WANNIER TRANSFORM APERIODIC SOLIDS. for. Jean BELLISSARD. Collaboration:

Size: px
Start display at page:

Download "WANNIER TRANSFORM APERIODIC SOLIDS. for. Jean BELLISSARD. Collaboration:"

Transcription

1 WANNIER TRANSFORM for APERIODIC SOLIDS Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: G. DE NITTIS (SISSA, Trieste, Italy) V. MILANI (U. Tehran, Tehran, Iran)

2 Main References J. E. ANDERSON, I. PUTNAM, Topological invariants for substitution tilings and their associated C -algebras, Ergodic Theory Dynam. Systems, 18, (1998), J. C. LAGARIAS, Geometric models for quasicrystals I. Delone sets of finite type, Discrete Comput. Geom., 21, (1999), J. BELLISSARD, R. BENEDETTI, J. M. GAMBAUDO, Spaces of Tilings, Finite Telescopic Approximations, Comm. Math. Phys., 261, (2006), J. BELLISSARD, G. DE NITTIS, V. MILANI, Wannier transform for aperiodic tilings, in preparation, (2010)

3 Motivation

4 Motivation

5 Motivation Figure 1: A sample of the icosahedral quasicrystal AlPdMn

6 Motivation

7 Motivation

8 Motivation For periodic crystals, the Wannier transform leads to band spectrum calculation (Bloch theory) The Wannier transform uses the translation invariance of the crystal Is it possible to extend it to aperiodic solids?

9 Content 1. An example: Fibonacci 2. The Wannier Transform 3. The Schrödinger Operator 4. To conclude

10 I - An example: Fibonacci

11 The Fibonacci Sequence The Fibonacci sequence is an infinite word generated by the substitution Iterating gives ˆσ : a ab, b a }{{} a }{{} ab ab a aba ab abaab aba }{{}}{{}} {{ } a 0 a 1 a 2 =a 1 a 0 a 3 =a 2 a 1 a 4 =a 3 a 2 abaababa abaab } {{ } a 5 =a 4 a 3 It can be represented by a 1D-tiling if a [0, 1] b [0, σ] σ =

12 The Fibonacci Sequence

13 The Fibonacci Sequence

14 The Fibonacci Sequence

15 The Fibonacci Sequence

16 The Fibonacci Sequence

17 The Fibonacci Sequence - Collared tiles in the Fibonacci tiling -

18 The Fibonacci Sequence - The Anderson-Putnam complex for the Fibonacci tiling -

19 The Fibonacci Sequence - The substitution map -

20 The Fibonacci Sequence Let Ξ n X n be the set of tile endpoints (0-cells). The sequence of complexes (X n ) n N together with the maps f n : X n+1 X n gives rise to inverse limits lim (X n, f n ) = Ω lim (Ξ n, f n ) = Ξ The space Ω is compact and is called the Hull. It is endowed with an action of R generated by infinitesimal translation on the X n s The space Ξ is a Cantor set and is called the transversal Ξ parametrizes a the set of all tilings sharing the same words as the Fibonacci sequence with one tile endpoint at the origin. There is a two-to one correspondence between Ξ and the window.

21 The Fibonacci Sequence

22 The Fibonacci Sequence

23 The Fibonacci Sequence

24 The Fibonacci Sequence

25 The Fibonacci Sequence

26 The Fibonacci Sequence

27 The Fibonacci Sequence

28 The Fibonacci Sequence: Groupoid Γ Ξ is the set of pairs (ξ, a) with ξ Ξ and a L ξ. It is a locally compact groupoid when endowed with the following structure Units: Ξ, Range and Source maps: r(ξ, a) = ξ, s(ξ, a) = T a ξ Composition: (ξ, a) (T a ξ, b) = (ξ, a + b) Inverse: (ξ, a) 1 = (T a ξ, a) Topology: induced by Ξ R

29 II - Wannier Transform J. BELLISSARD, G. DE NITTIS, V. MILANI, Wannier transform for aperiodic tilings, in preparation, (2010)

30 Wannier Transform: Periodic Case If Z R is a one dimensional lattice the Wannier transform is defined for a function f C c (R) by g(s; k) = W f (s; k) = f (s + a) e ık a a Z Here k belongs to the dual group of Z, called Brillouin zone B T = R/2πZ Bloch boundary conditions: g(s + a; k) = g(s; k)e ık a whenever a Z. Plancherel s formula:. 1 0 ds T dk 2π g(s; k) 2 = R dx f (x) 2 Unitarity: W : L 2 (R) L 2 ([0, 1]) L 2 (T) is a unitary operator.

