Functions of Several Variables

Size: px
Start display at page:

Download "Functions of Several Variables"

Transcription

1 Jim Lambers MAT 419/519 Summer Session Lecture 2 Notes These notes correspond to Section 1.2 in the text. Functions of Several Variables We now generalize the results from the previous section, pertaining to optimization of functions of one variable, to functions of several variables. However, we first need some notation and definitions. Definition An n-vector in R n is an ordered n-tuple x = (x 1, x 2,..., x n ) of real numbers x i, called the components of x. Vectors belong to vector spaces, which support two essential operations. We define addition of two vectors x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) in R n by and multiplication of x and a real number λ by x + y = (x 1 + y1, x 2 + y 2,..., x n + y n ), λx = (λx 1, λx 2,..., λx n ). Multiplication of numbers needs to be generalized to a sort of multiplication operation involving two vectors. Definition If x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) are vectors in R n, their dot product or inner product x y is defined by x y = x 1 y 1 + x 2 y x n y n = Two vectors x and y are orthogonal if x y = 0. n x k y k. We also need to generalize the notion of absolute value, or a number s magnitude, to the magnitude of a vector. Definition The norm or length x of a vector x = (x 1, x 2,..., x n ) in R n is defined by k=1 x = (x x x 2 n) 1/2 = (x x) 1/2. The norm is a real-valued function on R n with the following properties: 1

2 1. x 0 for all vectors x R n. 2. x = 0 if and only if x = αx = α x for all vectors x R n and all real numbers α. 4. x + y x + y, the Triangle Inequality 5. x y x y, the Cauchy-Schwarz Inequality Using the norm, the dot product can also be defined as x y = x y cos θ where θ is the angle between x and y. Just as the distance between two numbers x and y is given by x y, the distance between two points in n-dimensional space can be defined similarly. Definition If x, y R n, the distance d(x, y) between x and y is defined by ( n ) 1/2 d(x, y) = x y = (x i y i ) 2. The ball B(x, r) centered at x of radius r is the set of all vectors y R n such that d(x, y) < r. A point x in a set D R n is an interior point of D if there exists an r > 0 such that B(x, r) D. The interior D 0 is the set of all interior points of D. A set G R n is open if G 0 = G. A set F R n is closed if its complement G = F c in R n is open. Now, we are prepared to define minimizers and maximizers of functions of n variables. Definition Suppose that f : D R n R. A point x D is a 1. global minimizer of f on D if f(x ) f for all x D; 2. strict global minimizer of f on D if f(x ) < f for all x D; 3. local minimizer of f(x if there exists a δ > 0 such that f(x ) f whenever x B(x, δ); 4. strict local minimizer of f if there exists a δ > 0 such that f(x ) < f whenever x B(x, δ) and x x ; 5. critical point of f if the first partial derivatives of f exist at x and i=1 x i (x ) = 0, i = 1, 2,..., n. 2

3 Using this definition of a critical point, we can now characterize the location of maximizers and minimizers, as in Fermat s theorem in the single-variable case. Theorem Suppose that f is a real-valued function for which all first partial derivatives of f exist on a subset D of R n. If x is an interior point of D that is a local minimizer of f, then x is a critical point of f. This theorem can be proved by reduction to the single-variable case, in which all variables except one are fixed. We need to generalize Taylor s Formula to the multi-variable case. Given a function f : R n R whose first and second partial derivatives are continuous on an open set containing the line segment joining x and x. By defining the function [x, x] = {w R n w = x + t(x x ), 0 t 1} ϕ(t) = f(x + t(x x )) and applying Taylor s Formula in conjunction with the multi-variable Chain Rule, we obtain the following result. Theorem Suppose that x, x R n and that f : D R n R with continuous first and second partial derivatives on some open set containing the line segment [x, x]. Then there exists a z [x, x] such that where is the gradient of f, and is the Hessian of f. f = f(x ) + f(x ) (x x ) (x x ) Hf(z)(x x ) f = Hf = [ x 1 x 2 1 x 2 x 1. x n x 1 x 2 x n x 1 x 2 x 1 x n 2 f x 2 x 2 2 x n..... x n x 2 2 f x 2 n Now we can characterize local or global maximizers or minimizers based on the second partial derivatives, in the same way as in the single-variable case. Theorem Suppose that x is a critical point of f with continuous first and second partial derivatives on R n. Then: 3 ]

