CALCULUS II ASSIGNMENT 4 SOLUTIONS. (v) (vi) x arctan(x) dx, (vii) (viii) e u du = e u = e arctan(y).

Size: px
Start display at page:

Download "CALCULUS II ASSIGNMENT 4 SOLUTIONS. (v) (vi) x arctan(x) dx, (vii) (viii) e u du = e u = e arctan(y)."

Transcription

1 CALCULUS II ASSIGNMENT 4 SOLUTIONS. Evaluate the integrals e arctan(y) (i) + y dy, (ii) (iii) (iv) t cos(t)dt, ( + x ) 8 dx, ue u du, (v) (vi) (vii) (viii) sec(θ) tan(θ) 6 dθ, φtan(φ) dφ, x arctan(x) dx, sin(ψ) cos(ψ) sin(ψ) 4 + cos(ψ) 4 dψ. Solutions. To compute (i), one might recognize that the derivative of arctan(y) is /( + y ), immediately suggesting a substitution u = arctan(y). Doing so, the first integral simplifies to e arctan(y) + y dy = e u du = e u = e arctan(y). For (ii), observe that t cos(t) is a product, suggesting that we should use integration by parts; upon differentiating t, the integral simplifies. Thus t cos(t)dt = t sin(t) t= t t= sin(t)dt = + cos(t) t= =. t= For (iii), one could expand the binomial. Alternatively, in trying to be lazy and also to prevent arithmetic mistakes, one might try to do a substitution u = + x. Taking the differential, we see that du = dx x = dx (u ) so dx = (u )du. Upon making this substitution, the bounds of integration change as: For the upper bound, x = implies u = + = ; and For the lower bound, x = implies u = + =. Putting everything together, we see that ( ) 8 + x dx = u 8 (u )du = u 9 u9 u= ( 4 = u= 5 4 ) ( 9 5 ) = = For (iv), perhaps a first instinct is to try to integrate by parts to get rid of the u factor in front of the exponential. But one is left integrating e u, which does not look so easy. So another thing that comes to mind might be to do the substitution x = u in hopes that it will make things easier. The differential of this substitution is dx = du u = du x so du = xdx.

2 CALCULUS II ASSIGNMENT 4 SOLUTIONS Putting this into the integrand then puts it that yells, integration by parts!!!! : ue u du = x e x dx = x e x 4 xe x dx = x e x 4xe x + 4e x = (u u + )e u. For (v), one might notice that the derivative of tan(θ) is sec(θ), so this calls for a substitution u = tan(θ). Doing so, one is reduced to an integral of a rational function: sec(θ) tan(θ) 6 dθ = du u 6 = du (u 4)(u + 4). To integrate the rational function, we use the method of partial fractions; that is, we aim to find numbers A and B so that (u 4)(u + 4) = A u 4 + B u + 4. Clearing denominators and then collecting like terms, we get equations imposed by = A(u + 4) + B(u 4) = (A + B)u + (4A 4B). Comparing coefficients of u implies A = B; comparing constant terms then implies that 8A =, so A = /8, B = /8. Therefore sec(θ) tan(θ) 6 dθ = du 8 u 4 du 8 u + 4 = ( ) ( tan(θ) 4 ) log(u 4) log(u + 4) = 8 8 log. tan(θ) + 4 For (vi), I stare at it, and draw some blanks since I don t seem to know how to directly integrate tan(φ), nor does there look like any good substitutions. This suggests that I now need to use some trigonometric identities, the first of which comes to mind being the Pythagorean identity tan(φ) = sec(φ). Now I know how to integrate φ; what about φsec(φ)? Well, since this is a product, I again think about integration by parts. This time, I know how to integrate sec(φ) directly: it is the derivative of tan(φ)! Thus φtan(φ) dφ = φsec(φ) dφ ( φdφ = φtan(φ) To do the remaining integral, recall the definition of tan(φ): sin(φ) du tan(φ)dφ = cos(φ) dφ = u = log(cos(φ)), where I performed the substitution u = cos(φ). Putting everything together, φtan(φ) dφ = φtan(φ) + log(cos(φ)) φ. ) tan(φ) dφ φ. For (vii), I see a product of functions, and I immediately yearn to integrate by parts; I know how to differentiate arctan(x) but not integrate it, so there is a clear choice of what to try: x arctan(x)dx = x arctan(x) x + x dx = x + x arctan(x) + x + x dx = x arctan(x) x + arctan(x) where I added and subtracted in the numerator of the rational function to simplify it a bit.