31 Wannier Transform: Definition In the case of the Fibonacci sequence: ξ Ξ, L ξ being the corresponding Delone set, v = ˆσ n (w) the n-th substitute of a collared tile. Denote by B T 2 the dual group of Z 2. Then, for s R and k B the Wannier transform of a function f C c (R) is W ξ f (v, s; k) = a L ξ (v) f (s + a)e ık a

32 Wannier Transform: Properties Smoothness: if f is smooth, then d W ξ k f dx k = k W ξ f s k Covariance: if g = W f then g ξ (v, s + b; k) = g T b ξ (v, s; k) eık b b L ξ Inversion: if dk denotes the normalized Haar measure on B f (s + a) = B dkg ξ (v, s; k) e ık a a L ξ, s R

33 Wannier Transform: Momentum Space Let E ξ (v) L 2 (B) be the closed subspace generated by {e a : k B e ık a ; a L ξ } E(v) = ( E ξ (v) ) ξ Ξ is a continuous field of Hilbert spaces. If W v (ξ, a) : E T a ξ (v) E ξ(v) is defined by W v (ξ, a)e b = e a+b then the family ( W v (γ) ) γ Γ Ξ defines a strongly continuous unitary representation of the groupoid Γ Ξ.

34 Wannier Transform: Momentum Space Define H ξ = v L2 (v) E ξ (v) L 2 (X n ) L 2 (B) where v varies among the d-cells of the Anderson-Putnam complex. Let Π ξ : L 2 (X n ) L 2 (B) H ξ be the corresponding orthogonal projection. H = ( H ξ )ξ Ξ is a continuous field of Hilbert spaces. Similarly U(γ) = v 1 v W v (γ) defines a strongly continuous unitary representation of the groupoid Γ Ξ on H.

35 Wannier Transform: Plancherel The Wannier transform is a strongly continuous field of unitary operators defined on the constant field L 2 (R) with values in H R dx f (x) 2 = v v ds The Wannier transform is covariant: B dk W ξ f (v, s; k) 2 U(ξ, a) W T a ξ = W ξ U reg (a) where U reg is the usual action of the translation group R in L 2 (R).

36 III - Schrödinger s Operator J. BELLISSARD, G. DE NITTIS, V. MILANI, Wannier transform for aperiodic tilings, in preparation, (2010)

37 The Schrödinger Operator: Model As an example let an atomic nucleus be placed is each tile, namely sites in L ξ. The atomic species are labeling the tiles. The corresponding atomic potential has compact support small enough to be contained in one tile V ξ (x) = v a L ξ (v) v (v) at (x a) The Schrödinger operator describing the electronic motion is then a covariant family H ξ (x) = + V ξ

38 The Schrödinger Operator: Form If f C 1 c (R) then, like in the Bloch Theory for periodic potentials Q ξ ( f, f ) = f H ξ f L 2 (R) = v v ds B dk ( s W ξ f (v, s; k) 2 + v (v) at (s) W ξ f (v, s; k) 2 ) = B dk ˆQ k ( (Wξ f ) k, (W ξ f ) k ) with ( ) ˆQ k g, g = v v ds ( s g(v, s) 2 + v (v) at (s) g(v, s) 2)

39 The Schrödinger Operator: Form A function g belongs to the form domain of ˆQ k if and only if 1. both g(v, s) and its derivative are in L 2 (v) for all (d = 1)-cell v 2. g satisfies the following cohomological equation: at each ({d 1} = 0)-cell u of the Anderson-Putnam complex v: 0 v=u g(v, u)e ık a ˆv v = w: 1 v=u g(w, u)e ık a ˆv w where a v w is the translation vector sending the initial point of v the initial point of w, and ˆv is one tile touching u.

40 The Schrödinger Operator: Form

41 The Schrödinger Operator: Bands The form ˆQ k generates a selfadjoint operator Ĥ k defined by g Ĥ k g L 2 (X n ) = ˆQ k (g, g) On each d-cell v, Ĥ k = s + v (v) at, with k-dependent boundary conditions. Since a cell is compact it follows that Ĥ k is elliptic, thus it has compact resolvent. In particular its spectrum is discrete with finite multiplicity, namely its eigenvalues are E 0 (k) E 1 (k) E r (k) with each E r (k) a smooth function of k B.