4 1. x is a global minimizer of f if (x x ) Hf(z)(x x ) 0 for all x R n and all z [x, x]; 2. x is a strict global minimizer of f if (x x ) Hf(z)(x x ) > 0 for all x R n and all z [x, x]; 3. x is a global maximizer of f if (x x ) Hf(z)(x x ) 0 for all x R n and all z [x, x]; 4. x is a strict global maximizer of f if (x x ) Hf(z)(x x ) < 0 for all x R n and all z [x, x]. This theorem can be proved using the multi-variable generalization of Taylor s Theorem, in conjunction with the continuity of the second partial derivatives. Unfortunately, the sign of (x x ) Hf(z)(x x ) is not so easily determined, in comparison to the single-variable counterpart f (z)(x x ) 2. To that end, we turn to concepts from linear algebra. Definition Let A be an n n symmetric matrix. The quadratic form associated with A is a function Q A : R n R defined by Q A (y) = y Ay = n a ij y i y j, y R n. i,j=1 Example Let f(x, y, z) = x 2 y 2 + 4z 2 2xy + 4yz. Then we have f(x, y, z) = (2x 2y, 2y 2x + 4z, 8z + 4y) and It follows that Hf(x, y, z) = Q Hf (x, y, z) = (x, y, z) Hf(x, y, z)(x, y, z) = (x, y, z) (2x 2y, 2x 2y + 4z, 4y + 8z) = 2x 2 2y 2 + 8z 2 4xy + 8yz = 2f(x, y, z). The following terms will enable us to more easily describe the conditions for local or global minimizers or maximizers. 4

5 Definition Suppose that A is an n n symmetric matrix and that Q A (y) = y Ay is the quadratic form associated with A. Then A and Q A are called: 1. positive semidefinite if Q A (y) 0 for all y R n ; 2. positive definite if Q A (y) > 0 for all y R n, y 0; 3. negative semidefinite if Q A (y) 0 for all y R n ; 4. negative definite if Q A (y) < 0 for all y R n, y 0; 5. indefinite if Q A (y) > 0 for some y R n and Q A (y) < 0 for other y R n. With these terms, the preceding theorem can be restated more concisely as follows: Theorem Suppose that x is a critical point of a function f with continuous first and second partial derivatives on R n and that Hf is the Hessian of f. Then x is a 1. global minimizer of f if Hf is positive semidefinite on R n ; 2. strict global minimizer of f if Hf is positive definite on R n ; 3. global maximizer of f if Hf is negative semidefinite on R n ; 4. strict global maximizer of f if Hf is negative definite on R n. It remains to determine when a given matrix is positive (or negative) definite (or semidefinite). This will be taken up in subsequent lectures. Exercises 1. Chapter 1, Exercise 3 2. Chapter 1, Exercise 4 3. Chapter 1, Exercise 5 5

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012 (Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

More information

MATH529 Fundamentals of Optimization Unconstrained Optimization II

MATH529 Fundamentals of Optimization Unconstrained Optimization II MATH529 Fundamentals of Optimization Unconstrained Optimization II Marco A. Montes de Oca Mathematical Sciences, University of Delaware, USA 1 / 31 Recap 2 / 31 Example Find the local and global minimizers

More information

Jim Lambers MAT 419/519 Summer Session Lecture 13 Notes

Jim Lambers MAT 419/519 Summer Session Lecture 13 Notes Jim Lambers MAT 419/519 Summer Session 2011-12 Lecture 13 Notes These notes correspond to Section 4.1 in the text. Least Squares Fit One of the most fundamental problems in science and engineering is data

More information

Real Analysis III. (MAT312β) Department of Mathematics University of Ruhuna. A.W.L. Pubudu Thilan

Real Analysis III. (MAT312β) Department of Mathematics University of Ruhuna. A.W.L. Pubudu Thilan Real Analysis III (MAT312β) Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Department of Mathematics University of Ruhuna Real Analysis III(MAT312β) 1/87 About course unit Course unit:

More information

Introduction to Proofs

Introduction to Proofs Real Analysis Preview May 2014 Properties of R n Recall Oftentimes in multivariable calculus, we looked at properties of vectors in R n. If we were given vectors x =< x 1, x 2,, x n > and y =< y1, y 2,,