3 CALCULUS II ASSIGNMENT 4 SOLUTIONS 3 Finally, for (viii), there are a lot of trigonometric functions, and in particular, some in the numerator touching the differential: this calls for a substitution! Set u = sin(ψ), then the integral simplifies to sin(ψ) cos(ψ) sin(ψ) 4 + cos(ψ) 4 dψ = u u 4 + ( u ) du = u u 4 u + du. The denominator of this rational function secretly looks like a quadratic polynomial; indeed, this can be made a reality upon performing the substitution v = u. Then dv = u du so u u 4 u + du = dv v v +. We might try to factor the denominator by, say, using the quadratic formula to find the roots of the polynomial there; however, doing so, we find that the roots ought to be ± 4 8 = ± 8 4 and the square root is not something we can do right now. This means that the denominator is an irreducible quadratic polynomial and so we should compute this integral using a trigonometric substitution. We can do this upon completing the square in the denominator; that is, write ( v v + = v v + ) (( = v ) ) +. 4 Putting this into the denominator of our rational function, this suggests that we then need to make the trigonometric substitution Putting these together, we get that sin(ψ) cos(ψ) v = tan(θ). dv sin(ψ) 4 + cos(ψ) 4 dψ = v v + = dv ((v /) + /4) = sec(θ) 4 4 (tan(θ) + ) dθ = dθ = θ = arctan(v ) = arctan(sin(ψ) ). We can simplify the argument of arctan a bit more: using the half-angle identity for squares for sin, sin(ψ) cos(ψ) sin(ψ) 4 + cos(ψ) 4 dψarctan(sin(ψ) ) = arctan( cos(ψ)) = arctan(cos(ψ)). And that s a wrap!

4 4 CALCULUS II ASSIGNMENT 4 SOLUTIONS. Compute / sin(x) n dx for n =,,,3. Can you guess what the value of the integral might be for arbitrary n? Solution. It is good for your soul to compute by hand the initial values of this integral. But now, once you have computed a few values, to try to find a pattern you might try to relate the integral of sin(x) n to, say, sin(x) n ; after all, since you have done some work at this point, might as well try to use it! Thinking about this a bit, you might realize that one way to do this would be integration by parts: / sin(x) n dx = / sin(x)sin(x) n dx = cos(x)sin(x) n x=/ + (n ) x= / cos(x) sin(x) n dx. Now the first term on the extreme right is rather special: since cos(/) = and sin() =, both evaluations of cos(x)sin(x) n must vanish. Thus the integration by parts formula simplifies to / sin(x) n dx = (n ) / cos(x) sin(x) n dx. Now the right hand side can be expressed purely in terms of sine functions upon invoking Pythagoreas: Therefore / / cos(x) sin(x) n dx = sin(x) n dx = (n ) / / sin(x) n dx / sin(x) n dx (n ) sin(x) n dx. / sin(x) n dx. Now we see that we should combine the integrals of sin(x) n on both sides; upon rearranging and dividing by n, we obtain the reduction formula Therefore, in general, / / sin(x) n dx = n n sin(x) n dx = n n n 3 n 3 4 In particular, the first few integrals are / / / sin(x) n dx. (n )(n 3) 3 dx = n(n ) 4 sin(x) dx = /, sin(x) dx = / 4, sin(x) 4 dx = 3 6, And now you can go on, and on, and on... /. sin(x) 6 dx = 5 3.