42 The Schrödinger Operator: Bands What is the connection with the original operator? Theorem The Schrödinger operator H ξ is given by H ξ = Π ξ B dk Ĥ k Π ξ if Π ξ is the orthogonal projection from L 2 (X n ) L 2 (B) onto H ξ. The restriction to the subspace H ξ is NOT INNOCENT and reduces the band spectrum to produce a Cantor spectrum in the onedimensional cases.

43 IV - To Conclude

44 1. The Fibonacci sequence can be replaced by aperiodic, repetitive tilings on R d with finite local complexity. The Hull and the transversal are well-defined. 2. The Lagarias group L plays the role of Z 2 in general. It is always free with finite rank. Then B is the group dual to L. 3. The definition of the Wannier transform can be extended to this case 4. The sequence of Anderson-Putnam complexes (X n ) n N can be defined in this general case as well. 5. The Wannier transform identifies wave functions in L 2 (R d ) with a proper subspace of L 2 (X n ) L 2 (B) 6. The Schrödinger operator can be written in terms of this new representation as the compression of a Bloch-type operator exhibiting band spectrum.

Bloch Theory for 1D-FLC Aperiodic Media

Bloch Theory for 1D-FLC Aperiodic Media Sponsoring Bloch Theory for 1D-FLC Aperiodic Media CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

Periodic Approximant. Aperiodic Hamiltonians

Periodic Approximant. Aperiodic Hamiltonians Sponsoring Periodic Approximant to Aperiodic Hamiltonians CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

to 1D Periodic Approximants Aperiodic Hamiltonians Sponsoring Jean BELLISSARD CRC 701, Bielefeld, Germany

to 1D Periodic Approximants Aperiodic Hamiltonians Sponsoring Jean BELLISSARD CRC 701, Bielefeld, Germany Sponsoring Periodic Approximants to 1D Aperiodic Hamiltonians CRC 701, Bielefeld, Germany Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

The Topology of Tiling Spaces

The Topology of Tiling Spaces East Lansing October 16, 2009 1 The Topology of Tiling Spaces Jean BELLISSARD East Lansing October 16, 2009 2 East Lansing October 16, 2009 3 East Lansing October 16, 2009 4 The Topology of Tiling Spaces

More information

THE TOPOLOGY of TILING SPACES

THE TOPOLOGY of TILING SPACES Seoul National University March20, 2014 1 THE TOPOLOGY of Sponsoring TILING SPACES This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia

More information

VARIOUS MATHEMATICAL ASPECTS TILING SPACES. Jean BELLISSARD 1 2. Collaborations: Georgia Institute of Technology & Institut Universitaire de France

VARIOUS MATHEMATICAL ASPECTS TILING SPACES. Jean BELLISSARD 1 2. Collaborations: Georgia Institute of Technology & Institut Universitaire de France GaTech January 24 2005 1 VARIOUS MATHEMATICAL ASPECTS of TILING SPACES Jean BELLISSARD 1 2 Georgia Institute of Technology & Institut Universitaire de France Collaborations: D. SPEHNER (Essen, Germany)

More information

Periodic Approximants. Aperiodic Hamiltonians

Periodic Approximants. Aperiodic Hamiltonians Periodic Approximants to Sponsoring Aperiodic Hamiltonians Jean BELLISSARD CRC 701, Bielefeld, Germany Westfälische Wilhelms-Universität, Münster Department of Mathematics Georgia Institute of Technology,

More information

COHOMOLOGY. Sponsoring. Jean BELLISSARD

COHOMOLOGY. Sponsoring. Jean BELLISSARD Sponsoring Grant no. 0901514 COHOMOLOGY Jean BELLISSARD CRC 701, Bielefeld Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Main References

More information

Periodic Approximations for Energy Spectra in Aperiodic Media

Periodic Approximations for Energy Spectra in Aperiodic Media Periodic Approximations for Energy Spectra in Aperiodic Media Sponsoring Jean BELLISSARD Westfälische Wilhelms-Universität, Münster Department of Mathematics Georgia Institute of Technology, Atlanta School

More information

Periodic Approximants. Aperiodic Hamiltonians

Periodic Approximants. Aperiodic Hamiltonians Periodic Approximants to Sponsoring Aperiodic Hamiltonians Jean BELLISSARD CRC 701, Bielefeld, Germany Westfälische Wilhelms-Universität, Münster Department of Mathematics Georgia Institute of Technology,

