Asymptotic Spectral Properties of the Schrödinger Operator with Thue-Morse Potential

Size: px
Start display at page:

Download "Asymptotic Spectral Properties of the Schrödinger Operator with Thue-Morse Potential"

Transcription

1 Asymptotic Spectral Properties of the Schrödinger Operator with Thue-Morse Potential William Clark Rachael Kline Michaela Stone Cornell SMI Advisors: May Mei and Andrew Zemke August 2, 2013

2 Introduction History 1984 An AIMn alloy demonstrated aperiodicity under x-ray diffraction, giving rise to new questions about material structure. This generated interest in mathematical exploration of aperiodic tilings. Figure : Al 6 Mn.

3 Introduction What is aperiodicity? Figure : Diffraction pattern of a periodic crystal.

4 Introduction What is aperiodicity? Figure : Diffraction pattern of an aperiodic quasicrystal.

5 Introduction Why do we care? Understanding the mathematics behind aperiodic tilings allows us to model the behavior of electrons traveling through quasicrystals. Properties: (Marder 2011) Directionally varying electrical conductivity Poor heat conductivity

6 Introduction Why do we care? Understanding the mathematics behind aperiodic tilings allows us to model the behavior of electrons traveling through quasicrystals. Properties: (Marder 2011) Uses: Directionally varying electrical conductivity Poor heat conductivity Surgical instruments LED lights Non-stick cookware

7 Introduction How do we mathematically model quasicrystals? 2-dimensional modeling: Tilings of the plane 1-dimensional modeling: Sequences

8 Introduction Constructing sequences A possible construction of these structures is generated using inflation rules that utilize a finite alphabet to represent the tiling. A substitution, σ, assigns a finite string of letters to each letter in the alphabet. Definition Letter - a single representative of the alphabet (a, b, c,...) Word - a collection of letters (ab, ba, abc,...)

9 Introduction One specific sequence, the Thue-Morse sequence, uses two letters, a and b with the substitutions σ(a) = ab, σ(b) = ba. We denote the sequence as u where u n is the n th letter in the sequence. Suppose u 0 = a, using the substitution we obtain the sequence: u = abbabaabbaababba... where the sequence is the limit of the substitutions as the length of the sequence goes to infinity.

10 Developing the Trace Map The 1D discrete Schrödinger operator with a Thue-Morse potential defined on the discrete 1-D lattice Z where V is the coupling constant, is H V ψ(n) = ψ(n + 1) + V (n)ψ(n) + ψ(n 1) where V (n) = V ( n 1) and V (n) = V whenever the n th letter of u is a and V (n) = V otherwise (by convention u 0 = a) [2].

11 Developing the Trace Map The Schrödinger equation in terms of transfer matrices Definition Let T (n) be the transfer matrix: [ ] E V (n) Then we can write the Schrödinger equation in terms of T (n) as follows: [ ] [ ] [ ] [ ] ψ(n + 1) E V (n) 1 ψ(n) ψ(n) = = T (n). ψ(n) 1 0 ψ(n 1) ψ(n 1)

12 Developing the Trace Map From matrix to map Using our understanding of the recursion in the Thue-Morse sequence and through application of trace properties and matrix identities, we are able to develop a trace map from R 2 to itself defined by: f (x, v) = (x 2 2 v, v(v + 4 x 2 )) with the initial conditions v 1 = 4V 2, and x 1 = E 2 V 2 2, where E is the energy and V is a coupling constant, a real parameter.

13 Developing the Trace Map Definition A point (x, v) is called unstable if there is a neighborhood U of (x, v) and an integer n 0 such that for all (x 1, v 1 ) in U and all N n 0, the iterated (x N, v N ) = f N (x 1, v 1 ) satisfies x N > 2. Proposition E, energy, values are out of the spectrum if and only if they correspond to an unstable (x, v) point. (Bellissard 1990)

14 Developing the Trace Map D 0 +,+ +,- +,- -,+ -,- -,-

15 Developing the Trace Map

16 Developing the Trace Map

17 Matrix Truncation Truncation The matrix representation of the Schrödinger operator acting on the Thue-Morse Sequence is the tridiagonal n n matrix: V(-2) V(-1) V(0) V(1) V(2) The spectrum of a matrix is defined as the set of its eigenvalues. By analysing the spectrum of these finite n n matrices, as n goes to infinity, we can approximate the spectrum of the operator.

18 Fractal Dimension Fractal Dimension Since the spectrum is a Cantor set with measure zero [2], we wish to analyse the fractal dimension of the spectrum for different coupling constants, V. The notions of fractal dimension we will be using include: Box-counting dimension Thickness Hausdorff dimension

19 Fractal Dimension How dimensions are related In an arbitrary set, F, we have the following relation: log 2 ( log ) dim H (F ) dim B (F ) : τ where τ is the thickness, dim H (F ) is the Hausdorff dimension, dim B (F ) is box-counting dimension (Falconer 2005, Palis et al. 1993).