5 CALCULUS II ASSIGNMENT 4 SOLUTIONS 5 3. Evaluate the integral x + (x x + ) dx by completing the square in the denominator and doing a trigonometric substitution. Solution. One can directly complete the square and perform a trigonometric substitution to compute this integral. Instead, let me split this integral up to simpler ones to compute, the point being that the numerator almost looks like the polynomial in the denominator: x + (x x + ) dx = (x x + ) + (x ) + (x x + ) dx dx x x + + = x (x x + ) dx + dx (x x + ) To compute the first and third integral, we will need to complete the square in the denominator and proceed with a trigonometric substitution. But first, let s do the second integral. The numerator was carefully chosen so that I can perform the substitution u = x x +, since then du = (x )dx. Therefore x du (x x + ) dx = u = u = x x +. Okay, now for the first and third integrals. Complete the square: x x + = (x ) +. Thus we perform the trigonometric substitution x = tan(θ). Then the first integral amounts to dx x x + = sec(θ) tan(θ) dθ = θ = arctan(x ). + As for the third integral, we simplify, use the definition of sec(θ) and then a half-angle identity to get: dx (x x + ) = sec(θ) (tan(θ) + ) dθ dθ = = sec(θ) cos(θ) dθ = θ + 4 sin(θ) = arctan(x ) + sin(arctan(x )). 4 Now it s fairly good practice to try to simplify expressions like sin(arctan(x )). Perusing a list of trigonometric identities, one might stumble upon the double angle formulae, which then gives Putting everything together, we get x + Phew! tan(arctan(x )) (x ) sin(arctan(x )) = = + tan(arctan(x )) x x +. (x x + ) dx = 3 arctan(x ) + ( 3arctan(x ) + = x x x + x 3 x x + ). x x +

6 6 CALCULUS II ASSIGNMENT 4 SOLUTIONS 4. Let s think about the calculations that we performed in Assignment, Question. A function of the form f (x) = a sin(x) + a sin(x) + + a N sin(n x) is called a finite Fourier series. Show that Moreover, verify that a m = f (x)sin(mx)dx. f (x)cos(mx)dx = for all positive integers m. This gives a way of extracting the coefficients a i in a function of this form! Solution. Okay, well, let s evaluate the integral at hand by plugging in the definition of the function f (x) and split the integral up using linearity: f (x)sin(mx)dx = = a Now by Assignment, Question, whenever n m, ( a sin(x) + a sin(x) + + a N sin(n x) ) sin(mx)dx sin(x)sin(mx)dx + a a sin(x)sin(mx)dx + + a N sin(n x) sin(mx) dx. sin(nx) sin(mx) =. Therefore, the only term that contributes to the integral of f (x)sin(mx) is the term corresponding to a m sin(mx). In other words, as claimed. The vanishing f (x)sin(mx)dx = a m sin(mx)sin(mx)dx = a m = a m f (x)cos(mx)dx = now comes from the exact same calculation, but now using the fact that sin(nx)cos(mx) always pairs to when integrated between and.

7 CALCULUS II ASSIGNMENT 4 SOLUTIONS 7 5. The calculation in 3. suggests a way to approximate certain functions. Consider the function { if x <, f (x) = if x. (i) Calculate a m = f (x)sin(mx)dx for m =,,3,4,5,6,7,8. (ii) Let f i (x) = a sin(x) + a sin(x) + + a i sin((i )x) + a i sin(i x). With the help of a computer, graph the functions f, f, f 3, and f 4 in the interval [,]. Also draw the graph of f. Solution. In fact, we can compute the coefficients a m in general; their behaviour only depends on the parity of m. To compute the integral, split it at so that we can substitute the piecewise definition of f : f (x)sin(mx)dx = f (x)sin(mx)dx + f (x)sin(mx)dx = sin(mx)dx + sin(mx) dx = m cos(mx) x= + x= m cos(mx) x= x= = ( ) cos() cos( m) cos(m). m Now cos(m) = if m is even and cos(m) = if m is even. Putting this into the final line, we see that In particular, the first few values of a m are if m is even, f (x)sin(mx)dx = 4 m if m is odd. 4,, 4 3,, 4 5,, 4 7,. With the computations from (i), we see that the functions f i defined above take the form f (x) = 4 sin(x), f (x) = 4 sin(x) sin(3x), f 3 (x) = 4 sin(x) sin(3x) sin(5x), f 4 (x) = 4 sin(x) sin(3x) sin(5x) sin(7x). Plotting these functions, we have the following:

8 8 CALCULUS II ASSIGNMENT 4 SOLUTIONS In this picture, f is pictured in red, f in green, f 3 in blue, and f 4 in violet. Notice how the more terms we add to f i, the more it wiggles around the function f, pictured in thicker black. One might imagine that as we add more terms to the f i, the closer f i hugs f. Indeed, this is what happens: consider, for example, the following plot of f 5 :.5.5 Perhaps in the limit, f i, in some sense, becomes f! This is a subject that you might encounter in more depth in courses on Fourier analysis, signal processing, etc.