More information

Theory of Aperiodic Solids:

Theory of Aperiodic Solids: Theory of Aperiodic Solids: Sponsoring from 1980 to present Jean BELLISSARD jeanbel@math.gatech.edu Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Content 1. Aperiodic

More information

arxiv:math/ v2 [math.ds] 6 Jul 2018

arxiv:math/ v2 [math.ds] 6 Jul 2018 TILINGS, TILING SPACES AND TOPOLOGY LORENZO SADUN arxiv:math/0506054v2 [math.ds] 6 Jul 2018 Abstract. To understand an aperiodic tiling (or a quasicrystal modeled on an aperiodic tiling), we construct

More information

TILINGS APERIODIC MEDIA

TILINGS APERIODIC MEDIA Duke February 28 2003 1 TILINGS APERIODIC MEDIA and their NONCOMMUTATIVE GEOMETRY Jean BELLISSARD 1 2 Georgia Institute of Technology & Institut Universitaire de France Collaborations: D. SPEHNER (Essen,

More information

GAP LABELING THEOREMS

GAP LABELING THEOREMS Sponsoring GAP LABELING Grant no. 0901514 THEOREMS Jean BELLISSARD CRC 701, Bielefeld Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

Aperiodic Substitution Tilings

Aperiodic Substitution Tilings Aperiodic Substitution Tilings Charles Starling January 4, 2011 Charles Starling () Aperiodic Substitution Tilings January 4, 2011 1 / 27 Overview We study tilings of R 2 which are aperiodic, but not completely

More information

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration:

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration: RIEMANNIAN GEOMETRY of COMPACT METRIC SPACES Jean BELLISSARD 1 Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) 1 e-mail:

More information

Aperiodic Hamiltonians

Aperiodic Hamiltonians Spectrum Approximation for Aperiodic Hamiltonians Sponsoring Jean BELLISSARD Westfälische Wilhelms-Universität, Münster Department of Mathematics Georgia Institute of Technology, Atlanta School of Mathematics

More information

WORKSHOP ON DYNAMICAL METHODS IN SPECTRAL THEORY OF QUASICRYSTALS

WORKSHOP ON DYNAMICAL METHODS IN SPECTRAL THEORY OF QUASICRYSTALS WORKSHOP ON DYNAMICAL METHODS IN SPECTRAL THEORY OF QUASICRYSTALS THE UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF MATHEMATICS MAY 16 19, 2013 Contents Abstracts of Mini-Courses.................................................

More information

1D-Quantum Systems. a review ( ) Sponsoring. Jean BELLISSARD. NSF grant No

1D-Quantum Systems. a review ( ) Sponsoring. Jean BELLISSARD. NSF grant No 1D-Quantum Systems Sponsoring (1980-1993) a review NSF grant No. 0901514 Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration:

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration: LAPLACIANS on Sponsoring COMPACT METRIC SPACES Jean BELLISSARD a Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) a e-mail:

More information

NONCOMMUTATIVE. GEOMETRY of FRACTALS

NONCOMMUTATIVE. GEOMETRY of FRACTALS AMS Memphis Oct 18, 2015 1 NONCOMMUTATIVE Sponsoring GEOMETRY of FRACTALS Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

Tiling Groupoids And Bratteli Diagrams

Tiling Groupoids And Bratteli Diagrams Tiling Groupoids And Bratteli Diagrams J. Bellissard, A. Julien, J. Savinien arxiv:0911.0080v1 [math.oa] 31 Oct 2009 Abstract Let T be an aperiodic and repetitive tiling of R d with finite local complexity.

More information

APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES

APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES APERIODIC ORDER AND QUASICRYSTALS: SPECTRAL PROPERTIES DANIEL LENZ AND PETER STOLLMANN Abstract. We present spectral theoretic results for Hamiltonians associated with Delone sets. For a family of discrete

More information

ELECTRONS APERIODIC MEDIA

ELECTRONS APERIODIC MEDIA ELECTRONS Sponsoring in APERIODIC MEDIA This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia Institute of Technology, Atlanta School

More information

A PROOF OF THE GAP LABELING CONJECTURE. 1. Introduction

A PROOF OF THE GAP LABELING CONJECTURE. 1. Introduction A PROOF OF THE GAP LABELING CONJECTURE JEROME KAMINKER AND IAN PUTNAM Abstract. We will give a proof of the Gap Labeling Conjecture formulated by Bellissard, [3]. It makes use of a version of Connes index

