The Sigmoidal Approximation of Łukasiewicz Operators

Size: px
Start display at page:

Download "The Sigmoidal Approximation of Łukasiewicz Operators"

Transcription

1 The Sigmoidal Approimation of Łukasiewicz Operators József Dombi, Zsolt Gera Universit of Szeged, Institute of Informatics {dombi Abstract: In this paper we propose an approimation of Łukasiewicz operators b means of sigmoid functions. Łukasiewicz operators pla an important role in fuzz logic. The are widel used due to their good theoretical properties, i.e. the residual and material implications coincide, the law of ecluded middle and the law of non-contradiction both hold. Besides these good theoretical properties this operator famil does not have a continuous gradient. Its approimation is simple and continuousl differentiable. Kewords: approimation, sigmoid function, Łukasiewicz operators Introduction The Łukasiewicz operator class see e.g. [], [2], [3] is commonl used for various purposes. In this well known operator famil the cut function denoted b [ ] plas an important role. We can get the cut function from b taking the maimum of and and then taking the minimum of the result and. Definition.. Let the cut function be, if [] = minma,, =, if < <, if Let the generalized cut function be, if a a [] a,b = [ a/b a] = b a, if b 2 where a, b R and a < b. All nilpotent operators are constructed using the cut function. The formulas of the nilpotent conjunction, disjunction, implication and negation are the following: c, = [ + ] d, = [ + ] i, = [ + ] n = 3

2 Figure : The truth tables of the nilpotent conjunction, disjunction and implication Figure 2: Two generalized cut functions. The truth tables of the former three can be seen on fig.. The Łukasiewicz operator famil used above has good theoretical properties. These are: the law of non-contradiction that is the conjunction of a variable and its negation is alwas zero and the law of ecluded middle that is the disjunction of a variable and its negation is alwas one both hold, and the residual and material implications coincide. These properties make these operators to be widel used in fuzz logic and to be the closest one to classic Boolean logic. Besides these good theoretical properties this operator famil does not have a continuous gradient. So for eample gradient based optimization techniques are impossible with Łukasiewicz operators. The root of this problem is the shape of the cut function itself.

3 2 Approimation of the Cut Function A solution to above mentioned problem is a continuousl differentiable approimation of the cut function, which can be seen on fig. 3. In this section we ll construct such an approimating function b means of sigmoid functions. The reason for choosing the sigmoid function was that this function has a ver important role in man areas. It is frequentl used in artificial neural networks, optimization methods, economical and biological models Figure 3: The cut function and its approimation 2. The Sigmoid Function The sigmoid function see fig. 4 is defined as d = + e β d 4 where the lower inde d is omitted if. Let us eamine some of its properties which will be useful later: its derivative can be epressed b itself see fig. 5: d = β d d 5 its integral has the following form: d d = β ln d 6 Because the sigmoid function is asmptoticall as tends to infinit, the integral of the sigmoid function is asmptoticall see fig. 6.

4 Figure 4: The sigmoid function, with parameters d = and β = Figure 5: The first derivative of the sigmoid function 2.2 The Squashing Function on [a, b] In order to get an approimation of the generalized cut function, let us integrate the difference of two sigmoid functions, which are translated b a and b a < b, respectivel. b a a = b a = b a b d = σ a β d β ln σ a β + β ln b d = b After simplification we get the squashing function on the interval [a, b]:

5 Figure 6: The integral of the sigmoid function, one is shifted b Definition 2.. Let the interval squashing function on [a, b] be S β a,b = b a ln b a /β = + e β a /β b a ln. 7 + e β b The parameters a and b affect the placement of the interval squashing function, while the β parameter drives the precision of the approimation. We need to prove that S β a,b is reall an approimation of the generalized cut function. Theorem 2.2. Let a, b R, a < b and β R +. Then and S β a,b is continuous in, a, b and β. lim β Sβ a,b = [] a,b 8 Proof. It is eas to see the continuit, because S β a,b is a simple composition of continuous functions and because the sigmoid function has a range of [, ] the quotient is alwas positive. In proving the limit we separate three cases, depending on the relation between a, b and. Case < a < b: Since β a <, so e β a and similarl e β b. Hence the quotient converges to if β, and the logarithm of one is zero.