20 Fractal Dimension Box-counting Dimension The box-counting dimension of a set F is: dim B F = lim δ 0 log N δ (F ) log δ, where N δ is the minimum cardinality of a δ-cover of F. This equation is assuming that the measure of the set F obeys the power law: N δ (F ) cδ s log(n δ ) log(c) s log(δ)

21 Fractal Dimension

22 Fractal Dimension Box-counting Dimension

23 Fractal Dimension Box-counting dimension

24 Fractal Dimension Thickness Another type of fractal dimension we will consider is the thickness of a Cantor set. Definition Let K R. A gap of K is a connected component R\K; a bounded gap is a bounded connected component of R\K. Let U be any bounded gap and u be a boundary point of U, so u K. Let C be the bridge of K at u, i.e. the maximal interval in R such that - u is a boundary point of C, - C contains no point of a gap U whose length l(u ) is at least the length of U [4].

25 Fractal Dimension Thickness Definition The thickness of K at u is defined as τ(k, u) = l(c)/l(u). The thickness of K, denoted by τ(k), is the infimum over these τ(k, u) for all boundary points u of bounded gaps.

26 Fractal Dimension Thickness Definition The thickness of K at u is defined as τ(k, u) = l(c)/l(u). The thickness of K, denoted by τ(k), is the infimum over these τ(k, u) for all boundary points u of bounded gaps. We cannot compute this directly as a lower bound for the Hausdorff dimension. We plug the calculation of thickness into the function: log 2 ( log ) τ

27 Fractal Dimension Thickness

28 Fractal Dimension Hausdorff Dimension Before the Hausdorff dimension can be defined, the Hausdorff measure of a set must be defined [3]: Definition The Hausdorff measure of a set F of dimension s, denoted by H s (F ), is: { { }} H s (F ) = lim inf U i s : {U i } is a δ-cover of F δ 0 i=1

29 Fractal Dimension Hausdorff Dimension With this in mind, we can define the Hausdorff dimension as follows[3]: Definition The Hausdorff dimension of a set F, denoted by dim H (F ), is: dim H (F ) = inf{s 0 : H s (F ) = 0} = sup{s : H s (F ) = } Specifically, dim H (F ) is the value of s where the Hausdorff measure jumps from to 0.

30 Fractal Dimension Using the Trace Map to compute Hausdorff dimension Suppose V = 0.03: s-values i

31 Fractal Dimension Using the Matrix Truncation to compute Hausdorff dimension Suppose V = 0.03, using a matrix: s-values i

32 References What are Quasicrystals, and What Makes them Nobel-Worthy? J. Bellissard, Spectral Properties of Schrödinger s Operator with a Thue-Morse Potential, Number Theory and Physics (Jean-Marc Luck, Pierre Moussa, and Michel Waldschmidt, eds.), Springer Proceedings in Physics, vol. 47, Springer Berlin Heidelberg, 1990, pp (English). Keith Falconer, Fractal geometry, John Wiley & Sons, Ltd, Jacob Palis and Floris Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge University Press, Cambridge, 1993, Fractal dimensions and infinitely many attractors. MR (94h:58129)

33 Acknowledgments We would like thank: Cornell University Cornell Summer Mathematics Institute May Mei Drew Zemke This work was supported by NSF grant DMS

On the Spectrum of the Penrose Laplacian

On the Spectrum of the Penrose Laplacian On the Spectrum of the Penrose Laplacian Michael Dairyko, Christine Hoffman, Julie Pattyson, Hailee Peck Summer Math Institute August 2, 2013 1 Penrose Tiling Substitution Method 2 3 4 Background Penrose

More information

Correlation dimension for self-similar Cantor sets with overlaps

Correlation dimension for self-similar Cantor sets with overlaps F U N D A M E N T A MATHEMATICAE 155 (1998) Correlation dimension for self-similar Cantor sets with overlaps by Károly S i m o n (Miskolc) and Boris S o l o m y a k (Seattle, Wash.) Abstract. We consider

More information

NOTIONS OF DIMENSION

NOTIONS OF DIMENSION NOTIONS OF DIENSION BENJAIN A. STEINHURST A quick overview of some basic notions of dimension for a summer REU program run at UConn in 200 with a view towards using dimension as a tool in attempting to

More information

1D-Quantum Systems. a review ( ) Sponsoring. Jean BELLISSARD. NSF grant No

1D-Quantum Systems. a review ( ) Sponsoring. Jean BELLISSARD. NSF grant No 1D-Quantum Systems Sponsoring (1980-1993) a review NSF grant No. 0901514 Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

ON THE SPECTRUM OF THE PENROSE LAPLACIAN MICHAEL DAIRYKO, CHRISTINE HOFFMAN, JULIE PATTYSON, AND HAILEE PECK

ON THE SPECTRUM OF THE PENROSE LAPLACIAN MICHAEL DAIRYKO, CHRISTINE HOFFMAN, JULIE PATTYSON, AND HAILEE PECK ON THE SPECTRUM OF THE PENROSE LAPLACIAN MICHAEL DAIRYKO, CHRISTINE HOFFMAN, JULIE PATTYSON, AND HAILEE PECK Abstract. Since the early 1960 s, aperiodic tilings have been a topic of particular interest

More information

Bloch Theory for 1D-FLC Aperiodic Media

Bloch Theory for 1D-FLC Aperiodic Media Sponsoring Bloch Theory for 1D-FLC Aperiodic Media CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