More information

Dynamics and topology of matchbox manifolds

Dynamics and topology of matchbox manifolds Dynamics and topology of matchbox manifolds Steven Hurder University of Illinois at Chicago www.math.uic.edu/ hurder 11th Nagoya International Mathematics Conference March 21, 2012 Introduction We present

More information

Introduction to mathematical quasicrystals

Introduction to mathematical quasicrystals Introduction to mathematical quasicrystals F S W Alan Haynes Topics to be covered Historical overview: aperiodic tilings of Euclidean space and quasicrystals Lattices, crystallographic point sets, and

More information

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale

Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivale Gabor Frames for Quasicrystals II: Gap Labeling, Morita Equivalence, and Dual Frames University of Maryland June 11, 2015 Overview Twisted Gap Labeling Outline Twisted Gap Labeling Physical Quasicrystals

More information

A mathematical model for Mott s Variable Range Hopping

A mathematical model for Mott s Variable Range Hopping Santiago November 23-28, 2009 1 A mathematical model for Mott s Variable Range Hopping Jean BELLISSARD 1 2 Georgia Institute of Technology, Atlanta, http://www.math.gatech.edu/ jeanbel/ Collaborations:

More information

COMPUTATIONAL. NONCOMMUTATIVE GEOMETRY The work of E. Prodan. Sponsoring. Jean BELLISSARD

COMPUTATIONAL. NONCOMMUTATIVE GEOMETRY The work of E. Prodan. Sponsoring. Jean BELLISSARD COMPUTATIONAL Sponsoring NONCOMMUTATIVE GEOMETRY The work of E. Prodan This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia Institute

More information

NONCOMMUTATIVE GEOMETRY APERIODIC SOLIDS. The. Jean BELLISSARD 1. Collaborations:

NONCOMMUTATIVE GEOMETRY APERIODIC SOLIDS. The. Jean BELLISSARD 1. Collaborations: Trieste, May 26, 28 The NONCOMMUTATIVE GEOMETRY of APERIODIC SOLIDS Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaborations: D. SPEHNER (Essen,

More information

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations:

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations: Vienna February 1st 2005 1 DISSIPATIVE TRANSPORT and KUBO S FORMULA in APERIODIC SOLIDS Jean BELLISSARD 1 2 Georgia Institute of Technology, Atlanta, & Institut Universitaire de France Collaborations:

More information

The quasi-periodic Frenkel-Kontorova model

The quasi-periodic Frenkel-Kontorova model The quasi-periodic Frenkel-Kontorova model Philippe Thieullen (Bordeaux) joint work with E. Garibaldi (Campinas) et S. Petite (Amiens) Korean-French Conference in Mathematics Pohang, August 24-28,2015

More information

A Proof of the Gap Labeling Conjecture

A Proof of the Gap Labeling Conjecture Michigan Math. J. 51 (2003) A Proof of the Gap Labeling Conjecture Jerome Kaminker & Ian Putnam 1. Introduction The gap labeling conjecture as formulated by Bellissard [3] is a statement about the possible

More information

A Toy Model. Viscosity

A Toy Model. Viscosity A Toy Model for Sponsoring Viscosity Jean BELLISSARD Westfälische Wilhelms-Universität, Münster Department of Mathematics SFB 878, Münster, Germany Georgia Institute of Technology, Atlanta School of Mathematics

More information

Tiling Dynamical Systems as an Introduction to Smale Spaces

Tiling Dynamical Systems as an Introduction to Smale Spaces Tiling Dynamical Systems as an Introduction to Smale Spaces Michael Whittaker (University of Wollongong) University of Otago Dunedin, New Zealand February 15, 2011 A Penrose Tiling Sir Roger Penrose Penrose

More information

Notes on Rauzy Fractals

Notes on Rauzy Fractals Notes on Rauzy Fractals It is a tradition to associate symbolic codings to dynamical systems arising from geometry or mechanics. Here we introduce a classical result to give geometric representations to

More information

Spectral decimation & its applications to spectral analysis on infinite fractal lattices

Spectral decimation & its applications to spectral analysis on infinite fractal lattices Spectral decimation & its applications to spectral analysis on infinite fractal lattices Joe P. Chen Department of Mathematics Colgate University QMath13: Mathematical Results in Quantum Physics Special