6 Case 2 a b: + e β a /β b a ln lim = β + e β b = e β a b a ln e β a + /β lim = β + e β b = b a ln lim β = b a ln e a lim β e a e β a + /β = + e β b /β e β a + /β + e β b /β We transform the nominator so that we can take the e a out of the limes. In the nominator e β a remained which converges to as well as e β b in the denominator so the quotient converges to if β. So as the result, the limit of the interval squashing function is a/b a, which b definition equals to the generalized cut function in this case. Case 3 a < b < : + e β a /β b a ln lim = β + e β b = e β a b a ln e β a + /β lim β e β b e β b + = = b a ln e a e β a + /β lim β e b e β b + = /β = b a ln e a e β a + /β e b lim β e β b + /β We do the same transformations as in the previous case but we take e b from the denominator, too. After these transformations the remaining quotient converges to, so lim β Sβ a,b = b a ln e a e b = b a ln e b a = b a b a =. = b a ln e a b = On fig. 7 the interval squashing function can be seen with various β parameters. The following proposition states some properties of the interval squashing function.

7 Figure 7: On the left image: the interval squashing function with an increasing β parameter a = and b = 2. On the right image: the interval squashing function with a zero and a negative β parameter Figure 8: The approimation of the nilpotent conjunction with β values,4,8 and 32 Proposition 2.3. lim β Sβ a,b = /2 9 S β a,b = S β a,b As an another eample, the nilpotent conjunction is approimated with the interval squashing function on fig. 8. For further use, let us introduce an another form of the interval squashing function s formula. Instead of using parameters a and b which were the bounds on the ais, from now on we ll use a and δ, where a gives the center of the squashing function and where δ gives its steepness. Together with the new formula we introduce its pliant notation.

8 Definition 2.4. Let the squashing function be a < δ β = S β a,δ = β σ 2δ ln a+δ /β a δ, where a R and δ R +. If the a and δ parameters are both /2 we will use the following pliant notation for simplicit: β = S β, 2 2, 2 which is the approimation of the cut function. The inequalit relation in the pliant notation refers to the fact that the squashing function can be interpreted as the truthness of the relation a < with decision level /2, according to a fuzziness parameter δ and an approimation parameter β see fig. 9. Figure 9: The meaning of a < δ β The derivatives of the squashing function can be epressed b itself and sigmoid functions: S β a,δ S β a,δ a S β a,δ δ = 2δ = 2δ = 2δ a δ σβ a+δ a+δ σβ a δ a+δ + σβ a δ 3 4 δ Sβ a,δ 5

9 2.3 The Error of the Approimation The squashing function approimates the cut function with an error. This error can be defined in man was. We have chosen the following definition. Definition 2.5. Let the approimation error of the squashing function be where β >. ε β = < δ δ = 2δ ln δ δ /β δ 6 δ Because of the smmetr of the squashing function ε β = < δ δ, see fig. 9. The purpose of measuring the approimation error is the following inverse problem: we want to get the corresponding β parameter for a desired ε β error. We state the following lemma on the relationship between ε β and β. Lemma 2.6. Let us fi the value of δ. The following holds for ε β. where c = ln 2 2δ is constant. ε β < c β, 7 Proof. ε β = + e β δ+δ 2δβ ln + e β δ δ = ln 2 2δβ ln + e 2δβ < c 2δβ β = 2δβ ln 2 + e 2δβ = So the error of the approimation can be upper bounded b c β, which means that b increasing parameter β, the error decreases b the same order of magnitude. Conclusion In this paper we have reviewed the cut function, which is the basis of the well known Łukasiewicz operator class. This cut function is piecewise linear, it can not be continuousl differentiated. We have created an approimation of the cut function the squashing function b means of sigmoid functions with good analtical properties, for eample fast convergence and eas calculation.

10 References [] R. Ackermann. An Introduction to Man-Valued Logics. Dover, New York, 967. [2] P. Hájek. Metamathematics of Fuzz Logic. Kluwer, 998. [3] D. Mundici R. Cignoli, I. M. L. D Ottaviano. Algebraic foundations of manvalued reasoning. Trends in Logic, 7, 2.

