1, 1 Courant

More information

A fluctuating boundary integral method for Brownian suspensions

A fluctuating boundary integral method for Brownian suspensions A fluctuating boundary integral method for Brownian suspensions Aleksandar Donev, CIMS and collaborators: CIMS: Bill Bao, Florencio Balboa, Leslie Greengard, Manas Rachh External: Andrew Fiore and James

More information

BROWNIAN DYNAMICS SIMULATIONS WITH HYDRODYNAMICS. Abstract

BROWNIAN DYNAMICS SIMULATIONS WITH HYDRODYNAMICS. Abstract BROWNIAN DYNAMICS SIMULATIONS WITH HYDRODYNAMICS Juan J. Cerdà 1 1 Institut für Computerphysik, Pfaffenwaldring 27, Universität Stuttgart, 70569 Stuttgart, Germany. (Dated: July 21, 2009) Abstract - 1

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Between Kinetic Theory and Navier Stokes: Modeling Fluids at the Mesosacle

Between Kinetic Theory and Navier Stokes: Modeling Fluids at the Mesosacle Between Kinetic Theory and Navier Stokes: Modeling Fluids at the Mesosacle John Bell Lawrence Berkeley National Laboratory Materials for a Sustainable Energy Future Tutorials Los Angeles, CA September

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

APMA 2811T. By Zhen Li. Today s topic: Lecture 2: Theoretical foundation and parameterization. Sep. 15, 2016

APMA 2811T. By Zhen Li. Today s topic: Lecture 2: Theoretical foundation and parameterization. Sep. 15, 2016 Today s topic: APMA 2811T Dissipative Particle Dynamics Instructor: Professor George Karniadakis Location: 170 Hope Street, Room 118 Time: Thursday 12:00pm 2:00pm Dissipative Particle Dynamics: Foundation,

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Simulating Brownian suspensions with fluctuating hydrodynamics

Simulating Brownian suspensions with fluctuating hydrodynamics While Brownian motion is clearly important in these situations, the careful study and quantification of its role using simulation remains a computational challenge due to the intimate link between the

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Fluctuating Hydrodynamics Approaches for Mesoscopic Modeling and Simulation Applications in Soft Materials and Fluidics

Fluctuating Hydrodynamics Approaches for Mesoscopic Modeling and Simulation Applications in Soft Materials and Fluidics Fluctuating Hydrodynamics Approaches for Mesoscopic Modeling and Simulation Applications in Soft Materials and Fluidics Theoretical Background and Applications Summer School on Multiscale Modeling of Materials

More information

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint. " = " x,t,#, #

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint.  =  x,t,#, # Notes Assignment 4 due today (when I check email tomorrow morning) Don t be afraid to make assumptions, approximate quantities, In particular, method for computing time step bound (look at max eigenvalue

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Fluctuating Hydrodynamics for Transport in Neutral and Charged Fluid Mixtures

Fluctuating Hydrodynamics for Transport in Neutral and Charged Fluid Mixtures Fluctuating Hydrodynamics for Transport in Neutral and Charged Fluid Mixtures Alejandro L. Garcia San Jose State University Lawrence Berkeley Nat. Lab. Hydrodynamic Fluctuations in Soft Matter Simulations

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

CHAPTER 8 ENTROPY GENERATION AND TRANSPORT

CHAPTER 8 ENTROPY GENERATION AND TRANSPORT CHAPTER 8 ENTROPY GENERATION AND TRANSPORT 8.1 CONVECTIVE FORM OF THE GIBBS EQUATION In this chapter we will address two questions. 1) How is Gibbs equation related to the energy conservation equation?

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach Florencio Balboa Usabiaga, 1 Bakytzhan Kallemov, 1, 2 Blaise Delmotte, 1 Amneet Pal Singh Bhalla, 3 Boyce

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

Mesoscale fluid simulation of colloidal systems

Mesoscale fluid simulation of colloidal systems Mesoscale fluid simulation of colloidal systems Mingcheng Yang Institute of Physics, CAS Outline (I) Background (II) Simulation method (III) Applications and examples (IV) Summary Background Soft matter

More information

A formulation for fast computations of rigid particulate flows

A formulation for fast computations of rigid particulate flows Center for Turbulence Research Annual Research Briefs 2001 185 A formulation for fast computations of rigid particulate flows By N. A. Patankar 1. Introduction A formulation is presented for the direct

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

Brownian Motion and Langevin Equations

Brownian Motion and Langevin Equations 1 Brownian Motion and Langevin Equations 1.1 Langevin Equation and the Fluctuation- Dissipation Theorem The theory of Brownian motion is perhaps the simplest approximate way to treat the dynamics of nonequilibrium