More information

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints. 1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,

More information

Preliminary draft only: please check for final version

Preliminary draft only: please check for final version ARE211, Fall2012 CALCULUS4: THU, OCT 11, 2012 PRINTED: AUGUST 22, 2012 (LEC# 15) Contents 3. Univariate and Multivariate Differentiation (cont) 1 3.6. Taylor s Theorem (cont) 2 3.7. Applying Taylor theory:

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Analysis-3 lecture schemes

Analysis-3 lecture schemes Analysis-3 lecture schemes (with Homeworks) 1 Csörgő István November, 2015 1 A jegyzet az ELTE Informatikai Kar 2015. évi Jegyzetpályázatának támogatásával készült Contents 1. Lesson 1 4 1.1. The Space

More information

Functional Analysis MATH and MATH M6202

Functional Analysis MATH and MATH M6202 Functional Analysis MATH 36202 and MATH M6202 1 Inner Product Spaces and Normed Spaces Inner Product Spaces Functional analysis involves studying vector spaces where we additionally have the notion of

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Chapter 2: Unconstrained Extrema

Chapter 2: Unconstrained Extrema Chapter 2: Unconstrained Extrema Math 368 c Copyright 2012, 2013 R Clark Robinson May 22, 2013 Chapter 2: Unconstrained Extrema 1 Types of Sets Definition For p R n and r > 0, the open ball about p of

More information

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

Jim Lambers MAT 610 Summer Session Lecture 2 Notes Jim Lambers MAT 610 Summer Session 2009-10 Lecture 2 Notes These notes correspond to Sections 2.2-2.4 in the text. Vector Norms Given vectors x and y of length one, which are simply scalars x and y, the

More information

Lecture Notes on Metric Spaces

Lecture Notes on Metric Spaces Lecture Notes on Metric Spaces Math 117: Summer 2007 John Douglas Moore Our goal of these notes is to explain a few facts regarding metric spaces not included in the first few chapters of the text [1],

More information

B553 Lecture 3: Multivariate Calculus and Linear Algebra Review

B553 Lecture 3: Multivariate Calculus and Linear Algebra Review B553 Lecture 3: Multivariate Calculus and Linear Algebra Review Kris Hauser December 30, 2011 We now move from the univariate setting to the multivariate setting, where we will spend the rest of the class.

More information

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema Chapter 7 Extremal Problems No matter in theoretical context or in applications many problems can be formulated as problems of finding the maximum or minimum of a function. Whenever this is the case, advanced

More information

Riemannian geometry of surfaces

Riemannian geometry of surfaces Riemannian geometry of surfaces In this note, we will learn how to make sense of the concepts of differential geometry on a surface M, which is not necessarily situated in R 3. This intrinsic approach

More information

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] Inner products and Norms Inner product or dot product of 2 vectors u and v in R n : u.v = u 1 v 1 + u 2 v 2 + + u n v n Calculate u.v when u = 1 2 2 0 v = 1 0

More information

MAT 473 Intermediate Real Analysis II

MAT 473 Intermediate Real Analysis II MAT 473 Intermediate Real Analysis II John Quigg Spring 2009 revised February 5, 2009 Derivatives Here our purpose is to give a rigorous foundation of the principles of differentiation in R n. Much of

More information

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1 Jim Lambers MAT 69 Fall Semester 2009-0 Lecture 6 Notes These notes correspond to Section 8.3 in the text. The Integral Test Previously, we have defined the sum of a convergent infinite series to be the

More information

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India CHAPTER 9 BY Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India E-mail : mantusaha.bu@gmail.com Introduction and Objectives In the preceding chapters, we discussed normed

More information

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy. April 15, 2009 CHAPTER 4: HIGHER ORDER DERIVATIVES In this chapter D denotes an open subset of R n. 1. Introduction Definition 1.1. Given a function f : D R we define the second partial derivatives as

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Math General Topology Fall 2012 Homework 1 Solutions

Math General Topology Fall 2012 Homework 1 Solutions Math 535 - General Topology Fall 2012 Homework 1 Solutions Definition. Let V be a (real or complex) vector space. A norm on V is a function : V R satisfying: 1. Positivity: x 0 for all x V and moreover

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

Definitions and Properties of R N

Definitions and Properties of R N Definitions and Properties of R N R N as a set As a set R n is simply the set of all ordered n-tuples (x 1,, x N ), called vectors. We usually denote the vector (x 1,, x N ), (y 1,, y N ), by x, y, or

More information

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products.