The approximation of piecewise linear membership functions and Łukasiewicz operators

The approximation of piecewise linear membership functions and Łukasiewicz operators Fuzz Sets and Sstems 54 25 275 286 www.elsevier.com/locate/fss The approimation of piecewise linear membership functions and Łukasiewicz operators József Dombi, Zsolt Gera Universit of Szeged, Institute

More information

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L 2 Limits and Continuous Functions 2.2 Introduction to Limits We first interpret limits loosel. We write lim f() = L and sa the limit of f() as approaches c, equals L if we can make the values of f() arbitraril

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

2.2: Logical Equivalence: The Laws of Logic

2.2: Logical Equivalence: The Laws of Logic Example (2.7) For primitive statement p and q, construct a truth table for each of the following compound statements. a) p q b) p q Here we see that the corresponding truth tables for two statement p q

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Fuzzy Topology On Fuzzy Sets: Regularity and Separation Axioms

Fuzzy Topology On Fuzzy Sets: Regularity and Separation Axioms wwwaasrcorg/aasrj American Academic & Scholarl Research Journal Vol 4, No 2, March 212 Fuzz Topolog n Fuzz Sets: Regularit and Separation Aioms AKandil 1, S Saleh 2 and MM Yakout 3 1 Mathematics Department,

More information

Dependence and scatter-plots. MVE-495: Lecture 4 Correlation and Regression

Dependence and scatter-plots. MVE-495: Lecture 4 Correlation and Regression Dependence and scatter-plots MVE-495: Lecture 4 Correlation and Regression It is common for two or more quantitative variables to be measured on the same individuals. Then it is useful to consider what

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

EQ-algebras: primary concepts and properties

EQ-algebras: primary concepts and properties UNIVERSITY OF OSTRAVA Institute for Research and Applications of Fuzzy Modeling EQ-algebras: primary concepts and properties Vilém Novák Research report No. 101 Submitted/to appear: Int. Joint, Czech Republic-Japan

More information

Pure Core 1. Revision Notes

Pure Core 1. Revision Notes Pure Core Revision Notes Ma 06 Pure Core Algebra... Indices... Rules of indices... Surds... 4 Simplifing surds... 4 Rationalising the denominator... 4 Quadratic functions... 5 Completing the square....

More information

Function Construction with Fuzzy Operators

Function Construction with Fuzzy Operators Magyar Kutatók 8. Nemzetközi Szimpóziuma 8 th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics József Dombi Árpád tér, H-670 Szeged, Hungary, email: dombi@inf.u-szeged.hu

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

Mathematics Placement Examination (MPE)

Mathematics Placement Examination (MPE) Practice Problems for Mathematics Placement Eamination (MPE) Revised June, 011 When ou come to New Meico State Universit, ou ma be asked to take the Mathematics Placement Eamination (MPE) Your inital placement

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv Universit, 2013/14 Analsis-III,IV 53 4 Inverse function theorem 4a What is the problem................ 53 4b Simple observations before the theorem..... 54 4c The theorem.....................

More information

Name Period Date. Practice FINAL EXAM Intro to Calculus (50 points) Show all work on separate sheet of paper for full credit!

Name Period Date. Practice FINAL EXAM Intro to Calculus (50 points) Show all work on separate sheet of paper for full credit! Name Period Date Practice FINAL EXAM Intro to Calculus (0 points) Show all work on separate sheet of paper for full credit! ) Evaluate the algebraic epression for the given value or values of the variable(s).

More information

Unit 3 Notes Mathematical Methods

Unit 3 Notes Mathematical Methods Unit 3 Notes Mathematical Methods Foundational Knowledge Created b Triumph Tutoring Copright info Copright Triumph Tutoring 07 Triumph Tutoring Pt Ltd ABN 60 607 0 507 First published in 07 All rights

More information

All parabolas through three non-collinear points

All parabolas through three non-collinear points ALL PARABOLAS THROUGH THREE NON-COLLINEAR POINTS 03 All parabolas through three non-collinear points STANLEY R. HUDDY and MICHAEL A. JONES If no two of three non-collinear points share the same -coordinate,

More information

Construction of Functions by Fuzzy Operators

Construction of Functions by Fuzzy Operators Acta Polytechnica Hungarica Vol. 4, No. 4, 007 Construction of Functions by Fuzzy Operators József Dombi Árpád tér, H-670 Szeged, Hungary, e-mail: dombi@inf.u-szeged.hu József Dániel Dombi Árpád tér, H-670