A Complex Gap Lemma. Sébastien Biebler

A Complex Gap Lemma. Sébastien Biebler A Complex Gap Lemma Sébastien Biebler arxiv:80.0544v [math.ds] 5 Oct 08 Abstract Inspired by the work of Newhouse in one real variable, we introduce a relevant notion of thickness for dynamical Cantor

More information

Polymetric Brick Wall Patterns and Two-Dimensional Substitutions

Polymetric Brick Wall Patterns and Two-Dimensional Substitutions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.4 Polymetric Brick Wall Patterns and Two-Dimensional Substitutions Michel Dekking 3TU Applied Mathematics Institute and Delft

More information

PROBABLILITY MEASURES ON SHRINKING NEIGHBORHOODS

PROBABLILITY MEASURES ON SHRINKING NEIGHBORHOODS Real Analysis Exchange Summer Symposium 2010, pp. 27 32 Eric Samansky, Nova Southeastern University, Fort Lauderdale, Florida, USA. email: es794@nova.edu PROBABLILITY MEASURES ON SHRINKING NEIGHBORHOODS

More information

Polymetric brick wall patterns and two-dimensional substitutions

Polymetric brick wall patterns and two-dimensional substitutions Polymetric brick wall patterns and two-dimensional substitutions Michel Dekking arxiv:206.052v [math.co] Jun 202 3TU Applied Mathematics Institute and Delft University of Technology, Faculty EWI, P.O.

More information

to 1D Periodic Approximants Aperiodic Hamiltonians Sponsoring Jean BELLISSARD CRC 701, Bielefeld, Germany

to 1D Periodic Approximants Aperiodic Hamiltonians Sponsoring Jean BELLISSARD CRC 701, Bielefeld, Germany Sponsoring Periodic Approximants to 1D Aperiodic Hamiltonians CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

THE TOPOLOGY of TILING SPACES

THE TOPOLOGY of TILING SPACES Seoul National University March20, 2014 1 THE TOPOLOGY of Sponsoring TILING SPACES This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia

More information

The Topology of Tiling Spaces

The Topology of Tiling Spaces East Lansing October 16, 2009 1 The Topology of Tiling Spaces Jean BELLISSARD East Lansing October 16, 2009 2 East Lansing October 16, 2009 3 East Lansing October 16, 2009 4 The Topology of Tiling Spaces

More information

FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE

FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE FRACTALS, DIMENSION, AND NONSMOOTH ANALYSIS ERIN PEARSE 1. Fractional Dimension Fractal = fractional dimension. Intuition suggests dimension is an integer, e.g., A line is 1-dimensional, a plane (or square)

More information

Simultaneous Accumulation Points to Sets of d-tuples

Simultaneous Accumulation Points to Sets of d-tuples ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.92010 No.2,pp.224-228 Simultaneous Accumulation Points to Sets of d-tuples Zhaoxin Yin, Meifeng Dai Nonlinear Scientific

More information

THE SPECTRUM AND THE SPECTRAL TYPE OF THE OFF-DIAGONAL FIBONACCI OPERATOR

THE SPECTRUM AND THE SPECTRAL TYPE OF THE OFF-DIAGONAL FIBONACCI OPERATOR Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX THE SPECTRUM AND THE SPECTRAL TYPE OF THE OFF-DIAGONAL FIBONACCI OPERATOR DAVID DAMANIK AND ANTON

More information

On the Entropy of a Two Step Random Fibonacci Substitution

On the Entropy of a Two Step Random Fibonacci Substitution Entropy 203, 5, 332-3324; doi:0.3390/e509332 Article OPEN ACCESS entropy ISSN 099-4300 www.mdpi.com/journal/entropy On the Entropy of a Two Step Random Fibonacci Substitution Johan Nilsson Department of

More information

Theory of Aperiodic Solids:

Theory of Aperiodic Solids: Theory of Aperiodic Solids: Sponsoring from 1980 to present Jean BELLISSARD jeanbel@math.gatech.edu Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Content 1. Aperiodic

More information

WORKSHOP ON DYNAMICAL METHODS IN SPECTRAL THEORY OF QUASICRYSTALS

WORKSHOP ON DYNAMICAL METHODS IN SPECTRAL THEORY OF QUASICRYSTALS WORKSHOP ON DYNAMICAL METHODS IN SPECTRAL THEORY OF QUASICRYSTALS THE UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF MATHEMATICS MAY 16 19, 2013 Contents Abstracts of Mini-Courses.................................................

More information

arxiv: v1 [math.sp] 25 Jun 2012

arxiv: v1 [math.sp] 25 Jun 2012 THE DENSITY OF STATES MEASURE OF THE WEAKLY COUPLED FIBONACCI HAMILTONIAN DAVID DAMANIK AND ANTON GORODETSKI arxiv:06.60v [math.sp] Jun 0 Abstract. We consider the density of states measure of the Fibonacci

More information

VARIOUS MATHEMATICAL ASPECTS TILING SPACES. Jean BELLISSARD 1 2. Collaborations: Georgia Institute of Technology & Institut Universitaire de France

VARIOUS MATHEMATICAL ASPECTS TILING SPACES. Jean BELLISSARD 1 2. Collaborations: Georgia Institute of Technology & Institut Universitaire de France GaTech January 24 2005 1 VARIOUS MATHEMATICAL ASPECTS of TILING SPACES Jean BELLISSARD 1 2 Georgia Institute of Technology & Institut Universitaire de France Collaborations: D. SPEHNER (Essen, Germany)