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. Orthogonal projection Theorem 1 Let V be a subspace of R n. Then any vector x R n is uniquely represented

More information

Tangent Planes, Linear Approximations and Differentiability

Tangent Planes, Linear Approximations and Differentiability Jim Lambers MAT 80 Spring Semester 009-10 Lecture 5 Notes These notes correspond to Section 114 in Stewart and Section 3 in Marsden and Tromba Tangent Planes, Linear Approximations and Differentiability

More information

Mathematical Economics: Lecture 16

Mathematical Economics: Lecture 16 Mathematical Economics: Lecture 16 Yu Ren WISE, Xiamen University November 26, 2012 Outline 1 Chapter 21: Concave and Quasiconcave Functions New Section Chapter 21: Concave and Quasiconcave Functions Concave

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set.

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set. Lecture # 3 Orthogonal Matrices and Matrix Norms We repeat the definition an orthogonal set and orthornormal set. Definition A set of k vectors {u, u 2,..., u k }, where each u i R n, is said to be an

More information

Unconstrained Geometric Programming

Unconstrained Geometric Programming Jim Lambers MAT 49/59 Summer Session 20-2 Lecture 8 Notes These notes correspond to Section 2.5 in the text. Unconstrained Geometric Programming Previously, we learned how to use the A-G Inequality to

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Supplement A: Mathematical background A.1 Extended real numbers The extended real number

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

ECON 5111 Mathematical Economics

ECON 5111 Mathematical Economics Test 1 October 1, 2010 1. Construct a truth table for the following statement: [p (p q)] q. 2. A prime number is a natural number that is divisible by 1 and itself only. Let P be the set of all prime numbers

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a UCM Final Exam, 05/8/014 Solutions 1 Given the parameter a R, consider the following linear system x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 points Discuss the system depending on the

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3 Version: 4/1/06. Note: These notes are mostly from my 5B course, with the addition of the part on components and projections. Look them over to make sure that we are on the same page as regards inner-products,

More information

g(t) = f(x 1 (t),..., x n (t)).

g(t) = f(x 1 (t),..., x n (t)). Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008.

CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS. W. Erwin Diewert January 31, 2008. 1 ECONOMICS 594: LECTURE NOTES CHAPTER 2: CONVEX SETS AND CONCAVE FUNCTIONS W. Erwin Diewert January 31, 2008. 1. Introduction Many economic problems have the following structure: (i) a linear function

More information

Lecture 3. Econ August 12

Lecture 3. Econ August 12 Lecture 3 Econ 2001 2015 August 12 Lecture 3 Outline 1 Metric and Metric Spaces 2 Norm and Normed Spaces 3 Sequences and Subsequences 4 Convergence 5 Monotone and Bounded Sequences Announcements: - Friday

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

Linear Algebra. Alvin Lin. August December 2017

Linear Algebra. Alvin Lin. August December 2017 Linear Algebra Alvin Lin August 207 - December 207 Linear Algebra The study of linear algebra is about two basic things. We study vector spaces and structure preserving maps between vector spaces. A vector

More information

MA 102 (Multivariable Calculus)

MA 102 (Multivariable Calculus) MA 102 (Multivariable Calculus) Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Outline of the Course Two Topics: Multivariable Calculus Will be taught as the first part of the

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Introduction and a quick repetition of analysis/linear algebra First lecture, 12.04.2010 Jun.-Prof. Matthias Hein Organization of the lecture Advanced course, 2+2 hours,

More information

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 20010/11 Math for Microeconomics September Course, Part II Lecture Notes Course Outline Lecture 1: Tools for

More information

Math 341: Convex Geometry. Xi Chen

Math 341: Convex Geometry. Xi Chen Math 341: Convex Geometry Xi Chen 479 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA E-mail address: xichen@math.ualberta.ca CHAPTER 1 Basics 1. Euclidean Geometry

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Mathematics Department Stanford University Math 61CM/DM Inner products

Mathematics Department Stanford University Math 61CM/DM Inner products Mathematics Department Stanford University Math 61CM/DM Inner products Recall the definition of an inner product space; see Appendix A.8 of the textbook. Definition 1 An inner product space V is a vector

More information

Math 212-Lecture Interior critical points of functions of two variables

Math 212-Lecture Interior critical points of functions of two variables Math 212-Lecture 24 13.10. Interior critical points of functions of two variables Previously, we have concluded that if f has derivatives, all interior local min or local max should be critical points.