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae Logic and Discrete Mathematics Section 3.5 Propositional logical equivalence Negation of propositional formulae Slides version: January 2015 Logical equivalence of propositional formulae Propositional

More information

Tautologies, Contradictions, and Contingencies

Tautologies, Contradictions, and Contingencies Section 1.3 Tautologies, Contradictions, and Contingencies A tautology is a proposition which is always true. Example: p p A contradiction is a proposition which is always false. Example: p p A contingency

More information

Learning Goals. College of Charleston Department of Mathematics Math 101: College Algebra Final Exam Review Problems 1

Learning Goals. College of Charleston Department of Mathematics Math 101: College Algebra Final Exam Review Problems 1 College of Charleston Department of Mathematics Math 0: College Algebra Final Eam Review Problems Learning Goals (AL-) Arithmetic of Real and Comple Numbers: I can classif numbers as natural, integer,

More information

Approximation and interpolation sum of exponential functions

Approximation and interpolation sum of exponential functions Approximation and interpolation sum of exponential functions József Dombi Department of Informatics University of Szeged, Hungary 1 Learning pliant operator Recall Dombi operator[] o(x) = o(x 1,,x n )

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

Fuzzy filters and fuzzy prime filters of bounded Rl-monoids and pseudo BL-algebras

Fuzzy filters and fuzzy prime filters of bounded Rl-monoids and pseudo BL-algebras Fuzzy filters and fuzzy prime filters of bounded Rl-monoids and pseudo BL-algebras Jiří Rachůnek 1 Dana Šalounová2 1 Department of Algebra and Geometry, Faculty of Sciences, Palacký University, Tomkova

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

Outline. Limits as x

Outline. Limits as x MS: IT Mathematics Limits & Continuity Limits at Infinity John Carroll School of Mathematical Sciences Dublin City University Introduction So far, we have only considered its as c where c is some finite

More information

is on the graph of y = f 1 (x).

is on the graph of y = f 1 (x). Objective 2 Inverse Functions Illustrate the idea of inverse functions. f() = 2 + f() = Two one-to-one functions are inverses of each other if (f g)() = of g, and (g f)() = for all in the domain of f.

More information

On Urquhart s C Logic

On Urquhart s C Logic On Urquhart s C Logic Agata Ciabattoni Dipartimento di Informatica Via Comelico, 39 20135 Milano, Italy ciabatto@dsiunimiit Abstract In this paper we investigate the basic many-valued logics introduced

More information

5A Exponential functions

5A Exponential functions Chapter 5 5 Eponential and logarithmic functions bjectives To graph eponential and logarithmic functions and transformations of these functions. To introduce Euler s number e. To revise the inde and logarithm

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

Schauder Hats for the 2-variable Fragment of BL

Schauder Hats for the 2-variable Fragment of BL Schauder Hats for the -variable Fragment of BL Stefano Aguzzoli D.S.I., Università di Milano Milano, Italy Email: aguzzoli@dsi.unimi.it Simone Bova Department of Mathematics, Vanderbilt University Nashville

More information

CSC Discrete Math I, Spring Propositional Logic

CSC Discrete Math I, Spring Propositional Logic CSC 125 - Discrete Math I, Spring 2017 Propositional Logic Propositions A proposition is a declarative sentence that is either true or false Propositional Variables A propositional variable (p, q, r, s,...)

More information

Some consequences of compactness in Lukasiewicz Predicate Logic

Some consequences of compactness in Lukasiewicz Predicate Logic Some consequences of compactness in Lukasiewicz Predicate Logic Luca Spada Department of Mathematics and Computer Science University of Salerno www.logica.dmi.unisa.it/lucaspada 7 th Panhellenic Logic

More information

CS 486: Lecture 2, Thursday, Jan 22, 2009

CS 486: Lecture 2, Thursday, Jan 22, 2009 CS 486: Lecture 2, Thursday, Jan 22, 2009 Mark Bickford January 22, 2009 1 Outline Propositional formulas Interpretations and Valuations Validity and Satisfiability Truth tables and Disjunctive Normal

More information

Associativity of triangular norms in light of web geometry

Associativity of triangular norms in light of web geometry Associativit of triangular norms in light of web geometr Milan Petrík 1,2 Peter Sarkoci 3 1. Institute of Computer Science, Academ of Sciences of the Czech Republic, Prague, Czech Republic 2. Center for