More information

15.3 The Langevin theory of the Brownian motion

15.3 The Langevin theory of the Brownian motion 5.3 The Langevin theory of the Brownian motion 593 Now, by virtue of the distribution (2), we obtain r(t) =; r 2 (t) = n(r,t)4πr 4 dr = 6Dt t, (22) N in complete agreement with our earlier results, namely

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Turbulence modulation by fully resolved particles using Immersed Boundary Methods Turbulence modulation by fully resolved particles using Immersed Boundary Methods Abouelmagd Abdelsamie and Dominique Thévenin Lab. of Fluid Dynamics & Technical Flows University of Magdeburg Otto von

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

Experience with DNS of particulate flow using a variant of the immersed boundary method

Experience with DNS of particulate flow using a variant of the immersed boundary method Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

Fluctuating force-coupling method for interacting colloids

Fluctuating force-coupling method for interacting colloids Fluctuating force-coupling method for interacting colloids Eric E. KEAVENY Tel.: +44(0)2075942780; Email: e.keaveny@imperial.ac.uk Department of Mathematics, Imperial College London, UK Abstract Brownian

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal PI: Sarma L. Rani Department of Mechanical and Aerospace Engineering The

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4 MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM AND BOLTZMANN ENTROPY Contents 1 Macroscopic Variables 3 2 Local quantities and Hydrodynamics fields 4 3 Coarse-graining 6 4 Thermal equilibrium 9 5 Two systems

More information

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations AA210A Fundamentals of Compressible Flow Chapter 5 -The conservation equations 1 5.1 Leibniz rule for differentiation of integrals Differentiation under the integral sign. According to the fundamental

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

Two recent works on molecular systems out of equilibrium

Two recent works on molecular systems out of equilibrium Two recent works on molecular systems out of equilibrium Frédéric Legoll ENPC and INRIA joint work with M. Dobson, T. Lelièvre, G. Stoltz (ENPC and INRIA), A. Iacobucci and S. Olla (Dauphine). CECAM workshop:

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

4. The Green Kubo Relations

4. The Green Kubo Relations 4. The Green Kubo Relations 4.1 The Langevin Equation In 1828 the botanist Robert Brown observed the motion of pollen grains suspended in a fluid. Although the system was allowed to come to equilibrium,

More information

Entropy generation and transport

Entropy generation and transport Chapter 7 Entropy generation and transport 7.1 Convective form of the Gibbs equation In this chapter we will address two questions. 1) How is Gibbs equation related to the energy conservation equation?

More information

Accretion Disks I. High Energy Astrophysics: Accretion Disks I 1/60

Accretion Disks I. High Energy Astrophysics: Accretion Disks I 1/60 Accretion Disks I References: Accretion Power in Astrophysics, J. Frank, A. King and D. Raine. High Energy Astrophysics, Vol. 2, M.S. Longair, Cambridge University Press Active Galactic Nuclei, J.H. Krolik,

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids 2015 DPD Workshop September 21-23, 2015, Shanghai University Smoothed Dissipative Particle Dynamics: Dynamics theory and applications to complex fluids Marco Ellero Zienkiewicz Centre for Computational

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Fluid Dynamics. Part 2. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/17

Fluid Dynamics. Part 2. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/17 Fluid Dynamics p.1/17 Fluid Dynamics Part 2 Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/17 Schemes Based on Flux-conservative Form By their very nature, the fluid equations

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

Fluctuating Hydrodynamics and Direct Simulation Monte Carlo

Fluctuating Hydrodynamics and Direct Simulation Monte Carlo Fluctuating Hydrodynamics and Direct Simulation Monte Carlo Kaushi Balarishnan Lawrence Bereley Lab John B. Bell Lawrence Bereley Lab Alesandar Donev New Yor University Alejandro L. Garcia San Jose State

More information

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence Rohit Dhariwal and Vijaya Rani PI: Sarma L. Rani Department of Mechanical and Aerospace

More information

Computer simulation methods (1) Dr. Vania Calandrini

Computer simulation methods (1) Dr. Vania Calandrini Computer simulation methods (1) Dr. Vania Calandrini Why computational methods To understand and predict the properties of complex systems (many degrees of freedom): liquids, solids, adsorption of molecules

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 43 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Treatment of Boundary Conditions These slides are partially based on the recommended textbook: Culbert

More information

A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales

A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales Paul J. Atzberger 1,2,3, Peter R. Kramer 3, and Charles S. Peskin 4 Abstract In modeling many biological

