Cell, Volume 153. Supplemental Information. The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition. Yonatan Savir and Tsvi Tlusty

Size: px
Start display at page:

Download "Cell, Volume 153. Supplemental Information. The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition. Yonatan Savir and Tsvi Tlusty"

Transcription

1 ell, Volume 153 Supplemental Information The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition Yonatan Savir and Tsvi Tlusty

2 1 Extended Experimental Procedures Michaelis-Menten Kinetics Michaelis-Menten (MM) kinetics are a special case of equations (1) and () in the MS. The MM scheme consists of two basic steps: A reversible step of binding and unbinding with rates k on and k off, respectively, which is followed by an irreversible catalysis step that occurs with rate k cat. The rate, per substrate per enzyme, of the overall reaction is k R k off k k cat on cat k k k k off on on cat (S1) In this case, the barriers b 1 and b are merged into one barrier, such that s is the initial state (set to be the zero energy) and s 3 is the intermediate complex state, kon e ( s3 ), k e ( b3 s3) and kcat e. Hence, in the case of two competing reactions the correct rate is, R off 1 b3 e e (S) and the incorrect one is, R 1 ' b3 e e (S3) e consider a general performance measure F which is a function of the correct and wrong decoding rates, ( ) ( ). The derivatives with respect to the various parameters are (using Eq. (S) and Eq. (S3))

3 (S4.1) (S4.) (S4.3) (S4.4) F F R e R F F R e ' R 3 b3 ' F F F R e R e R R ' F F F R e R e b R R b3 b3 (S4) iologically relevant measures F obey,, and therefore and As a result, δ and δ are expected to increase towards their respective biophysical limits. The two derivatives, and, cannot vanish simultaneously unless δ = δ. If vanishes and δ > δ (in the case of the ribosome, δ 0), is always negative. In the case that k on is the same for the competing reactions, which is the case for the ribosome, δ =0 and Eq. (S) and (S3) are reduced to Eq. (1) and () in the MS. Optimal Decoding The Max-Min Solution The normalized decoding fitness is obtained by normalizing F = R d R by the difference between the maximal and minimal values of F per given d, such that the normalized 0 F 1, is given by e ( R d R) d e 1 d e ( R d R) e d 1 / 1/ e d / e 1 F e ( R d R) d 1 1 d e / 1/ e d / e 1 d 1 e ( R d R) d 1 e d d 1 (S5) Note that, e R ( u) 1 e R ( u), e R ( u) 1 e R ( u) and as a result, F( u, d) F( u,1/ d) (S6) The derivative with respect to d when d 1 is

4 3 e R R 0 F ( d 1) d R R d(e d) / (e 1) e ( de ) / 3 e d e d 1 (S7) / Foru 0, R e R 0 and thus in this regime F(d 1) F(d=0) = e / R. For u 0, R e R 0 and as a result F(d 1) F(d ) = 1 e R. Using the symmetry of the F (Eq. (S6)) we get, 1 e R u 0 u / 1 e min( F) 1 1 e R 1 u 0 u / 1 e (S8) In terms of b 3, e b / b3 e e min( F) e 1 b / b3 e e (S9) The Max-Min solution is obtained by maximizing (S9). The barrier b 3 that provides the Max-Min solution for decoding is b * 3 (S10) The value of u at which R reaches half of its maximal value at u = δ/ while which R reaches half of its maximal value at u = -δ/. Thus the width of the Max-Min peak scales like δ (Fig. in the MS). Note that the Max-Min solution (Eq. (S10)) also maximizes the net rate, R R.

5 Table S1. Kinetic Parameters of the Decoding Reaction, Related to Figures 1, 3, and 4 k 1 k -1 k k - k 3 [µm -1 s -1 ] [s -1 ] [s -1 ] [s -1 ] [s -1 ] Δ p [k T] UU δ [k T] UUU U UU GU U UUA UUG Error ±0 ±10 Standard deviation of all measured values was ~ 15%. ±0.045 ±1.45 ±.05 These data (Gromadski et al., 004a, 006) were used to produce Figures 3 and 4. Table S. The Effect of Streptomycin on the Kinetic Parameters, Related to Figure 4 UUU (+Str) U (+Str) k ± ± 0 k ± 5 80 ± 5 k 40 ± ± 0 k - < ± 0 k 3. ± ± 0.6 p 0.66 ± ± 0.1 Δ -5.4 ± ± 0.3 δ 6.6 ± 0.38 These data (Gromadski et al., 004b) were used to produce Figure 4.