More information

Math 0210 Common Final Review Questions (2 5 i)(2 5 i )

Math 0210 Common Final Review Questions (2 5 i)(2 5 i ) Math 0 Common Final Review Questions In problems 1 6, perform the indicated operations and simplif if necessar. 1. ( 8)(4) ( )(9) 4 7 4 6( ). 18 6 8. ( i) ( 1 4 i ) 4. (8 i ). ( 9 i)( 7 i) 6. ( i)( i )

More information

The General Nilpotent System

The General Nilpotent System The General Nilpotent System József Dombi 1,2 Orsolya Csiszár 1 1 Óbuda University, Budapest, Hungary 2 University of Szeged, Hungary FSTA, Liptovský Ján, 2014 csiszar.orsolya@nik.uni-obuda.hu The General

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

INTRODUCTION TO DIOPHANTINE EQUATIONS

INTRODUCTION TO DIOPHANTINE EQUATIONS INTRODUCTION TO DIOPHANTINE EQUATIONS In the earl 20th centur, Thue made an important breakthrough in the stud of diophantine equations. His proof is one of the first eamples of the polnomial method. His

More information

Higher. Functions and Graphs. Functions and Graphs 15

Higher. Functions and Graphs. Functions and Graphs 15 Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 5 Set Theor 5 Functions 6 Inverse Functions 9 4 Eponential Functions 0 5 Introduction to Logarithms 0 6 Radians 7 Eact Values

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents Unit NOTES Honors Common Core Math Da : Properties of Eponents Warm-Up: Before we begin toda s lesson, how much do ou remember about eponents? Use epanded form to write the rules for the eponents. OBJECTIVE

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

y intercept Gradient Facts Lines that have the same gradient are PARALLEL

y intercept Gradient Facts Lines that have the same gradient are PARALLEL CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or

More information

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook)

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook) Lecture 2 Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits Reading (Epp s textbook) 2.1-2.4 1 Logic Logic is a system based on statements. A statement (or

More information

Chapter 4: Classical Propositional Semantics

Chapter 4: Classical Propositional Semantics Chapter 4: Classical Propositional Semantics Language : L {,,, }. Classical Semantics assumptions: TWO VALUES: there are only two logical values: truth (T) and false (F), and EXTENSIONALITY: the logical

More information

Artificial Neuron (Perceptron)

Artificial Neuron (Perceptron) 9/6/208 Gradient Descent (GD) Hantao Zhang Deep Learning with Python Reading: https://en.wikipedia.org/wiki/gradient_descent Artificial Neuron (Perceptron) = w T = w 0 0 + + w 2 2 + + w d d where

More information

Propositional Calculus: Formula Simplification, Essential Laws, Normal Forms

Propositional Calculus: Formula Simplification, Essential Laws, Normal Forms P Formula Simplification, Essential Laws, Normal Forms Lila Kari University of Waterloo P Formula Simplification, Essential Laws, Normal CS245, Forms Logic and Computation 1 / 26 Propositional calculus

More information

Final Exam Review Part 2 #1 Page 1 / 21

Final Exam Review Part 2 #1 Page 1 / 21 Final Eam Review Part #1 Intermediate Algebra / MAT 135 Spring 017 Master ( Master Templates) Student Name/ID: v 1. Solve for, where is a real number. v v + 1 + =. Solve for, where is a real number. +

More information

University of Toronto Mississauga

University of Toronto Mississauga Surname: First Name: Student Number: Tutorial: Universit of Toronto Mississauga Mathematical and Computational Sciences MATY5Y Term Test Duration - 0 minutes No Aids Permitted This eam contains pages (including

More information

Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION. Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION

Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION. Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION FIRST-ORDER DIFFERENTIAL EQUATIONS 2 Chapter Contents 2. Solution Curves without a Solution 2.. Direction Fields 2..2 Jones Autonomous & Bartlett First-Order Learning, DEs LLC 2.2 Separable Equations 2.3

More information

We have examined power functions like f (x) = x 2. Interchanging x

We have examined power functions like f (x) = x 2. Interchanging x CHAPTER 5 Eponential and Logarithmic Functions We have eamined power functions like f =. Interchanging and ields a different function f =. This new function is radicall different from a power function

