FALL 2018 MATH 4211/6211 Optimization Homework 1

Size: px
Start display at page:

Download "FALL 2018 MATH 4211/6211 Optimization Homework 1"

Transcription

1 FALL 2018 MATH 4211/6211 Optimization Homework 1 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution manual). Copying others solutions or programs is strictly prohibited and will result in grade of 0 to all involved students. Please type your answers in Latex and submit a single PDF file on icollege before due time. Please do not include your name anywhere in the submitted PDF file. Instead, name your PDF file as hw pdf (replace by your own Panther ID number). It is recommended to use notations that are consistent to lectures. By default all vectors are treated as column vectors. 1

2 Problem 1. (1 point) Let x = (x 1,..., x n ) T R n, then the p-norm (p 1) of x is defined by x p = ( n x i p ) 1/p. The standard Euclidean norm is x 2 (often denoted by x without subscript 2). Prove the following statements. x = x T x for all x R n ; x x 1 for all x R n. For MATH 6211, also prove x 1 n x for all x R n ; Proof. By the definition of the standard Euclidian norm x = x 2 = n x i 2. On the other hand, the inner product of x and itself is x T x = (x 1 ) 2 + (x 2 ) (x n ) 2 = n x i 2. Hence we have x = x T x. Proof. Since x 1 = n x i, we have ( 2 x 2 1 = x i ) = x i 2 + x i x j i j x i 2 = x. Therefore x 1 x. Moreover, there is 2 x i x j x i 2 + x j 2 for any x i, x j R, and we have x i x j = 2 x i x j ( x i 2 + x j 2 ) = (n 1) i<j i<j i j x i 2, where the last equality is because each x i 2 appears n 1 times due to the sum. Therefore, we have x 2 1 = x i 2 + x i x j n x i 2 = n x 2, i j from which it follows that x 1 n x. 2

3 Problem 2. (1 point) Let x = (x 1,..., x n ) T R n, and f : R n R. Recall the following definitions: The gradient of f at x is defined by f(x) = ( f x 1,..., f x n ) T R n ; The Hessian of f at x is 2 f(x) = x 2 1 x 1 x 2. x 1 x n x 2 x 1 x 2 2. x n x 2 x n x 1 x n x x 2 n R n n The Taylor expansion of f(y) at a given point x up to the second order term is f(y) = f(x) + f(x) T (y x) (y x)t 2 f(x)(y x) + o( y x 2 ) Find the gradient and the Hessian of the function f defined below at point x = (0, 1) T R 2. f(x) = (x 1 x 2 ) 4 + x 2 1 x 2 2 2x 1 + 2x In addition, find the Taylor expansion of f at x = (0, 1) T up to the second order term. We first compute the partial derivatives: x 2 ) 3 2x Therefore the gradient is f(x) = f x 1 (x) = 4(x 1 x 2 ) 3 + 2x 1 2, ( f (x), f ) T [ 4(x1 x (x) = 2 ) 3 ] + 2x 1 2 x 1 x 2 4(x 1 x 2 ) 3. 2x Plugging in x = (x 1, x 2 ) T = (0, 1) T, we obtain f((0, 1) T ) = ( 6, 4) T. f x 2 (x) = 4(x 1 We compute the second-order partial derivatives / x i x j to obtain the Hessian matrix [ 2 12(x1 x f(x) = 2 ) (x 1 x 2 ) 2 ] 12(x 1 x 2 ) 2 12(x 1 x 2 ) 2 2 Plugging in x = (x 1, x 2 ) T = (0, 1) T, we obtain the Hessian of f at x = (0, 1) T as [ ] 2 f((0, 1) T ) = Note that f at x = (0, 1) T is f((0, 1) T ) = 3. The Taylor expansion of f(y) at x is then f(y) = f(x) + f(x) T (y x) (y x)t 2 f(x)(y x) + o( y x 2 ) ( ) y1 = 3 + ( 6, 4) + 1 [ ] ( ) y (y y1 1, y 2 1) + o( y y y ) = 7y y 1 y 2 + 5y y 1 6y o( y y ). 3