More information

CHAPTER VIII HILBERT SPACES

CHAPTER VIII HILBERT SPACES CHAPTER VIII HILBERT SPACES DEFINITION Let X and Y be two complex vector spaces. A map T : X Y is called a conjugate-linear transformation if it is a reallinear transformation from X into Y, and if T (λx)

More information

1 Lagrange Multiplier Method

1 Lagrange Multiplier Method 1 Lagrange Multiplier Method Near a maximum the decrements on both sides are in the beginning only imperceptible. J. Kepler When a quantity is greatest or least, at that moment its flow neither increases

More information

Euclidean Space. This is a brief review of some basic concepts that I hope will already be familiar to you.

Euclidean Space. This is a brief review of some basic concepts that I hope will already be familiar to you. Euclidean Space This is a brief review of some basic concepts that I hope will already be familiar to you. There are three sets of numbers that will be especially important to us: The set of all real numbers,

More information

MA102: Multivariable Calculus

MA102: Multivariable Calculus MA102: Multivariable Calculus Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Differentiability of f : U R n R m Definition: Let U R n be open. Then f : U R n R m is differentiable

More information

Table of mathematical symbols - Wikipedia, the free encyclopedia

Table of mathematical symbols - Wikipedia, the free encyclopedia Página 1 de 13 Table of mathematical symbols From Wikipedia, the free encyclopedia For the HTML codes of mathematical symbols see mathematical HTML. Note: This article contains special characters. The

More information

NOTES ON MULTIVARIABLE CALCULUS: DIFFERENTIAL CALCULUS

NOTES ON MULTIVARIABLE CALCULUS: DIFFERENTIAL CALCULUS NOTES ON MULTIVARIABLE CALCULUS: DIFFERENTIAL CALCULUS SAMEER CHAVAN Abstract. This is the first part of Notes on Multivariable Calculus based on the classical texts [6] and [5]. We present here the geometric

More information

The Transpose of a Vector

The Transpose of a Vector 8 CHAPTER Vectors The Transpose of a Vector We now consider the transpose of a vector in R n, which is a row vector. For a vector u 1 u. u n the transpose is denoted by u T = [ u 1 u u n ] EXAMPLE -5 Find

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Optimization Theory. A Concise Introduction. Jiongmin Yong

Optimization Theory. A Concise Introduction. Jiongmin Yong October 11, 017 16:5 ws-book9x6 Book Title Optimization Theory 017-08-Lecture Notes page 1 1 Optimization Theory A Concise Introduction Jiongmin Yong Optimization Theory 017-08-Lecture Notes page Optimization

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Math 117: Topology of the Real Numbers

Math 117: Topology of the Real Numbers Math 117: Topology of the Real Numbers John Douglas Moore November 10, 2008 The goal of these notes is to highlight the most important topics presented in Chapter 3 of the text [1] and to provide a few

More information

Elements of Convex Optimization Theory

Elements of Convex Optimization Theory Elements of Convex Optimization Theory Costis Skiadas August 2015 This is a revised and extended version of Appendix A of Skiadas (2009), providing a self-contained overview of elements of convex optimization

More information

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR Appendix B The Derivative B.1 The Derivative of f In this chapter, we give a short summary of the derivative. Specifically, we want to compare/contrast how the derivative appears for functions whose domain

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

ARE211, Fall2015. Contents. 2. Univariate and Multivariate Differentiation (cont) Taylor s Theorem (cont) 2

ARE211, Fall2015. Contents. 2. Univariate and Multivariate Differentiation (cont) Taylor s Theorem (cont) 2 ARE211, Fall2015 CALCULUS4: THU, SEP 17, 2015 PRINTED: SEPTEMBER 22, 2015 (LEC# 7) Contents 2. Univariate and Multivariate Differentiation (cont) 1 2.4. Taylor s Theorem (cont) 2 2.5. Applying Taylor theory:

More information

Inner Product and Orthogonality

Inner Product and Orthogonality Inner Product and Orthogonality P. Sam Johnson October 3, 2014 P. Sam Johnson (NITK) Inner Product and Orthogonality October 3, 2014 1 / 37 Overview In the Euclidean space R 2 and R 3 there are two concepts,

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Tutorials in Optimization. Richard Socher

Tutorials in Optimization. Richard Socher Tutorials in Optimization Richard Socher July 20, 2008 CONTENTS 1 Contents 1 Linear Algebra: Bilinear Form - A Simple Optimization Problem 2 1.1 Definitions........................................ 2 1.2

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

(x, y) = d(x, y) = x y.

(x, y) = d(x, y) = x y. 1 Euclidean geometry 1.1 Euclidean space Our story begins with a geometry which will be familiar to all readers, namely the geometry of Euclidean space. In this first chapter we study the Euclidean distance

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II Chapter 2 Further properties of analytic functions 21 Local/Global behavior of analytic functions;

More information

Another consequence of the Cauchy Schwarz inequality is the continuity of the inner product.

Another consequence of the Cauchy Schwarz inequality is the continuity of the inner product. . Inner product spaces 1 Theorem.1 (Cauchy Schwarz inequality). If X is an inner product space then x,y x y. (.) Proof. First note that 0 u v v u = u v u v Re u,v. (.3) Therefore, Re u,v u v (.) for all

More information

Solutions to Homework 7

Solutions to Homework 7 Solutions to Homework 7 Exercise #3 in section 5.2: A rectangular box is inscribed in a hemisphere of radius r. Find the dimensions of the box of maximum volume. Solution: The base of the rectangular box

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

1.2 LECTURE 2. Scalar Product

1.2 LECTURE 2. Scalar Product 6 CHAPTER 1. VECTOR ALGEBRA Pythagean theem. cos 2 α 1 + cos 2 α 2 + cos 2 α 3 = 1 There is a one-to-one crespondence between the components of the vect on the one side and its magnitude and the direction

More information

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n Inner products and Norms Inner product of 2 vectors Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y 2 + + x n y n in R n Notation: (x, y) or y T x For complex vectors (x, y) = x 1 ȳ 1 + x 2

More information

a. Define a function called an inner product on pairs of points x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) in R n by

a. Define a function called an inner product on pairs of points x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) in R n by Real Analysis Homework 1 Solutions 1. Show that R n with the usual euclidean distance is a metric space. Items a-c will guide you through the proof. a. Define a function called an inner product on pairs

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Prague, II.2. Integrability (existence of the Riemann integral) sufficient conditions... 37

Prague, II.2. Integrability (existence of the Riemann integral) sufficient conditions... 37 Mathematics II Prague, 1998 ontents Introduction.................................................................... 3 I. Functions of Several Real Variables (Stanislav Kračmar) II. I.1. Euclidean space

More information

Mathematical Analysis Outline. William G. Faris

Mathematical Analysis Outline. William G. Faris Mathematical Analysis Outline William G. Faris January 8, 2007 2 Chapter 1 Metric spaces and continuous maps 1.1 Metric spaces A metric space is a set X together with a real distance function (x, x ) d(x,

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces.

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. Orthogonality Definition 1. Vectors x,y R n are said to be orthogonal (denoted x y)

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week: December 4 8 Deadline to hand in the homework: your exercise class on week January 5. Exercises with solutions ) Let H, K be Hilbert spaces, and A : H K be a linear

More information

Inner Product Spaces 6.1 Length and Dot Product in R n

Inner Product Spaces 6.1 Length and Dot Product in R n Inner Product Spaces 6.1 Length and Dot Product in R n Summer 2017 Goals We imitate the concept of length and angle between two vectors in R 2, R 3 to define the same in the n space R n. Main topics are:

More information

Projection Theorem 1

Projection Theorem 1 Projection Theorem 1 Cauchy-Schwarz Inequality Lemma. (Cauchy-Schwarz Inequality) For all x, y in an inner product space, [ xy, ] x y. Equality holds if and only if x y or y θ. Proof. If y θ, the inequality

More information