More information

Linear distortion of Hausdorff dimension and Cantor s function

Linear distortion of Hausdorff dimension and Cantor s function Collect. Math. 57, 2 (2006), 93 20 c 2006 Universitat de Barcelona Linear distortion of Hausdorff dimension and Cantor s function O. Dovgoshey and V. Ryazanov Institute of Applied Mathematics and Mechanics,

More information

THE DENSITY OF STATES MEASURE OF THE WEAKLY COUPLED FIBONACCI HAMILTONIAN

THE DENSITY OF STATES MEASURE OF THE WEAKLY COUPLED FIBONACCI HAMILTONIAN THE DENSITY OF STATES MEASURE OF THE WEAKLY COUPLED FIBONACCI HAMILTONIAN DAVID DAMANIK AND ANTON GORODETSKI Abstract. We consider the density of states measure of the Fibonacci Hamiltonian and show that,

More information

PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION

PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION DAVAR KHOSHNEVISAN AND YIMIN XIAO Abstract. In order to compute the packing dimension of orthogonal projections Falconer and Howroyd 997) introduced

More information

THE FRACTAL DIMENSION OF THE SPECTRUM OF THE FIBONACCI HAMILTONIAN

THE FRACTAL DIMENSION OF THE SPECTRUM OF THE FIBONACCI HAMILTONIAN THE FRACTAL DIMENSION OF THE SPECTRUM OF THE FIBONACCI HAMILTONIAN DAVID DAMANIK, MARK EMBREE, ANTON GORODETSKI, AND SERGUEI TCHEREMCHANTSEV Abstract. We study the spectrum of the Fibonacci Hamiltonian

More information

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration:

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration: RIEMANNIAN GEOMETRY of COMPACT METRIC SPACES Jean BELLISSARD 1 Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) 1 e-mail:

More information

TREE SHIFT COMPLEXITY. 1. Introduction

TREE SHIFT COMPLEXITY. 1. Introduction TREE SHIFT COMPLEXITY KARL PETERSEN AND IBRAHIM SALAMA Abstract. We give a definition of topological entropy for tree shifts, prove that the limit in the definition exists, and show that it dominates the

More information

Serena Doria. Department of Sciences, University G.d Annunzio, Via dei Vestini, 31, Chieti, Italy. Received 7 July 2008; Revised 25 December 2008

Serena Doria. Department of Sciences, University G.d Annunzio, Via dei Vestini, 31, Chieti, Italy. Received 7 July 2008; Revised 25 December 2008 Journal of Uncertain Systems Vol.4, No.1, pp.73-80, 2010 Online at: www.jus.org.uk Different Types of Convergence for Random Variables with Respect to Separately Coherent Upper Conditional Probabilities

More information

STRICTLY ERGODIC SUBSHIFTS AND ASSOCIATED OPERATORS

STRICTLY ERGODIC SUBSHIFTS AND ASSOCIATED OPERATORS STRICTLY ERGODIC SUBSHIFTS AND ASSOCIATED OPERATORS DAVID DAMANIK Dedicated to Barry Simon on the occasion of his 60th birthday. Abstract. We consider ergodic families of Schrödinger operators over base

More information

SIEGFRIED BECKUS, JEAN BELLISSARD

SIEGFRIED BECKUS, JEAN BELLISSARD CONTINUITY OF THE SPECTRUM OF A FIELD OF SELF-ADJOINT OPERATORS SIEGFRIED BECKUS, JEAN BELLISSARD Abstract. Given a family of self-adjoint operators (A t) t T indexed by a parameter t in some topological

More information

Periodic Approximant. Aperiodic Hamiltonians

Periodic Approximant. Aperiodic Hamiltonians Sponsoring Periodic Approximant to Aperiodic Hamiltonians CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration:

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration: LAPLACIANS on Sponsoring COMPACT METRIC SPACES Jean BELLISSARD a Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) a e-mail:

More information

Aperiodic Hamiltonians

Aperiodic Hamiltonians Spectrum Approximation for Aperiodic Hamiltonians Sponsoring Jean BELLISSARD Westfälische Wilhelms-Universität, Münster Department of Mathematics Georgia Institute of Technology, Atlanta School of Mathematics

More information

Undecidable properties of self-affine sets and multi-tape automata

Undecidable properties of self-affine sets and multi-tape automata Undecidable properties of self-affine sets and multi-tape automata Timo Jolivet 1,2 and Jarkko Kari 1 1 Department of Mathematics, University of Turku, Finland 2 LIAFA, Université Paris Diderot, France

More information

arxiv: v1 [math.ds] 31 Jul 2018

arxiv: v1 [math.ds] 31 Jul 2018 arxiv:1807.11801v1 [math.ds] 31 Jul 2018 On the interior of projections of planar self-similar sets YUKI TAKAHASHI Abstract. We consider projections of planar self-similar sets, and show that one can create