4 Problem 3. (1 point) Let A R m n and b R m be given. Define function f : R n R by f(x) = Ax b 2. Find the expressions of the quantities below using A, x, and b. f(x); 2 f(x). Denote the matrix A = [a ij ] R m n (i.e., an m-by-n matrix with a ij as the (i, j)th entry) and b = (b 1,..., b m ) T R m. Also denote y := Ax b R m where y i = n j=1 a ijx j b i for i = 1,..., m. Note that f(x) = Ax b 2 = y 2 = m ( n j=1 a ijx j b i ) 2. Hence we have f/ x j = m 2a ij( n j=1 a ijx j b i ), which is the inner product of 2(a 1j,..., a mj ) T (2 multiplies the jth column of A) and y. By stacking the partial derivatives f/ x j for j = 1,..., n, we obtain the gradient as f(x) = 2A T y = 2A T (Ax b). We compute the second order partial derivatives to obtain the (k, j)th entry of the Hessian as 2 f x k x j = m 2a ija ik for k, j = 1,..., n. Therefore the Hessian matrix is 2 f(x) = [ 2 f x k x j ] = 2[ m a ija ik ] = 2A T A. 4

5 Problem 4. (1 point) Show that for any matrix A R m n and vector b R m, the set {x R n : Ax = b} is convex. Proof. Denote C = {x R n : Ax = b}. For any x, y C, there is Ax = Ay = b. For any θ [0, 1], we hence have A(θx+(1 θ)y) = θax+(1 θ)ay = θb+(1 θ)b = b, which means θx+(1 θ)y C. By the definition of convex sets, we know C is convex. 5

6 Problem 5. (1 point) Show that the set {x R n : x r} is convex, where r > 0 is a given real number. Proof. Denote C = {x R n : x r}. For any x, y C, there is x, y r. For any θ [0, 1], we hence have θx + (1 θ)y θx + (1 θ)y = θ x + (1 θ) y θr + (1 θ)r = r where we used the triangle inequality of norms to obtain the first inequality. The result above implies θx + (1 θ)y C, and hence C is convex. 6

7 Problem 6. (1 point) Let C R n be a convex set, and f : C R be a convex function. Prove that the following statements hold for any k 2, x 1,..., x k C,,..., 0, and + θ = 1: x 1 + θ 2 x x k C; f( x 1 + θ 2 x x k ) f(x 1 ) + θ 2 f(x 2 ) + + f(x k ). Hint: use induction on k. Proof. If k = 2, we know the statement holds since C is a convex set. Assume the statement holds for k (induction hypothesis). Then we consider z := x 1 + θ 2 x x k + +1 x k+1 where k+1 θ i = 1 and θ i 0 for i = 1,..., k + 1. If +1 = 0, then z = x 1 + θ 2 x x k C due to the induction hypothesis. If +1 (0, 1], then we have Note that θ i z = x 1 + θ 2 x x k + +1 x k+1 ( = (1 +1 ) x for all i = 1,..., k and 1 +1 x k ) + +1 x k = + + = 1 +1 = 1, we know that x x k C due to the induction hypothesis. Then it follows θ that z C since it is a convex combination of 1 x x k and x k+1. Therefore the statement holds for k + 1. By induction we know the statement holds for all k 2. Proof. If k = 2, we know the statement holds since f is a convex function. Assume the statement holds for k (induction hypothesis). Then we again consider z := x 1 + θ 2 x x k + +1 x k+1 where k+1 θ i = 1 and θ i 0 for i = 1,..., k + 1. If +1 = 0, then the statement holds due to the induction hypothesis. If +1 (0, 1], then we have f(z) = f( x 1 + θ 2 x x k + +1 x k+1 ) ( ( ) ) = f (1 +1 ) x x k + +1 x k ( ) (1 +1 )f x x k + +1 f(x k+1 ) (1 +1 ) k+1 = θ i f(x i ), k θ i 1 +1 f(x i ) + +1 f(x k+1 ) where the first inequality above is due to the convexity of f, and the second inequality above is due to the induction hypothesis. This means the statement holds for k + 1 as well. Therefore by induction we know the statement holds for all k 2. 7