More information

Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems

Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems THE JOURNAL OF CHEMICAL PHYSICS 124, 184101 2006 Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems Igor V. Pivkin and George E. Karniadakis a Division of Applied Mathematics,

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Particle-Simulation Methods for Fluid Dynamics

Particle-Simulation Methods for Fluid Dynamics Particle-Simulation Methods for Fluid Dynamics X. Y. Hu and Marco Ellero E-mail: Xiangyu.Hu and Marco.Ellero at mw.tum.de, WS 2012/2013: Lectures for Mechanical Engineering Institute of Aerodynamics Technical

More information

Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces

Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces D. Darmana, N.G. Deen, J.A.M. Kuipers Fundamentals of Chemical Reaction Engineering, Faculty of Science and Technology,

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

Physical Modeling of Multiphase flow. Boltzmann method

Physical Modeling of Multiphase flow. Boltzmann method with lattice Boltzmann method Exa Corp., Burlington, MA, USA Feburary, 2011 Scope Scope Re-examine the non-ideal gas model in [Shan & Chen, Phys. Rev. E, (1993)] from the perspective of kinetic theory

More information

(1:1) 1. The gauge formulation of the Navier-Stokes equation We start with the incompressible Navier-Stokes equation 8 >< >: u t +(u r)u + rp = 1 Re 4

(1:1) 1. The gauge formulation of the Navier-Stokes equation We start with the incompressible Navier-Stokes equation 8 >< >: u t +(u r)u + rp = 1 Re 4 Gauge Finite Element Method for Incompressible Flows Weinan E 1 Courant Institute of Mathematical Sciences New York, NY 10012 Jian-Guo Liu 2 Temple University Philadelphia, PA 19122 Abstract: We present

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop

Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop Treecodes for Cosmology Thomas Quinn University of Washington N-Body Shop Outline Motivation Multipole Expansions Tree Algorithms Periodic Boundaries Time integration Gravitational Softening SPH Parallel

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Fast Reactive Brownian Dynamics

Fast Reactive Brownian Dynamics Fast Reactive Brownian Dynamics Aleksandar Donev Chiao-Yu Yang (now at UC Berkeley) Courant Institute, New York University Spatially Distributed Stochastic Dynamical Systems in Biology Newton Institute,

More information

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Department of Mathematics, University of Wisconsin Madison Venue: van Vleck Hall 911 Monday,

More information

2. Conservation Equations for Turbulent Flows

2. Conservation Equations for Turbulent Flows 2. Conservation Equations for Turbulent Flows Coverage of this section: Review of Tensor Notation Review of Navier-Stokes Equations for Incompressible and Compressible Flows Reynolds & Favre Averaging

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Multi-D MHD and B = 0

Multi-D MHD and B = 0 CapSel DivB - 01 Multi-D MHD and B = 0 keppens@rijnh.nl multi-d MHD and MHD wave anisotropies dimensionality > 1 non-trivial B = 0 constraint even if satisfied exactly t = 0: can numerically generate B

More information

A Fluctuating Boundary Integral Method for Brownian Suspensions

A Fluctuating Boundary Integral Method for Brownian Suspensions A Fluctuating Boundary Integral Method for Brownian Suspensions Yuanxun Bao a,, Manas Rachh b, Eric E. Keaveny c, Leslie Greengard a,d, Aleksandar Donev a a Courant Institute of Mathematical Sciences,

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 6 Advanced Topics in Applied Math Di Qi, and Andrew J. Majda

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information

The Kolmogorov Law of turbulence

The Kolmogorov Law of turbulence What can rigorously be proved? IRMAR, UMR CNRS 6625. Labex CHL. University of RENNES 1, FRANCE Introduction Aim: Mathematical framework for the Kolomogorov laws. Table of contents 1 Incompressible Navier-Stokes

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method Justyna Czerwinska Scales and Physical Models years Time hours Engineering Design Limit Process Design minutes Continious Mechanics

More information

Pressure corrected SPH for fluid animation

Pressure corrected SPH for fluid animation Pressure corrected SPH for fluid animation Kai Bao, Hui Zhang, Lili Zheng and Enhua Wu Analyzed by Po-Ram Kim 2 March 2010 Abstract We present pressure scheme for the SPH for fluid animation In conventional

More information

Physics-Based Animation

Physics-Based Animation CSCI 5980/8980: Special Topics in Computer Science Physics-Based Animation 13 Fluid simulation with grids October 20, 2015 Today Presentation schedule Fluid simulation with grids Course feedback survey

More information

Hamiltonian aspects of fluid dynamics

Hamiltonian aspects of fluid dynamics Hamiltonian aspects of fluid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08, 01/31/08 Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 1 / 34 Outline

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information