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

Normal Forms of Propositional Logic

Normal Forms of Propositional Logic Normal Forms of Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 12, 2017 Bow-Yaw Wang (Academia Sinica) Normal Forms of Propositional Logic September

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

Rough neutrosophic set in a lattice

Rough neutrosophic set in a lattice nternational Journal of ppld esearch 6; 5: 43-5 SSN Print: 394-75 SSN Online: 394-5869 mpact actor: 5 J 6; 5: 43-5 wwwallresearchjournalcom eceived: -3-6 ccepted: -4-6 rockiarani Nirmala College for Women

More information

College Algebra ~ Review for Test 2 Sections

College Algebra ~ Review for Test 2 Sections College Algebra ~ Review for Test Sections. -. Use the given graphs of = a + b to solve the inequalit. Write the solution set in interval notation. ) - + 9 8 7 6 (, ) - - - - 6 7 8 - Solve the inequalit

More information

College Algebra Final, 7/2/10

College Algebra Final, 7/2/10 NAME College Algebra Final, 7//10 1. Factor the polnomial p() = 3 5 13 4 + 13 3 + 9 16 + 4 completel, then sketch a graph of it. Make sure to plot the - and -intercepts. (10 points) Solution: B the rational

More information

14.1 FUNCTIONS OF SEVERAL VARIABLES. In this section we study functions of two or more variables from four points of view:

14.1 FUNCTIONS OF SEVERAL VARIABLES. In this section we study functions of two or more variables from four points of view: 4 PARTIAL DERIVATIVES Functions of two variables can be visualied b means of level curves, which connect points where the function takes on a given value. Atmospheric pressure at a given time is a function

More information

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta QUADRATIC GRAPHS ALGEBRA 2 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Quadratic Graphs 1/ 16 Adrian Jannetta Objectives Be able to sketch the graph of a quadratic function Recognise the shape

More information

Part D. Complex Analysis

Part D. Complex Analysis Part D. Comple Analsis Chapter 3. Comple Numbers and Functions. Man engineering problems ma be treated and solved b using comple numbers and comple functions. First, comple numbers and the comple plane

More information

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-0-521-88121-0 - Metal Forming: Mechanics Metallurg, Third Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for analzing metal forming operations.

More information

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-1-107-00452-8 - Metal Forming: Mechanics Metallurg, Fourth Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for the analsis of metal forming operations.

More information

3.1 Exponential Functions and Their Graphs

3.1 Exponential Functions and Their Graphs .1 Eponential Functions and Their Graphs Sllabus Objective: 9.1 The student will sketch the graph of a eponential, logistic, or logarithmic function. 9. The student will evaluate eponential or logarithmic

More information

ZETA MATHS. Higher Mathematics Revision Checklist

ZETA MATHS. Higher Mathematics Revision Checklist ZETA MATHS Higher Mathematics Revision Checklist Contents: Epressions & Functions Page Logarithmic & Eponential Functions Addition Formulae. 3 Wave Function.... 4 Graphs of Functions. 5 Sets of Functions

More information

Answers for the problems can be found at the end of this packet starting on Page 12.

Answers for the problems can be found at the end of this packet starting on Page 12. MAC 0 Review for Final Eam The eam will consists of problems similar to the ones below. When preparing, focus on understanding and general procedures (when available) rather than specific question. Answers

More information

Algebra y funciones [219 marks]

Algebra y funciones [219 marks] Algebra y funciones [9 marks] Let f() = 3 ln and g() = ln5 3. a. Epress g() in the form f() + lna, where a Z +. attempt to apply rules of logarithms e.g. ln a b = b lna, lnab = lna + lnb correct application

More information

is on the graph of y = f 1 (x).

is on the graph of y = f 1 (x). Objective 2 Inverse Functions Illustrate the idea of inverse functions. f() = 2 + f() = Two one-to-one functions are inverses of each other if (f g)() = of g, and (g f)() = for all in the domain of f.