FALL 2018 MATH 4211/6211 Optimization Homework 4

FALL 2018 MATH 4211/6211 Optimization Homework 4 FALL 2018 MATH 4211/6211 Optimization Homework 4 This homework assignment is open to textbook, reference books, slides, and online resources, excluding any direct solution to the problem (such as solution

More information

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012 (Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

More information

Convex Optimization / Homework 1, due September 19

Convex Optimization / Homework 1, due September 19 Convex Optimization 1-725/36-725 Homework 1, due September 19 Instructions: You must complete Problems 1 3 and either Problem 4 or Problem 5 (your choice between the two). When you submit the homework,

More information

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n Lectures -2: Linear Algebra Background Almost all linear and nonlinear problems in scientific computation require the use of linear algebra These lectures review basic concepts in a way that has proven

More information

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Math 164-1: Optimization Instructor: Alpár R. Mészáros Math 164-1: Optimization Instructor: Alpár R. Mészáros First Midterm, April 20, 2016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By writing

More information

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Math 164-1: Optimization Instructor: Alpár R. Mészáros Math 164-1: Optimization Instructor: Alpár R. Mészáros Final Exam, June 9, 2016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 180 minutes. By writing your

More information

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3

A function(al) f is convex if dom f is a convex set, and. f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) f(x) = x 3 Convex functions The domain dom f of a functional f : R N R is the subset of R N where f is well-defined. A function(al) f is convex if dom f is a convex set, and f(θx + (1 θ)y) θf(x) + (1 θ)f(y) for all

More information

Lecture 2: Convex Sets and Functions

Lecture 2: Convex Sets and Functions Lecture 2: Convex Sets and Functions Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Network Optimization, Fall 2015 1 / 22 Optimization Problems Optimization problems are

More information

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Due: Monday, February 13, 2017, at 10pm (Submit via Gradescope) Instructions: Your answers to the questions below,

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Linear Systems Fall 2015 1 / 12 Introduction We continue looking how to solve linear systems of

More information

Unconstrained minimization of smooth functions

Unconstrained minimization of smooth functions Unconstrained minimization of smooth functions We want to solve min x R N f(x), where f is convex. In this section, we will assume that f is differentiable (so its gradient exists at every point), and

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Prof. Wickerhauser Due Friday, February 5th, 2016 Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*. Exercises marked

More information

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008 Lecture 8 Plus properties, merit functions and gap functions September 28, 2008 Outline Plus-properties and F-uniqueness Equation reformulations of VI/CPs Merit functions Gap merit functions FP-I book:

More information

Lecture 5: September 15

Lecture 5: September 15 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Homework 3 Conjugate Gradient Descent, Accelerated Gradient Descent Newton, Quasi Newton and Projected Gradient Descent

Homework 3 Conjugate Gradient Descent, Accelerated Gradient Descent Newton, Quasi Newton and Projected Gradient Descent Homework 3 Conjugate Gradient Descent, Accelerated Gradient Descent Newton, Quasi Newton and Projected Gradient Descent CMU 10-725/36-725: Convex Optimization (Fall 2017) OUT: Sep 29 DUE: Oct 13, 5:00

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 419/519 Summer Session 2011-12 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Functions of Several Variables We now generalize the results from the previous section,

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 4. Suvrit Sra. (Conjugates, subdifferentials) 31 Jan, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 4. Suvrit Sra. (Conjugates, subdifferentials) 31 Jan, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 4 (Conjugates, subdifferentials) 31 Jan, 2013 Suvrit Sra Organizational HW1 due: 14th Feb 2013 in class. Please L A TEX your solutions (contact TA if this

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 17 2019 Logistics HW 1 is on Piazza and Gradescope Deadline: Friday, Jan. 25, 2019 Office

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018 Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer 28. (Vector and Matrix Norms) Homework 3 Due: Tuesday, July 3, 28 Show that the l vector norm satisfies the three properties (a) x for x

More information

Convex Optimization Overview

Convex Optimization Overview Convex Optimization Overview Zico Kolter October 19, 2007 1 Introduction Many situations arise in machine learning where we would like to optimize the value of some function. That is, given a function

More information

Math 361: Homework 1 Solutions

Math 361: Homework 1 Solutions January 3, 4 Math 36: Homework Solutions. We say that two norms and on a vector space V are equivalent or comparable if the topology they define on V are the same, i.e., for any sequence of vectors {x