More information

SOME PROPERTIES OF INTEGRAL APOLLONIAN PACKINGS

SOME PROPERTIES OF INTEGRAL APOLLONIAN PACKINGS SOME PROPERTIES OF INTEGRAL APOLLONIAN PACKINGS HENRY LI Abstract. Within the study of fractals, some very interesting number theoretical properties can arise from unexpected places. The integral Apollonian

More information

Packing-Dimension Profiles and Fractional Brownian Motion

Packing-Dimension Profiles and Fractional Brownian Motion Under consideration for publication in Math. Proc. Camb. Phil. Soc. 1 Packing-Dimension Profiles and Fractional Brownian Motion By DAVAR KHOSHNEVISAN Department of Mathematics, 155 S. 1400 E., JWB 233,

More information

Introduction to Hausdorff Measure and Dimension

Introduction to Hausdorff Measure and Dimension Introduction to Hausdorff Measure and Dimension Dynamics Learning Seminar, Liverpool) Poj Lertchoosakul 28 September 2012 1 Definition of Hausdorff Measure and Dimension Let X, d) be a metric space, let

More information

COHOMOLOGY. Sponsoring. Jean BELLISSARD

COHOMOLOGY. Sponsoring. Jean BELLISSARD Sponsoring Grant no. 0901514 COHOMOLOGY Jean BELLISSARD CRC 701, Bielefeld Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Main References

More information

Tiling Dynamical Systems as an Introduction to Smale Spaces

Tiling Dynamical Systems as an Introduction to Smale Spaces Tiling Dynamical Systems as an Introduction to Smale Spaces Michael Whittaker (University of Wollongong) University of Otago Dunedin, New Zealand February 15, 2011 A Penrose Tiling Sir Roger Penrose Penrose

More information

RESEARCH STATEMENT-ERIC SAMANSKY

RESEARCH STATEMENT-ERIC SAMANSKY RESEARCH STATEMENT-ERIC SAMANSKY Introduction The main topic of my work is geometric measure theory. Specifically, I look at the convergence of certain probability measures, called Gibbs measures, on fractals

More information

Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients. Takayuki Yamaguchi

Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients. Takayuki Yamaguchi Hokkaido Mathematical Journal Vol. 44 (2015) p. 277 312 Finding numerically Newhouse sinks near a homoclinic tangency and investigation of their chaotic transients Takayuki Yamaguchi (Received March 13,

More information

arxiv: v1 [math.sp] 14 Jan 2010

arxiv: v1 [math.sp] 14 Jan 2010 SPECTRAL AND QUANTUM DYNAMICAL PROPERTIES OF THE WEAKLY COUPLED FIBONACCI HAMILTONIAN DAID DAMANIK AND ANTON GORODETSKI arxiv:1001.2552v1 [math.sp] 14 Jan 2010 Abstract. We consider the spectrum of the

More information

Chapter 2: Introduction to Fractals. Topics

Chapter 2: Introduction to Fractals. Topics ME597B/Math597G/Phy597C Spring 2015 Chapter 2: Introduction to Fractals Topics Fundamentals of Fractals Hausdorff Dimension Box Dimension Various Measures on Fractals Advanced Concepts of Fractals 1 C

More information

APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES

APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES DANIEL LENZ AND PETER STOLLMANN Abstract. We present spectral theoretic results for Hamiltonians associated with Delone sets. For a family of discrete

More information

Lecture 1: Overview of percolation and foundational results from probability theory 30th July, 2nd August and 6th August 2007

Lecture 1: Overview of percolation and foundational results from probability theory 30th July, 2nd August and 6th August 2007 CSL866: Percolation and Random Graphs IIT Delhi Arzad Kherani Scribe: Amitabha Bagchi Lecture 1: Overview of percolation and foundational results from probability theory 30th July, 2nd August and 6th August

More information

Beta-lattice multiresolution of quasicrystalline Bragg peaks

Beta-lattice multiresolution of quasicrystalline Bragg peaks Beta-lattice multiresolution of quasicrystalline Bragg peaks A. Elkharrat, J.P. Gazeau, and F. Dénoyer CRC701-Workshop Aspects of Aperiodic Order 3-5 July 2008, University of Bielefeld Proceedings of SPIE

More information

A NOTE ON CORRELATION AND LOCAL DIMENSIONS

A NOTE ON CORRELATION AND LOCAL DIMENSIONS A NOTE ON CORRELATION AND LOCAL DIMENSIONS JIAOJIAO YANG, ANTTI KÄENMÄKI, AND MIN WU Abstract Under very mild assumptions, we give formulas for the correlation and local dimensions of measures on the limit

More information

arxiv:math/ v2 [math.ds] 6 Jul 2018

arxiv:math/ v2 [math.ds] 6 Jul 2018 TILINGS, TILING SPACES AND TOPOLOGY LORENZO SADUN arxiv:math/0506054v2 [math.ds] 6 Jul 2018 Abstract. To understand an aperiodic tiling (or a quasicrystal modeled on an aperiodic tiling), we construct

More information

Point Process Control

Point Process Control Point Process Control The following note is based on Chapters I, II and VII in Brémaud s book Point Processes and Queues (1981). 1 Basic Definitions Consider some probability space (Ω, F, P). A real-valued