6 Table S3. The Effect of rpsd and rpsl Mutations on the Kinetic Parameters, Related to Figure 4 T rpsd (ram) rpsl (res) ognate (UU) Near-ognate (U) ognate (UU) Near-ognate (U) ognate (UU) Near-ognate (U) k k k Δ δ These data (Zaher et al., 010) were used to produce Figures 4 and S1. Table S4. Kinetic Parameters of the Decoding Reaction Measured Using FRET, Related to Figure 4 ognate (UUU) Near-ognate (UU) k k Δ δ 6.06 These data (Lee et al., 007, [5 mm Mg + ]) were used to produce Figure 4. k - is obtained by observing transition out of the codon-recognition state (s 3 in Figure 1 in the MS). e note that the authors (Lee et al., 007) hypothesized that this rate includes another, irreversible, exit pathway from the codonrecognition state.

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition

The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition Theory The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition Yonatan Savir and Tsvi Tlusty 2, * Department of Systems Biology, Harvard Medical School, Boston, MA 025, USA 2 The Simons Center

More information

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters 20 February 2018

More information

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR IAS 2012 Von Neumann s universal constructor Self-reproducing machine: constructor + tape (1948/9). Program on tape: (i) retrieve parts from

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Learning Outcomes. k 1

Learning Outcomes. k 1 Module 1DHS - Data Handling Skills Unit: Applied Maths Lecturer: Dr. Simon Hubbard (H13), Email: Simon.Hubbard@umist.ac.uk Title: Equilibria & Michaelis-Menten This lecture and problem class will introduce

More information

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme.

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme. Section 8 Enzyme Kinetics Pre-Activity Assignment 1. Produce a reading log for the sections in your text that discuss the Michaelis-Menten equation and including kcat. 2. Focus on the derivation of the

More information

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters 19 February 2019 c David P. Goldenberg University

More information

Previous Class. Today. Cosubstrates (cofactors)

Previous Class. Today. Cosubstrates (cofactors) Previous Class Cosubstrates (cofactors) Today Proximity effect Basic equations of Kinetics Steady state kinetics Michaelis Menten equations and parameters Enzyme Kinetics Enzyme kinetics implies characterizing

More information

Optimal Design of a Molecular Recognizer: Molecular Recognition as a Bayesian Signal Detection Problem Yonatan Savir and Tsvi Tlusty

Optimal Design of a Molecular Recognizer: Molecular Recognition as a Bayesian Signal Detection Problem Yonatan Savir and Tsvi Tlusty 390 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 3, JUNE 2008 Optimal Design of a Molecular Recognizer: Molecular Recognition as a Bayesian Signal Detection Problem Yonatan Savir and

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

Simple kinetics of enzyme action

Simple kinetics of enzyme action Simple kinetics of enzyme action It is established that enzymes form a bound complex to their reactants (i.e. substrates) during the course of their catalysis and prior to the release of products. This

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Comparing rotated- and nonrotated-state lifetimes among mrna m 6 A modifications in different codon contexts. a. mrna sequences used for each experiments, as same as shown in Figure

More information

Deriving the Michaelis-Menten Equation

Deriving the Michaelis-Menten Equation Page 1 of 5 Deriving the Michaelis-Menten Equation This page is originally authored by Gale Rhodes ( Jan 2000) and is still under continuous update. The page has been modified with permission by Claude

More information

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Introduction Enzymes are Biological Catalysis A catalyst is a substance

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

BMB Lecture 9

BMB Lecture 9 BMB 178 2018 Lecture 9 Class 11, November 7, 2018 Steady-state kinetics (I) Case 3. Viscosity Variation If k cat /K m decreases with increasing viscosity, then the reaction is diffusion-limited (S binding