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

IE 521 Convex Optimization Homework #1 Solution

IE 521 Convex Optimization Homework #1 Solution IE 521 Convex Optimization Homework #1 Solution your NAME here your NetID here February 13, 2019 Instructions. Homework is due Wednesday, February 6, at 1:00pm; no late homework accepted. Please use the

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Introduction and Math Preliminaries

Introduction and Math Preliminaries Introduction and Math Preliminaries Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Appendices A, B, and C, Chapter

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

Math 273 (51) - Final

Math 273 (51) - Final Name: Id #: Math 273 (5) - Final Autumn Quarter 26 Thursday, December 8, 26-6: to 8: Instructions: Prob. Points Score possible 25 2 25 3 25 TOTAL 75 Read each problem carefully. Write legibly. Show all

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

Section 4.2. Types of Differentiation

Section 4.2. Types of Differentiation 42 Types of Differentiation 1 Section 42 Types of Differentiation Note In this section we define differentiation of various structures with respect to a scalar, a vector, and a matrix Definition Let vector

More information

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised)

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised) Computational Optimization Mathematical Programming Fundamentals 1/5 (revised) If you don t know where you are going, you probably won t get there. -from some book I read in eight grade If you do get there,

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

MATH10212 Linear Algebra B Homework Week 5

MATH10212 Linear Algebra B Homework Week 5 MATH Linear Algebra B Homework Week 5 Students are strongly advised to acquire a copy of the Textbook: D C Lay Linear Algebra its Applications Pearson 6 (or other editions) Normally homework assignments

More information

HW2 Solutions

HW2 Solutions 8.024 HW2 Solutions February 4, 200 Apostol.3 4,7,8 4. Show that for all x and y in real Euclidean space: (x, y) 0 x + y 2 x 2 + y 2 Proof. By definition of the norm and the linearity of the inner product,

More information

Math Real Analysis II

Math Real Analysis II Math 4 - Real Analysis II Solutions to Homework due May Recall that a function f is called even if f( x) = f(x) and called odd if f( x) = f(x) for all x. We saw that these classes of functions had a particularly

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

4 Linear Algebra Review

4 Linear Algebra Review 4 Linear Algebra Review For this topic we quickly review many key aspects of linear algebra that will be necessary for the remainder of the course 41 Vectors and Matrices For the context of data analysis,

More information

Lecture 1 Introduction

Lecture 1 Introduction L. Vandenberghe EE236A (Fall 2013-14) Lecture 1 Introduction course overview linear optimization examples history approximate syllabus basic definitions linear optimization in vector and matrix notation

More information

The Steepest Descent Algorithm for Unconstrained Optimization

The Steepest Descent Algorithm for Unconstrained Optimization The Steepest Descent Algorithm for Unconstrained Optimization Robert M. Freund February, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 1 Steepest Descent Algorithm The problem

More information

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA Andrew ID: ljelenak August 25, 2018 This assignment reviews basic mathematical tools you will use throughout

More information

Designing Information Devices and Systems I Spring 2018 Homework 11

Designing Information Devices and Systems I Spring 2018 Homework 11 EECS 6A Designing Information Devices and Systems I Spring 28 Homework This homework is due April 8, 28, at 23:59. Self-grades are due April 2, 28, at 23:59. Submission Format Your homework submission

More information

Solutions for Homework Assignment 2

Solutions for Homework Assignment 2 Solutions for Homework Assignment 2 Problem 1. If a,b R, then a+b a + b. This fact is called the Triangle Inequality. By using the Triangle Inequality, prove that a b a b for all a,b R. Solution. To prove

More information

MATH 680 Fall November 27, Homework 3

MATH 680 Fall November 27, Homework 3 MATH 680 Fall 208 November 27, 208 Homework 3 This homework is due on December 9 at :59pm. Provide both pdf, R files. Make an individual R file with proper comments for each sub-problem. Subgradients and

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

1 Introduction to Optimization

1 Introduction to Optimization Unconstrained Convex Optimization 2 1 Introduction to Optimization Given a general optimization problem of te form min x f(x) (1.1) were f : R n R. Sometimes te problem as constraints (we are only interested