More information

RECOGNIZABLE SETS OF INTEGERS

RECOGNIZABLE SETS OF INTEGERS RECOGNIZABLE SETS OF INTEGERS Michel Rigo http://www.discmath.ulg.ac.be/ 1st Joint Conference of the Belgian, Royal Spanish and Luxembourg Mathematical Societies, June 2012, Liège In the Chomsky s hierarchy,

More information

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivalence, and Dual Frames University of Maryland June 11, 2015 Overview Twisted Gap Labeling Outline Twisted Gap Labeling Physical Quasicrystals

More information

arxiv:cond-mat/ v1 1 Apr 1999

arxiv:cond-mat/ v1 1 Apr 1999 Dimer-Type Correlations and Band Crossings in Fibonacci Lattices Ignacio G. Cuesta 1 and Indubala I. Satija 2 Department of Physics, George Mason University, Fairfax, VA 22030 (April 21, 2001) arxiv:cond-mat/9904022

More information

SUBSTITUTION DYNAMICAL SYSTEMS: CHARACTERIZATION OF LINEAR REPETITIVITY AND APPLICATIONS

SUBSTITUTION DYNAMICAL SYSTEMS: CHARACTERIZATION OF LINEAR REPETITIVITY AND APPLICATIONS SUBSTITUTION DYNAMICAL SYSTEMS: CHARACTERIZATION OF LINEAR REPETITIVITY AND APPLICATIONS DAVID DAMANIK 1 AND DANIEL LENZ 2 1 Department of Mathematics 253 37, California Institute of Technology, Pasadena,

More information

Chapter 20. Countability The rationals and the reals. This chapter covers infinite sets and countability.

Chapter 20. Countability The rationals and the reals. This chapter covers infinite sets and countability. Chapter 20 Countability This chapter covers infinite sets and countability. 20.1 The rationals and the reals You re familiar with three basic sets of numbers: the integers, the rationals, and the reals.

More information

CHARACTERIZATION OF NONCORRELATED PATTERN SEQUENCES AND CORRELATION DIMENSIONS. Yu Zheng. Li Peng. Teturo Kamae. (Communicated by Xiangdong Ye)

CHARACTERIZATION OF NONCORRELATED PATTERN SEQUENCES AND CORRELATION DIMENSIONS. Yu Zheng. Li Peng. Teturo Kamae. (Communicated by Xiangdong Ye) DISCRETE AND CONTINUOUS doi:10.3934/dcds.2018223 DYNAMICAL SYSTEMS Volume 38, Number 10, October 2018 pp. 5085 5103 CHARACTERIZATION OF NONCORRELATED PATTERN SEQUENCES AND CORRELATION DIMENSIONS Yu Zheng

More information

WANNIER TRANSFORM APERIODIC SOLIDS. for. Jean BELLISSARD. Collaboration:

WANNIER TRANSFORM APERIODIC SOLIDS. for. Jean BELLISSARD. Collaboration: WANNIER TRANSFORM for APERIODIC SOLIDS Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Collaboration: G. DE NITTIS (SISSA,

More information

Key words and phrases. Hausdorff measure, self-similar set, Sierpinski triangle The research of Móra was supported by OTKA Foundation #TS49835

Key words and phrases. Hausdorff measure, self-similar set, Sierpinski triangle The research of Móra was supported by OTKA Foundation #TS49835 Key words and phrases. Hausdorff measure, self-similar set, Sierpinski triangle The research of Móra was supported by OTKA Foundation #TS49835 Department of Stochastics, Institute of Mathematics, Budapest

More information

arxiv: v1 [math.co] 11 Mar 2013

arxiv: v1 [math.co] 11 Mar 2013 arxiv:1303.2526v1 [math.co] 11 Mar 2013 On the Entropy of a Two Step Random Fibonacci Substitution Johan Nilsson Bielefeld University, Germany jnilsson@math.uni-bielefeld.de Abstract We consider a random

More information

The Hausdorff Measure of the Attractor of an Iterated Function System with Parameter

The Hausdorff Measure of the Attractor of an Iterated Function System with Parameter ISSN 1479-3889 (print), 1479-3897 (online) International Journal of Nonlinear Science Vol. 3 (2007) No. 2, pp. 150-154 The Hausdorff Measure of the Attractor of an Iterated Function System with Parameter

More information

ATOMIC MOTION APERIODIC SOLIDS

ATOMIC MOTION APERIODIC SOLIDS ATOMIC MOTION Sponsoring in APERIODIC SOLIDS CRC 701, Bielefeld Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Collaborations

More information

ENGEL SERIES EXPANSIONS OF LAURENT SERIES AND HAUSDORFF DIMENSIONS

ENGEL SERIES EXPANSIONS OF LAURENT SERIES AND HAUSDORFF DIMENSIONS J. Aust. Math. Soc. 75 (2003), 1 7 ENGEL SERIES EXPANSIONS OF LAURENT SERIES AND HAUSDORFF DIMENSIONS JUN WU (Received 11 September 2001; revised 22 April 2002) Communicated by W. W. L. Chen Abstract For

More information

Dynamical upper bounds in quantum mechanics. Laurent Marin. Helsinki, November 2008

Dynamical upper bounds in quantum mechanics. Laurent Marin. Helsinki, November 2008 Dynamical upper bounds in quantum mechanics Laurent Marin Helsinki, November 2008 ynamical upper bounds in quantum mechanics (Helsinki, November 2008) Laurent Marin 1 / 30 Let H be a discrete self-adjoint