More information

G. GENERAL ACID-BASE CATALYSIS

G. GENERAL ACID-BASE CATALYSIS G. GENERAL ACID-BASE CATALYSIS Towards a Better Chemical Mechanism via Catalysis There are two types of mechanisms we ll be discussing this semester. Kinetic mechanisms are concerned with rate constants

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY SEMMELWEIS CATHOLIC UNIVERSITY UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna ENZYME KINETICS: The rate of the reaction catalyzed by enzyme E A + B P is defined as -Δ[A] or -Δ[B] or Δ[P] Δt Δt Δt A and B changes are negative because the substrates are disappearing P change is positive

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Reversible reactions

Reversible reactions Reversible reactions A reversible enzymic reaction (e.g. the conversion of glucose to fructose, catalysed by glucose isomerase) may be represented by the following scheme where the reaction goes through

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

BMB Lectures 9-10 October 25 and 27, Steady-state kinetics

BMB Lectures 9-10 October 25 and 27, Steady-state kinetics BMB 178 2017 Lectures 9-10 October 25 and 27, 2017 Steady-state kinetics Steady State Kinetics 1. Rate equations 2. Kinetic shortcuts 3. Positional isotope exchange 4. Inhibition Definition of steady state:

More information

Biochemistry. Lecture 8

Biochemistry. Lecture 8 Biochemistry Lecture 8 Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase - C - C - C Metabolites

More information

Chapter 8. Enzymes: basic concept and kinetics

Chapter 8. Enzymes: basic concept and kinetics Chapter 8 Enzymes: basic concept and kinetics Learning objectives: mechanism of enzymatic catalysis Michaelis -Menton Model Inhibition Single Molecule of Enzymatic Reaction Enzymes: catalysis chemical

More information

ENZYME KINETICS. What happens to S, P, E, ES?

ENZYME KINETICS. What happens to S, P, E, ES? ENZYME KINETICS Go to lecture notes and/or supplementary handouts for the following: 1 Basic observations in enzyme inetics 2 Michaelis-Menten treatment of enzyme inetics 3 Briggs-Haldane treatment of

More information

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R.

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. Merrill Instructions: Time allowed = 90 minutes. Total marks = 30. This quiz represents

More information

Tala Saleh. Mohammad Omari. Dr. Ma moun

Tala Saleh. Mohammad Omari. Dr. Ma moun 20 0 Tala Saleh Mohammad Omari Razi Kittaneh Dr. Ma moun Quick recap The rate of Chemical Reactions Rises linearly as the substrate concentration [S] increases. The rate of Enzymatic Reactions Rises rapidly

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

MITOCW enzyme_kinetics

MITOCW enzyme_kinetics MITOCW enzyme_kinetics In beer and wine production, enzymes in yeast aid the conversion of sugar into ethanol. Enzymes are used in cheese-making to degrade proteins in milk, changing their solubility,

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J)

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J) Problem Set 2 1 Competitive and uncompetitive inhibition (12 points) a. Reversible enzyme inhibitors can bind enzymes reversibly, and slowing down or halting enzymatic reactions. If an inhibitor occupies

More information

CHEM April 10, Exam 3

CHEM April 10, Exam 3 Name CHEM 3511 April 10, 2009 Exam 3 Name Page 1 1. (12 points) Give the name of your favorite Tech professor and in one sentence describe why you like him/her. 2. (10 points) An enzyme cleaves a chemical

More information

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Lecture 15 (10/20/17) Lecture 15 (10/20/17) Reading: Ch6; 98-203 Ch6; Box 6- Lecture 5 (0/20/7) Problems: Ch6 (text); 8, 9, 0,, 2, 3, 4, 5, 6 Ch6 (study guide-facts); 6, 7, 8, 9, 20, 2 8, 0, 2 Ch6 (study guide-applying); NEXT Reading: Ch6; 207-20

More information

Interactions between proteins, DNA and RNA. The energy, length and time coordinate system to find your way in the cell