More information

Important. Need a more in depth preview? Get ALL the premium chapter 1 tutorials FREE

Important. Need a more in depth preview? Get ALL the premium chapter 1 tutorials FREE MATH1505.com We Make Math Easy. PREVIEW Homework ~ Tutorials ~ Past Tests Important Math 1505 is a HUGE course. Many students fear the course, but you don t need to, you ve got us! Your keys to success

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

22A-2 SUMMER 2014 LECTURE Agenda

22A-2 SUMMER 2014 LECTURE Agenda 22A-2 SUMMER 204 LECTURE 2 NATHANIEL GALLUP The Dot Product Continued Matrices Group Work Vectors and Linear Equations Agenda 2 Dot Product Continued Angles between vectors Given two 2-dimensional vectors

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 4 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 2.6.3, 2.7.4, 2.7.5, 2.7.2,

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

Ross Program 2017 Application Problems

Ross Program 2017 Application Problems Ross Program 2017 Application Problems This document is part of the application to the Ross Mathematics Program, and is posted at http://u.osu.edu/rossmath/. The Admission Committee will start reading

More information

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook.

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Math 443 Differential Geometry Spring 2013 Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Endomorphisms of a Vector Space This handout discusses

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

1 Convexity, concavity and quasi-concavity. (SB )

1 Convexity, concavity and quasi-concavity. (SB ) UNIVERSITY OF MARYLAND ECON 600 Summer 2010 Lecture Two: Unconstrained Optimization 1 Convexity, concavity and quasi-concavity. (SB 21.1-21.3.) For any two points, x, y R n, we can trace out the line of

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Homework 5. Solutions

Homework 5. Solutions Homework 5. Solutions 1. Let (X,T) be a topological space and let A,B be subsets of X. Show that the closure of their union is given by A B = A B. Since A B is a closed set that contains A B and A B is

More information

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM.

Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Homework #3 RELEASE DATE: 10/28/2013 DUE DATE: extended to 11/18/2013, BEFORE NOON QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FORUM. Unless granted by the instructor in advance, you must turn

More information

5. Subgradient method

5. Subgradient method L. Vandenberghe EE236C (Spring 2016) 5. Subgradient method subgradient method convergence analysis optimal step size when f is known alternating projections optimality 5-1 Subgradient method to minimize

More information

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions

More information

Multivariate Calculus Solution 1

Multivariate Calculus Solution 1 Math Camp Multivariate Calculus Solution Hessian Matrices Math Camp In st semester micro, you will solve general equilibrium models. Sometimes when solving these models it is useful to see if utility functions

More information

Lecture 2: Review of Prerequisites. Table of contents

Lecture 2: Review of Prerequisites. Table of contents Math 348 Fall 217 Lecture 2: Review of Prerequisites Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this

More information

Homework 3. Convex Optimization /36-725

Homework 3. Convex Optimization /36-725 Homework 3 Convex Optimization 10-725/36-725 Due Friday October 14 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

EE Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term

EE Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko, JPL Third Term EE 150 - Applications of Convex Optimization in Signal Processing and Communications Dr. Andre Tkacenko JPL Third Term 2011-2012 Due on Thursday May 3 in class. Homework Set #4 1. (10 points) (Adapted

More information

A2 Mathematics Assignment 7 Due Date: Friday 28 th February 2014

A2 Mathematics Assignment 7 Due Date: Friday 28 th February 2014 A Mathematics Assignment 7 Due Date: Friday 8 th February 0 NAME. GROUP: MECHANICS/STATS Instructions to Students All questions must be attempted. You should present your solutions on file paper and submit

More information

Algebra: Chapter 3 Notes

Algebra: Chapter 3 Notes Algebra Homework: Chapter 3 (Homework is listed by date assigned; homework is due the following class period) HW# Date In-Class Homework 16 F 2/21 Sections 3.1 and 3.2: Solving and Graphing One-Step Inequalities

More information

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition Applied mathematics PhD candidate, physics MA UC Berkeley April 26, 2013 UCB 1/19 Symmetric positive-definite I Definition A symmetric matrix A R n n is positive definite iff x T Ax > 0 holds x 0 R n.