More information

Geometric properties of the Markov and Lagrange spectrum

Geometric properties of the Markov and Lagrange spectrum Geometric properties of the Markov and Lagrange spectrum Carlos Gustavo Tamm de Araujo Moreira (IMPA, Rio de Janeiro, Brasil) Algebra - celebrating Paulo Ribenboim s ninetieth birthday IME-USP - São Paulo

More information

Unique Expansions of Real Numbers

Unique Expansions of Real Numbers ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Unique Expansions of Real Numbers Martijn de Vries Vilmos Komornik Vienna, Preprint ESI

More information

ON THE STRUCTURE OF THE INTERSECTION OF TWO MIDDLE THIRD CANTOR SETS

ON THE STRUCTURE OF THE INTERSECTION OF TWO MIDDLE THIRD CANTOR SETS Publicacions Matemàtiques, Vol 39 (1995), 43 60. ON THE STRUCTURE OF THE INTERSECTION OF TWO MIDDLE THIRD CANTOR SETS Gregory J. Davis and Tian-You Hu Abstract Motivatedby the study of planar homoclinic

More information

Point Sets and Dynamical Systems in the Autocorrelation Topology

Point Sets and Dynamical Systems in the Autocorrelation Topology Point Sets and Dynamical Systems in the Autocorrelation Topology Robert V. Moody and Nicolae Strungaru Department of Mathematical and Statistical Sciences University of Alberta, Edmonton Canada, T6G 2G1

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 14, 2019, at 08 30 12 30 Johanneberg Kristian

More information

1 Smooth manifolds and Lie groups

1 Smooth manifolds and Lie groups An undergraduate approach to Lie theory Slide 1 Andrew Baker, Glasgow Glasgow, 12/11/1999 1 Smooth manifolds and Lie groups A continuous g : V 1 V 2 with V k R m k open is called smooth if it is infinitely

More information

Unavoidable patterns in words

Unavoidable patterns in words Unavoidable patterns in words Benny Sudakov ETH, Zurich joint with D.Conlon and J. Fox Ramsey numbers Definition: The Ramsey number r k (n) is the minimum N such that every 2-coloring of the k-tuples of

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

INTRODUCTION TO FRACTAL GEOMETRY

INTRODUCTION TO FRACTAL GEOMETRY Every mathematical theory, however abstract, is inspired by some idea coming in our mind from the observation of nature, and has some application to our world, even if very unexpected ones and lying centuries

More information

Fractals and Dimension

Fractals and Dimension Chapter 7 Fractals and Dimension Dimension We say that a smooth curve has dimension 1, a plane has dimension 2 and so on, but it is not so obvious at first what dimension we should ascribe to the Sierpinski

More information

Chapter 5: Fractals. Topics. Lecture Notes. Fundamentals of Fractals Hausdorff Dimension Box Dimension Various Measures on fractals Multi Fractals

Chapter 5: Fractals. Topics. Lecture Notes. Fundamentals of Fractals Hausdorff Dimension Box Dimension Various Measures on fractals Multi Fractals ME/MATH/PHYS 597 Spring 2019 Chapter 5: Fractals Topics Lecture Notes Fundamentals of Fractals Hausdorff Dimension Box Dimension Various Measures on fractals Multi Fractals 1 C 0 C 1 C 2 C 3 Figure 1:

More information

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS

ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS Journal of Pure and Applied Mathematics: Advances and Applications Volume 0 Number 0 Pages 69-0 ONE DIMENSIONAL CHAOTIC DYNAMICAL SYSTEMS HENA RANI BISWAS Department of Mathematics University of Barisal

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Crystallographic Point Groups and Space Groups

Crystallographic Point Groups and Space Groups Crystallographic Point Groups and Space Groups Physics 251 Spring 2011 Matt Wittmann University of California Santa Cruz June 8, 2011 Mathematical description of a crystal Definition A Bravais lattice

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

On a Topological Problem of Strange Attractors. Ibrahim Kirat and Ayhan Yurdaer

On a Topological Problem of Strange Attractors. Ibrahim Kirat and Ayhan Yurdaer On a Topological Problem of Strange Attractors Ibrahim Kirat and Ayhan Yurdaer Department of Mathematics, Istanbul Technical University, 34469,Maslak-Istanbul, Turkey E-mail: ibkst@yahoo.com and yurdaerayhan@itu.edu.tr

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Regular Substitution Systems and. Tilings in the Hyperbolic Plane. C. Goodman-Strauss

Regular Substitution Systems and. Tilings in the Hyperbolic Plane. C. Goodman-Strauss Regular Substitution Systems and Tilings in the Hyperbolic Plane C. Goodman-Strauss strauss@uark.edu comp.uark.edu/ strauss An advertisement for The Tiling Listserve Contact: Casey Mann, University of

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

DYNAMICS OF A DISCRETE BRUSSELATOR MODEL: ESCAPE TO INFINITY AND JULIA SET

DYNAMICS OF A DISCRETE BRUSSELATOR MODEL: ESCAPE TO INFINITY AND JULIA SET DYNAMICS OF A DISCETE BUSSELATO MODEL: ESCAPE TO INFINITY AND JULIA SET HUNSEOK KANG AND YAKOV PESIN Abstract. We consider a discrete version of the Brusselator Model of the famous Belousov-Zhabotinsky