Interactions between proteins, DNA and RNA. The energy, length and time coordinate system to find your way in the cell Interactions between proteins, DNA and RNA The energy, length and time coordinate system to find your way in the cell Scanning/atomic force microscope (SFM/AFM) mirror laser beam photo diode fluid cell

More information

On the status of the Michaelis-Menten equation and its implications for enzymology

On the status of the Michaelis-Menten equation and its implications for enzymology 1 On the status of the Michaelis-Menten equation and its implications for enzymology Sosale Chandrasekhar 1 Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India 1 E-mail:

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

Exercise 3: Michaelis-Menten kinetics

Exercise 3: Michaelis-Menten kinetics Chemistry 255 Name(s): Exercise 3: Michaelis-Menten kinetics The study of enzyme kinetics is key to understanding the mechanism of how an enzyme performs its function. In 1913, Leonor Michaelis (German

More information

BMB Lecture 11 Class 13, November 14, Pre-steady state kinetics (II)

BMB Lecture 11 Class 13, November 14, Pre-steady state kinetics (II) BMB 178 2018 Lecture 11 Class 13, November 14, 2018 Pre-steady state kinetics (II) Reversible reactions [A] = A e + (A 0 A e ) e k obsd t k obsd = k 1 + k -1 A 0 1 0.8 obsd rx [A] 0.6 0.4 0.2 forward rx

More information

Microcalorimetric techniques

Microcalorimetric techniques Microcalorimetric techniques Isothermal titration calorimetry (ITC) Differential scanning calorimetry (DSC) Filip Šupljika Filip.Supljika@irb.hr Laboratory for the study of interactions of biomacromolecules

More information

Chem Lecture 4 Enzymes Part 2

Chem Lecture 4 Enzymes Part 2 Chem 452 - Lecture 4 Enzymes Part 2 Question of the Day: Is there some easy way to clock how many reactions one enzyme molecule is able to catalyze in an hour? Thermodynamics I think that enzymes are molecules

More information

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement and analysis of enzyme activity is often used in the field of life science such as medicines and foods to investigate

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions Enzyme Kinetics Virtually All Reactions in Cells Are Mediated by Enzymes Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates Enzymes provide cells

More information

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester Bioengineering Laboratory I Enzyme Assays Part II: Determination of Kinetic Parameters 2016-2017 Fall Semester 1. Theoretical background There are several mathematical models to determine the kinetic constants

More information

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir Enzymes and Enzyme Kinetics I Dr.Nabil Bashir Enzymes and Enzyme Kinetics I: Outlines Enzymes - Basic Concepts and Kinetics Enzymes as Catalysts Enzyme rate enhancement / Enzyme specificity Enzyme cofactors

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Enzymes are biological macromolecules that increase the rate of the reaction. Six major groups of enzymes (pgs. 94-95/98-99) Oxidoreductases:

More information

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp. 216-225 Updated on: 2/4/07 at 9:00 pm Key Concepts Kinetics is the study of reaction rates. Study of enzyme kinetics

More information

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion)

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion) Lecture 29 Enzymes Reading for today: Chapter 6 (selections from Sections, B and C) Friday and Monday: Chapter 7 (Diffusion) 4/3/6 Today s Goals Michaelis-Menten mechanism for simple enzyme reactions:

More information

Ali Yaghi. Gumana Ghashan. Mamoun Ahram

Ali Yaghi. Gumana Ghashan. Mamoun Ahram 21 Ali Yaghi Gumana Ghashan Mamoun Ahram Kinetics The study of Kinetics deals with the rates of chemical reactions. Chemical kinetics is the study of the rate of chemical reactions. For the reaction (A

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

From Friday s material

From Friday s material 5.111 Lecture 35 35.1 Kinetics Topic: Catalysis Chapter 13 (Section 13.14-13.15) From Friday s material Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends

More information

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled Quiz 1 Class Business I will have Project I graded by the end of the week. Project 2 is due on 11/15 The discussion groups for Project 2 are cancelled There is additional reading for classes held on 10/30