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

M152: Calculus II Midterm Exam Review

M152: Calculus II Midterm Exam Review M52: Calculus II Midterm Exam Review Chapter 4. 4.2 : Mean Value Theorem. - Know the statement and idea of Mean Value Theorem. - Know how to find values of c making the theorem true. - Realize the importance

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010 Mathematics 5, Calculus II Exam, April 3rd,. (8 points) If an unknown function y satisfies the equation y = x 3 x + 4 with the condition that y()=, then what is y? Solution: We must integrate y against

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

MATH 101: PRACTICE MIDTERM 2

MATH 101: PRACTICE MIDTERM 2 MATH : PRACTICE MIDTERM INSTRUCTOR: PROF. DRAGOS GHIOCA March 7, Duration of examination: 7 minutes This examination includes pages and 6 questions. You are responsible for ensuring that your copy of the

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Main topics for the First Midterm

Main topics for the First Midterm Main topics for the First Midterm Midterm 2 will cover Sections 7.7-7.9, 8.1-8.5, 9.1-9.2, 11.1-11.2. This is roughly the material from the first five homeworks and and three quizzes. In particular, I

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

5 Integrals reviewed Basic facts U-substitution... 4

5 Integrals reviewed Basic facts U-substitution... 4 Contents 5 Integrals reviewed 5. Basic facts............................... 5.5 U-substitution............................. 4 6 Integral Applications 0 6. Area between two curves.......................

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

SYDE 112, LECTURE 7: Integration by Parts

SYDE 112, LECTURE 7: Integration by Parts SYDE 112, LECTURE 7: Integration by Parts 1 Integration By Parts Consider trying to take the integral of xe x dx. We could try to find a substitution but would quickly grow frustrated there is no substitution

More information

AEA 2003 Extended Solutions

AEA 2003 Extended Solutions AEA 003 Extended Solutions These extended solutions for Advanced Extension Awards in Mathematics are intended to supplement the original mark schemes, which are available on the Edexcel website. 1. Since

More information

Week 2 Techniques of Integration

Week 2 Techniques of Integration Week Techniques of Integration Richard Earl Mathematical Institute, Oxford, OX LB, October Abstract Integration by Parts. Substitution. Rational Functions. Partial Fractions. Trigonometric Substitutions.

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

Chapter 06: Analytic Trigonometry

Chapter 06: Analytic Trigonometry Chapter 06: Analytic Trigonometry 6.1: Inverse Trigonometric Functions The Problem As you recall from our earlier work, a function can only have an inverse function if it is oneto-one. Are any of our trigonometric

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du.

1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du. Circle One: Name: 7:45-8:35 (36) 8:5-9:4 (36) Math-4, Spring 7 Quiz #3 (Take Home): 6 7 Due: 9 7 You may discuss this quiz solely with me or other students in my discussion sessions only. Use a new sheet

More information

Second-Order Homogeneous Linear Equations with Constant Coefficients

Second-Order Homogeneous Linear Equations with Constant Coefficients 15 Second-Order Homogeneous Linear Equations with Constant Coefficients A very important class of second-order homogeneous linear equations consists of those with constant coefficients; that is, those

More information

Derivative and Integral Rules These are on the inside of the back cover of your text.