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

MAT 116 Final Exam Review

MAT 116 Final Exam Review MAT 116 Final Eam Review 1. Determine the equation for the line described, writing the answer in slope-intercept form. The line is parallel to = 8 and passes through ( 1,9). The line is perpendicular to

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

Kamila BENDOVÁ INTERPOLATION AND THREE-VALUED LOGICS

Kamila BENDOVÁ INTERPOLATION AND THREE-VALUED LOGICS REPORTS ON MATHEMATICAL LOGIC 39 (2005), 127 131 Kamila BENDOVÁ INTERPOLATION AND THREE-VALUED LOGICS 1. Three-valued logics We consider propositional logic. Three-valued logics are old: the first one

More information

Propositional natural deduction

Propositional natural deduction Propositional natural deduction COMP2600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2016 Major proof techniques 1 / 25 Three major styles of proof in logic and mathematics Model

More information

An Information Theory For Preferences

An Information Theory For Preferences An Information Theor For Preferences Ali E. Abbas Department of Management Science and Engineering, Stanford Universit, Stanford, Ca, 94305 Abstract. Recent literature in the last Maimum Entrop workshop

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

A statement is a sentence that is definitely either true or false but not both.

A statement is a sentence that is definitely either true or false but not both. 5 Logic In this part of the course we consider logic. Logic is used in many places in computer science including digital circuit design, relational databases, automata theory and computability, and artificial

More information

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false.

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false. Section 1.2 Propositional Equivalences A tautology is a proposition which is always true. Classic Example: P P A contradiction is a proposition which is always false. Classic Example: P P A contingency

More information

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete Mathematics

More information

Derivatives of Multivariable Functions

Derivatives of Multivariable Functions Chapter 0 Derivatives of Multivariable Functions 0. Limits Motivating Questions In this section, we strive to understand the ideas generated b the following important questions: What do we mean b the limit

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits as Approaches Infinity At times you ll need to know the behavior of a function or an epression as the inputs get increasingly

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line.

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line. MAC 1105 PRACTICE FINAL EXAM College Algebra *Note: this eam is provided as practice onl. It was based on a book previousl used for this course. You should not onl stud these problems in preparing for

More information

Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic

Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic 1 1 Paraconsistent Semantics for Pavelka Style Fuzzy Sentential Logic E. Turunen, P.O. Box 553, 33101 Tampere, Finland M. Öztürk Artois, F 62307 Lens, France, A. Tsoukias 75775, Paris, France. May 26,

More information

Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models

Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models Hypersequent Calculi for some Intermediate Logics with Bounded Kripke Models Agata Ciabattoni Mauro Ferrari Abstract In this paper we define cut-free hypersequent calculi for some intermediate logics semantically

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2 Chapter Calculus MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the average rate of change of the function over the given interval. ) = 73-5

More information

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 1. Translate each of the following English sentences into formal statements using the logical operators (,,,,, and ). You may also use mathematical

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

FUZZY ATTRIBUTE LOGIC: ATTRIBUTE IMPLICATIONS, THEIR VALIDITY, ENTAILMENT, AND NON-REDUNDANT BASIS 2 PRELIMINARIES

FUZZY ATTRIBUTE LOGIC: ATTRIBUTE IMPLICATIONS, THEIR VALIDITY, ENTAILMENT, AND NON-REDUNDANT BASIS 2 PRELIMINARIES FUZZY ATTRIBUTE LOGIC: ATTRIBUTE IMPLICATIONS, THEIR VALIDITY, ENTAILMENT, AND NON-REDUNDANT BASIS Radim Bělohlávek Vilém Vychodil Dept. Computer Science, Palacký University, Tomkova 40, CZ-779 00, Olomouc,

More information

Fuzzy Rules and Fuzzy Reasoning (chapter 3)

Fuzzy Rules and Fuzzy Reasoning (chapter 3) 9/4/00 Fuzz ules and Fuzz easoning (chapter ) Kai Goebel, ill Cheetham GE Corporate esearch & Development goebel@cs.rpi.edu cheetham@cs.rpi.edu (adapted from slides b. Jang) Fuzz easoning: The ig Picture

More information

2.3 Quadratic Functions

2.3 Quadratic Functions 88 Linear and Quadratic Functions. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions:

More information

cse541 LOGIC FOR COMPUTER SCIENCE

cse541 LOGIC FOR COMPUTER SCIENCE cse541 LOGIC FOR COMPUTER SCIENCE Professor Anita Wasilewska Spring 2015 LECTURE 2 Chapter 2 Introduction to Classical Propositional Logic PART 1: Classical Propositional Model Assumptions PART 2: Syntax

More information