More information

Chem Lecture 4 Enzymes Part 1

Chem Lecture 4 Enzymes Part 1 Chem 452 - Lecture 4 Enzymes Part 1 Question of the Day: Enzymes are biological catalysts. Based on your general understanding of catalysts, what does this statement imply about enzymes? Introduction Enzymes

More information

Exam 3 11/10/2014 Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple. 12 choice 4 Multiple. 9 choice 5 Multiple

Exam 3 11/10/2014 Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple. 12 choice 4 Multiple. 9 choice 5 Multiple Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple 12 choice 4 Multiple 9 choice 5 Multiple 12 choice 6 Multiple 16 choice, start T/F 7 T/F and Fill in Blank 22 8 Binding problems 12

More information

A First Course on Kinetics and Reaction Engineering Example 9.4

A First Course on Kinetics and Reaction Engineering Example 9.4 Example 9.4 Problem Purpose This problem illustrates the use of a Lineweaver-Burk plot to determine the values of the constants in a Michaelis-Menten rate expression. Problem Statement Suppose the enzyme-catalyzed

More information

k -2 k 2 K F I-N k 3 k -1 K F U-I k 1 NSP

k -2 k 2 K F I-N k 3 k -1 K F U-I k 1 NSP Symposium on Protein Misfolding Diseases Biochemistry & Molecular Biology website May 1-2, 2007 University of Massachusetts Amherst Tuesday, May 1 1:00-1:30pm Registration 1:30-3:30pm Panel discussion:

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the reaction A P is the amount of P formed or the amount of A consumed

More information

CODING A LIFE FULL OF ERRORS

CODING A LIFE FULL OF ERRORS CODING A LIFE FULL OF ERRORS PITP ϕ(c 5 ) c 3 c 4 c 5 c 6 ϕ(c 1 ) ϕ(c 2 ) ϕ(c 3 ) ϕ(c 4 ) ϕ(c i ) c i c 7 c 8 c 9 c 10 c 11 c 12 IAS 2012 PART I What is Life? (biological and artificial) Self-replication.

More information

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University ENZYMES 2: KINETICS AND INHIBITION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 REVIEW OF KINETICS (GEN CHEM II) 2 Chemical KineCcs How fast

More information

Biochemistry and Physiology ID #:

Biochemistry and Physiology ID #: BCHM 463 Your Name: Biochemistry and Physiology ID #: Exam II, November 4, 2002 Prof. Jason Kahn You have 50 minutes for this exam. Exams written in pencil or erasable ink will not be re-graded under any

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

Lecture 27. Transition States and Enzyme Catalysis

Lecture 27. Transition States and Enzyme Catalysis Lecture 27 Transition States and Enzyme Catalysis Reading for Today: Chapter 15 sections B and C Chapter 16 next two lectures 4/8/16 1 Pop Question 9 Binding data for your thesis protein (YTP), binding

More information

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction.

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction. B. Thermodynamics 1. What is "free energy"? 2. Where is this energy stored? We say that ΔG is a thermodynamic property, meaning that it is independent of the way that the conversion of reactants to products

More information

Lesson Overview. Ribosomes and Protein Synthesis 13.2

Lesson Overview. Ribosomes and Protein Synthesis 13.2 13.2 The Genetic Code The first step in decoding genetic messages is to transcribe a nucleotide base sequence from DNA to mrna. This transcribed information contains a code for making proteins. The Genetic

More information

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst)

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst) Catalysis Catalysis provides an additional mechanism by which reactants can be converted to products. The alternative mechanism has a lower activation energy than the reaction in the absence of a catalyst.