Derivative and Integral Rules These are on the inside of the back cover of your text. Derivative and Integral Rules These are on the inside of the back cover of your text. General Derivative Rule General Integral Rule d dx u(x) r = r u(x) r - 1 u(x) u(x)r u(x) dx = u(x) r1 r1 + C r U -1

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

Inverse Trigonometric Functions. September 5, 2018

Inverse Trigonometric Functions. September 5, 2018 Inverse Trigonometric Functions September 5, 08 / 7 Restricted Sine Function. The trigonometric function sin x is not a one-to-one functions..0 0.5 Π 6, 5Π 6, Π Π Π Π 0.5 We still want an inverse, so what

More information

Notes for the Physics-Based Calculus workshop

Notes for the Physics-Based Calculus workshop Notes for the hysics-based Calculus workshop Adam Coffman June 9, 24 Trigonometric Functions We recall the following identities for trigonometric functions. Theorem.. For all x R, cos( x = cos(x and sin(

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

Integration 1/10. Integration. Student Guidance Centre Learning Development Service

Integration 1/10. Integration. Student Guidance Centre Learning Development Service Integration / Integration Student Guidance Centre Learning Development Service lds@qub.ac.uk Integration / Contents Introduction. Indefinite Integration....................... Definite Integration.......................

More information

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016

Name: AK-Nummer: Ergänzungsprüfung January 29, 2016 INSTRUCTIONS: The test has a total of 32 pages including this title page and 9 questions which are marked out of 10 points; ensure that you do not omit a page by mistake. Please write your name and AK-Nummer

More information

Applied Calculus I. Lecture 29

Applied Calculus I. Lecture 29 Applied Calculus I Lecture 29 Integrals of trigonometric functions We shall continue learning substitutions by considering integrals involving trigonometric functions. Integrals of trigonometric functions

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

6.1: Verifying Trigonometric Identities Date: Pre-Calculus

6.1: Verifying Trigonometric Identities Date: Pre-Calculus 6.1: Verifying Trigonometric Identities Date: Pre-Calculus Using Fundamental Identities to Verify Other Identities: To verify an identity, we show that side of the identity can be simplified so that it

More information

MATH Section 210

MATH Section 210 MATH 101 - Section 10 Instructor: Avner Segal (avners@math.ubc.ca) January 31 st 017 Common course page: http://www.math.ubc.ca/~gerg/teaching/101-winter017/ Individual section page: http://www.math.ubc.ca/~avners/courses/math101-017.html

More information

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration.

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration. MATH 1231 MATHEMATICS 1B 2007. For use in Dr Chris Tisdell s lectures: Tues 11 + Thur 10 in KBT Calculus Section 1: - Integration. 1. Motivation 2. What you should already know 3. Useful integrals 4. Integrals

More information

Course Notes for Calculus , Spring 2015

Course Notes for Calculus , Spring 2015 Course Notes for Calculus 110.109, Spring 2015 Nishanth Gudapati In the previous course (Calculus 110.108) we introduced the notion of integration and a few basic techniques of integration like substitution

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5

(x 3)(x + 5) = (x 3)(x 1) = x + 5 RMT 3 Calculus Test olutions February, 3. Answer: olution: Note that + 5 + 3. Answer: 3 3) + 5) = 3) ) = + 5. + 5 3 = 3 + 5 3 =. olution: We have that f) = b and f ) = ) + b = b + 8. etting these equal

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

8.3 Trigonometric Substitution

8.3 Trigonometric Substitution 8.3 8.3 Trigonometric Substitution Three Basic Substitutions Recall the derivative formulas for the inverse trigonometric functions of sine, secant, tangent. () () (3) d d d ( sin x ) = ( tan x ) = +x

More information

Unit #10 : Graphs of Antiderivatives, Substitution Integrals

Unit #10 : Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010 Fitting Integrals to Basic Rules Basic Integration Rules Lesson 8.1 Consider these similar integrals Which one uses The log rule The arctangent rule The rewrite with long division principle Try It Out

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

4.10 Dirichlet problem in the circle and the Poisson kernel

4.10 Dirichlet problem in the circle and the Poisson kernel 220 CHAPTER 4. FOURIER SERIES AND PDES 4.10 Dirichlet problem in the circle and the Poisson kernel Note: 2 lectures,, 9.7 in [EP], 10.8 in [BD] 4.10.1 Laplace in polar coordinates Perhaps a more natural

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line.

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line. PreCalculus Review Review Questions 1 The following transformations are applied in the given order) to the graph of y = x I Vertical Stretch by a factor of II Horizontal shift to the right by units III

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence.