More information

Homework 1 Solutions

Homework 1 Solutions MATH 171 Spring 2016 Problem 1 Homework 1 Solutions (If you find any errors, please send an e-mail to farana at stanford dot edu) Presenting your arguments in steps, using only axioms of an ordered field,

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS 1. Please write your name and student number clearly on the front page of the exam. 2. The exam is

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector

More information

Problem 1 Cost of an Infinite Horizon LQR

Problem 1 Cost of an Infinite Horizon LQR THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 5 Ahmad F. Taha October 12, 215 Homework Instructions: 1. Type your solutions in the LATEX homework

More information

HOMEWORK 7 solutions

HOMEWORK 7 solutions Math 4377/6308 Advanced Linear Algebra I Dr. Vaughn Climenhaga, PGH 651A Fall 2013 HOMEWORK 7 solutions Due 4pm Wednesday, October 16. You will be graded not only on the correctness of your answers but

More information

Interior-Point Methods for Linear Optimization

Interior-Point Methods for Linear Optimization Interior-Point Methods for Linear Optimization Robert M. Freund and Jorge Vera March, 204 c 204 Robert M. Freund and Jorge Vera. All rights reserved. Linear Optimization with a Logarithmic Barrier Function

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 207 Philippe B. Laval (KSU) Linear Systems Fall 207 / 2 Introduction We continue looking how to solve linear systems of the

More information

EXAM. Exam 1. Math 5316, Fall December 2, 2012

EXAM. Exam 1. Math 5316, Fall December 2, 2012 EXAM Exam Math 536, Fall 22 December 2, 22 Write all of your answers on separate sheets of paper. You can keep the exam questions. This is a takehome exam, to be worked individually. You can use your notes.

More information

ORF 363/COS 323 Final Exam, Fall 2018

ORF 363/COS 323 Final Exam, Fall 2018 Name: Princeton University ORF 363/COS 323 Final Exam, Fall 2018 January 16, 2018 Instructor: A.A. Ahmadi AIs: Dibek, Duan, Gong, Khadir, Mirabelli, Pumir, Tang, Yu, Zhang 1. Please write out and sign

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

10-725/ Optimization Midterm Exam

10-725/ Optimization Midterm Exam 10-725/36-725 Optimization Midterm Exam November 6, 2012 NAME: ANDREW ID: Instructions: This exam is 1hr 20mins long Except for a single two-sided sheet of notes, no other material or discussion is permitted

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

Math 581 Problem Set 6 Solutions

Math 581 Problem Set 6 Solutions Math 581 Problem Set 6 Solutions 1. Let F K be a finite field extension. Prove that if [K : F ] = 1, then K = F. Proof: Let v K be a basis of K over F. Let c be any element of K. There exists α c F so

More information

Math 54 - HW Solutions 5

Math 54 - HW Solutions 5 Math 54 - HW Solutions 5 Dan Crytser August 6, 202 Problem 20.a To show that the Manhattan metric d(, y) = y +... + n y n induces the standard topology on R n, we show that it induces the same topology

More information

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution:

1. Implement AdaBoost with boosting stumps and apply the algorithm to the. Solution: Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 October 31, 2016 Due: A. November 11, 2016; B. November 22, 2016 A. Boosting 1. Implement

More information

Computing Neural Network Gradients

Computing Neural Network Gradients Computing Neural Network Gradients Kevin Clark 1 Introduction The purpose of these notes is to demonstrate how to quickly compute neural network gradients in a completely vectorized way. It is complementary

More information

Math (P)Review Part II:

Math (P)Review Part II: Math (P)Review Part II: Vector Calculus Computer Graphics Assignment 0.5 (Out today!) Same story as last homework; second part on vector calculus. Slightly fewer questions Last Time: Linear Algebra Touched

More information

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK)

Convex Functions. Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Convex Functions Wing-Kin (Ken) Ma The Chinese University of Hong Kong (CUHK) Course on Convex Optimization for Wireless Comm. and Signal Proc. Jointly taught by Daniel P. Palomar and Wing-Kin (Ken) Ma

More information