More information

ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES

ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES J.D. MEISS Program in Applied Mathematics University of Colorado Boulder, CO Abstract We construct an approximate renormalization operator for a

More information

Je Lagarias, University of Michigan. Workshop on Discovery and Experimentation in Number Theory Fields Institute, Toronto (September 25, 2009)

Je Lagarias, University of Michigan. Workshop on Discovery and Experimentation in Number Theory Fields Institute, Toronto (September 25, 2009) Ternary Expansions of Powers of 2 Je Lagarias, University of Michigan Workshop on Discovery and Experimentation in Number Theory Fields Institute, Toronto (September 25, 2009) Topics Covered Part I. Erdős

More information

TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS

TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS Johannes Kellendonk To cite this version: Johannes Kellendonk. TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS. Article for the

More information

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)-hardy inequality u(x) Cd Ω(x)

More information

Diophantine approximation of fractional parts of powers of real numbers

Diophantine approximation of fractional parts of powers of real numbers Diophantine approximation of fractional parts of powers of real numbers Lingmin LIAO (joint work with Yann Bugeaud, and Micha l Rams) Université Paris-Est Numeration 2015, Nancy May 20th 2015 Lingmin LIAO,

More information

An Investigation of Fractals and Fractal Dimension. Student: Ian Friesen Advisor: Dr. Andrew J. Dean

An Investigation of Fractals and Fractal Dimension. Student: Ian Friesen Advisor: Dr. Andrew J. Dean An Investigation of Fractals and Fractal Dimension Student: Ian Friesen Advisor: Dr. Andrew J. Dean April 10, 2018 Contents 1 Introduction 2 1.1 Fractals in Nature............................. 2 1.2 Mathematically

More information

DAVID DAMANIK AND DANIEL LENZ. Dedicated to Barry Simon on the occasion of his 60th birthday.

DAVID DAMANIK AND DANIEL LENZ. Dedicated to Barry Simon on the occasion of his 60th birthday. UNIFORM SZEGŐ COCYCLES OVER STRICTLY ERGODIC SUBSHIFTS arxiv:math/052033v [math.sp] Dec 2005 DAVID DAMANIK AND DANIEL LENZ Dedicated to Barry Simon on the occasion of his 60th birthday. Abstract. We consider

More information

A classification of explosions in dimension one

A classification of explosions in dimension one Ergod. Th. & Dynam. Sys. (29), 29, 715 731 doi:1.117/s143385788486 c 28 Cambridge University Press Printed in the United Kingdom A classification of explosions in dimension one E. SANDER and J. A. YORKE

More information

Anderson Localization on the Sierpinski Gasket

Anderson Localization on the Sierpinski Gasket Anderson Localization on the Sierpinski Gasket G. Mograby 1 M. Zhang 2 1 Department of Physics Technical University of Berlin, Germany 2 Department of Mathematics Jacobs University, Germany 5th Cornell

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

Aperiodic tilings (tutorial)

Aperiodic tilings (tutorial) Aperiodic tilings (tutorial) Boris Solomyak U Washington and Bar-Ilan February 12, 2015, ICERM Boris Solomyak (U Washington and Bar-Ilan) Aperiodic tilings February 12, 2015, ICERM 1 / 45 Plan of the talk

More information

Quasicrystals. Materials 286G John Goiri

Quasicrystals. Materials 286G John Goiri Quasicrystals Materials 286G John Goiri Symmetry Only 1, 2, 3, 4 and 6-fold symmetries are possible Translational symmetry Symmetry Allowed symmetries: Steinhardt, Paul J, and Luca Bindi. In Search of

More information

Quantitative recurrence for beta expansion. Wang BaoWei

Quantitative recurrence for beta expansion. Wang BaoWei Introduction Further study Quantitative recurrence for beta expansion Huazhong University of Science and Technology July 8 2010 Introduction Further study Contents 1 Introduction Background Beta expansion

More information

Some results in support of the Kakeya Conjecture

Some results in support of the Kakeya Conjecture Some results in support of the Kakeya Conjecture Jonathan M. Fraser School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK. Eric J. Olson Department of Mathematics/084, University

More information

Tube formulas and self-similar tilings

Tube formulas and self-similar tilings Tube formulas and self-similar tilings Erin P. J. Pearse erin-pearse@uiowa.edu Joint work with Michel L. Lapidus and Steffen Winter VIGRE Postdoctoral Fellow Department of Mathematics University of Iowa

More information

Automatic sequences, logarithmic density, and fractals. Jason Bell

Automatic sequences, logarithmic density, and fractals. Jason Bell Automatic sequences, logarithmic density, and fractals Jason Bell 1 A sequence is k-automatic if its n th term is generated by a finite state machine with n in base k as the input. 2 Examples of automatic

More information

THE CLASSIFICATION OF TILING SPACE FLOWS

THE CLASSIFICATION OF TILING SPACE FLOWS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 THE CLASSIFICATION OF TILING SPACE FLOWS by Alex Clark Abstract. We consider the conjugacy of the natural flows on one-dimensional tiling

More information