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. f n (0)x n Recall from

More information

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019 Review () Calculus II (-nyb-5/5,6) Winter 9 Note. You should also review the integrals eercises on the first review sheet. Eercise. Evaluate each of the following integrals. a. sin 3 ( )cos ( csc 3 (log)cot

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

The definite integral gives the area under the curve. Simplest use of FTC1: derivative of integral is original function.

The definite integral gives the area under the curve. Simplest use of FTC1: derivative of integral is original function. 5.3: The Fundamental Theorem of Calculus EX. Given the graph of f, sketch the graph of x 0 f(t) dt. The definite integral gives the area under the curve. EX 2. Find the derivative of g(x) = x 0 + t 2 dt.

More information

f(g(x)) g (x) dx = f(u) du.

f(g(x)) g (x) dx = f(u) du. 1. Techniques of Integration Section 8-IT 1.1. Basic integration formulas. Integration is more difficult than derivation. The derivative of every rational function or trigonometric function is another

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

The Free Intuitive Calculus Course Integrals

The Free Intuitive Calculus Course Integrals Intuitive-Calculus.com Presents The Free Intuitive Calculus Course Integrals Day 19: Trigonometric Integrals By Pablo Antuna 013 All Rights Reserved. The Intuitive Calculus Course - By Pablo Antuna Contents

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

Lesson 22 - Trigonometric Identities

Lesson 22 - Trigonometric Identities POP QUIZ Lesson - Trigonometric Identities IB Math HL () Solve 5 = x 3 () Solve 0 = x x 6 (3) Solve = /x (4) Solve 4 = x (5) Solve sin(θ) = (6) Solve x x x x (6) Solve x + = (x + ) (7) Solve 4(x ) = (x

More information

Methods of Integration

Methods of Integration Methods of Integration Essential Formulas k d = k +C sind = cos +C n d = n+ n + +C cosd = sin +C e d = e +C tand = ln sec +C d = ln +C cotd = ln sin +C + d = tan +C lnd = ln +C secd = ln sec + tan +C cscd

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

CALCULUS AB SUMMER ASSIGNMENT

CALCULUS AB SUMMER ASSIGNMENT CALCULUS AB SUMMER ASSIGNMENT Dear Prospective Calculus Students, Welcome to AP Calculus. This is a rigorous, yet rewarding, math course. Most of the students who have taken Calculus in the past are amazed

More information

Solutions Serie 1 - preliminary exercises

Solutions Serie 1 - preliminary exercises D-MAVT D-MATL Prof. A. Iozzi ETH Zürich Analysis III Autumn 08 Solutions Serie - preliminary exercises. Compute the following primitive integrals using partial integration. a) cos(x) cos(x) dx cos(x) cos(x)

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

Analytic Trigonometry

Analytic Trigonometry Chapter 5 Analytic Trigonometry Course Number Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out). . Find and classify the extrema of hx, y sinx siny sinx + y on the square[, π] [, π]. Keep in mind there is a boundary to check out. Solution: h x cos x sin y sinx + y + sin x sin y cosx + y h y sin x

More information

MAT 1332: Calculus for Life Sciences. A course based on the book Modeling the dynamics of life by F.R. Adler

MAT 1332: Calculus for Life Sciences. A course based on the book Modeling the dynamics of life by F.R. Adler MT 33: Calculus for Life Sciences course based on the book Modeling the dynamics of life by F.R. dler Supplementary material University of Ottawa Frithjof Lutscher, with Robert Smith? January 3, MT 33:

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1

MATH141: Calculus II Exam #4 review solutions 7/20/2017 Page 1 MATH4: Calculus II Exam #4 review solutions 7/0/07 Page. The limaçon r = + sin θ came up on Quiz. Find the area inside the loop of it. Solution. The loop is the section of the graph in between its two

More information

Calculus. Integration (III)

Calculus. Integration (III) Calculus Integration (III) Outline 1 Other Techniques of Integration Partial Fractions Integrals Involving Powers of Trigonometric Functions Trigonometric Substitution 2 Using Tables of Integrals Integration

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information