More information

Computational Biology 1

Computational Biology 1 Computational Biology 1 Protein Function & nzyme inetics Guna Rajagopal, Bioinformatics Institute, guna@bii.a-star.edu.sg References : Molecular Biology of the Cell, 4 th d. Alberts et. al. Pg. 129 190

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism PREFACE The living cell is a chemical factory with thousands of reactions taking place, many of them simultaneously This chapter is about matter and energy flow during life

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

Time depending inhibition with atypical kinetics, what is one to do? Ken Korzekwa Temple University School of Pharmacy

Time depending inhibition with atypical kinetics, what is one to do? Ken Korzekwa Temple University School of Pharmacy Time depending inhibition with atypical kinetics, what is one to do? Ken Korzekwa Temple University School of harmacy Acknowledgements TUS Swati Nagar Jaydeep Yadav harma - Donald Tweedie - Andrea Whitcher-Johnstone

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Introduction on metabolism & refresher in enzymology

Introduction on metabolism & refresher in enzymology Introduction on metabolism & refresher in enzymology Daniel Kahn Laboratoire de Biométrie & Biologie Evolutive Lyon 1 University & INRA MIA Department Daniel.Kahn@univ-lyon1.fr General objectives of the

More information

Supporting Information Converter domain mutations in myosin alter structural kinetics and motor function. Hershey, PA, MN 55455, USA

Supporting Information Converter domain mutations in myosin alter structural kinetics and motor function. Hershey, PA, MN 55455, USA Supporting Information Converter domain mutations in myosin alter structural kinetics and motor function Laura K. Gunther 1, John A. Rohde 2, Wanjian Tang 1, Shane D. Walton 1, William C. Unrath 1, Darshan

More information

Supramolecular catalysis

Supramolecular catalysis Supramolecular catalysis Catalyst: a chemical species that accelerates a chemical reactions without being consumed rganometallic catalyst: soluble metal complex with organic ligands that accelerates the

More information

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Part II => PROTEINS and ENZYMES 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Section 2.7a: Chemical Kinetics Synopsis 2.7a - Chemical kinetics (or reaction kinetics) is the study of

More information

The energy speed accuracy trade-off in sensory adaptation

The energy speed accuracy trade-off in sensory adaptation SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS2276 The energy speed accuracy trade-off in sensory adaptation 1 The effective potential H(m) In the main text, we introduced a set of F a and F m functions to

More information

Lecture 11: Enzyme Kinetics, Part I

Lecture 11: Enzyme Kinetics, Part I Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 11: Enzyme Kinetics, Part I 13 February 2018 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Back to

More information

Chemistry Chapter 23

Chemistry Chapter 23 Chemistry 2100 Chapter 23 Protein Functions Binding P + L PL Catalysis Structure Why Enzymes? Higher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - -

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

Enzymes and Enzyme Kinetics I. Dr. Kevin Ahern

Enzymes and Enzyme Kinetics I. Dr. Kevin Ahern Enzymes and Enzyme Kinetics I Dr. Kevin Ahern Enzymatic Reactions Enzymatic Reactions Enzymatically Catalyzed Reactions Background Substrates Bound at Active Site of the Methylene Tetrahydrofolate Reductase

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

PAPER No. : 16, Bio-organic and bio-physical chemistry MODULE No. :21, Bisubstrate Reactions

PAPER No. : 16, Bio-organic and bio-physical chemistry MODULE No. :21, Bisubstrate Reactions Subject Paper No and Title Module No and Title Module Tag 16- Bio-Organic & Bio-Physical M-21 Bisubstrate Reactions CHE_P16_M21 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Bisubstrate reactions

More information

5. From the genetic code to enzyme action

5. From the genetic code to enzyme action Introductory biophysics A. Y. 2017-18 5. From the genetic code to enzyme action Edoardo Milotti Dipartimento di Fisica, Università di Trieste The structure of DNA Images from https://pdb101.rcsb.org/motm/23

More information

Supporting Information. Methods. Equations for four regimes

Supporting Information. Methods. Equations for four regimes Supporting Information A Methods All analytical expressions were obtained starting from quation 3, the tqssa approximation of the cycle, the derivation of which is discussed in Appendix C. The full mass

More information

Supplement to: How Robust are Switches in Intracellular Signaling Cascades?

Supplement to: How Robust are Switches in Intracellular Signaling Cascades? Supplement to: How Robust are Switches in Intracellular Signaling Cascades? Nils Blüthgen and Hanspeter Herzel Institute for Theoretical Biology, Invalidenstrasse 43, D-10115 Berlin, Germany (Dated: January

More information