More information

ATOMIC MOTION APERIODIC SOLIDS

ATOMIC MOTION APERIODIC SOLIDS ATOMIC MOTION Sponsoring in APERIODIC SOLIDS CRC 701, Bielefeld Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu Collaborations

More information

Tiling Groupoids and Bratteli Diagrams

Tiling Groupoids and Bratteli Diagrams Ann. Henri Poincaré 11 (2010), 69 99 c 2010 Springer Basel AG 1424-0637/10/010069-31 published online May 8, 2010 DOI 10.1007/s00023-010-0034-7 Annales Henri Poincaré Tiling Groupoids and Bratteli Diagrams

More information

Notes by Maksim Maydanskiy.

Notes by Maksim Maydanskiy. SPECTRAL FLOW IN MORSE THEORY. 1 Introduction Notes by Maksim Maydanskiy. Spectral flow is a general formula or computing the Fredholm index of an operator d ds +A(s) : L1,2 (R, H) L 2 (R, H) for a family

More information

Lecture 10 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 10 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lecture 10 Waves in Periodic Potentials Today: 1. Direct lattice and periodic potential as a convolution of a lattice and a basis. 2. The discrete translation operator: eigenvalues and eigenfunctions.

More information

Numerical construction of Wannier functions

Numerical construction of Wannier functions July 12, 2017 Internship Tutor: A. Levitt School Tutor: É. Cancès 1/27 Introduction Context: Describe electrical properties of crystals (insulator, conductor, semi-conductor). Applications in electronics

More information

Aperiodic tilings (tutorial)

Aperiodic tilings (tutorial) Aperiodic tilings (tutorial) Boris Solomyak U Washington and Bar-Ilan February 12, 2015, ICERM Boris Solomyak (U Washington and Bar-Ilan) Aperiodic tilings February 12, 2015, ICERM 1 / 45 Plan of the talk

More information

Shift Invariant Spaces and Shift Generated Dual Frames for Local Fields

Shift Invariant Spaces and Shift Generated Dual Frames for Local Fields Communications in Mathematics and Applications Volume 3 (2012), Number 3, pp. 205 214 RGN Publications http://www.rgnpublications.com Shift Invariant Spaces and Shift Generated Dual Frames for Local Fields

More information

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS CRAIG JACKSON 1. Introduction Generally speaking, geometric quantization is a scheme for associating Hilbert spaces

More information

Reproducing formulas associated with symbols

Reproducing formulas associated with symbols Reproducing formulas associated with symbols Filippo De Mari Ernesto De Vito Università di Genova, Italy Modern Methods of Time-Frequency Analysis II Workshop on Applied Coorbit space theory September

More information

Rotation Numbers, Boundary Forces and Gap Labelling

Rotation Numbers, Boundary Forces and Gap Labelling Rotation Numbers, Boundary Forces and Gap Labelling Johannes Kellendonk, Ioannis Zois 2 Institute Girard Desargues, Université Claude Bernard Lyon, F-69622 Villeurbanne e-mail: kellendonk@igd.univ-lyon.fr

More information

Aperiodic Order and Quasicrystals: Spectral Properties

Aperiodic Order and Quasicrystals: Spectral Properties Ann. Henri Poincaré 4, Suppl. 2 (2003) S933 S942 c Birkhäuser Verlag, Basel, 2003 1424-0637/03/02S933-10 DOI 10.1007/s00023-003-0973-3 Annales Henri Poincaré Aperiodic Order and Quasicrystals: Spectral

More information

The Noncommutative Geometry of Aperiodic Solids

The Noncommutative Geometry of Aperiodic Solids The Noncommutative Geometry of Aperiodic Solids Jean Bellissard 1,2 1 Georgia Institute of Technology, School of Mathematics, Atlanta GA 30332-0160 2 Institut Universitaire de France 1 Introduction These

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Magnetic symmetries:

Magnetic symmetries: Magnetic symmetries: applications and prospects Giuseppe De Nittis (AGM, Université de Cergy-Pontoise) Friedrich Schiller Universität, Mathematisches Institut, Jena. April 18, 2012 Joint work with: M.

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

Discrete spectra generated by polynomials

Discrete spectra generated by polynomials Discrete spectra generated by polynomials Shigeki Akiyama (Niigata University, Japan) 27 May 2011 at Liège A joint work with Vilmos Komornik (Univ Strasbourg). Typeset by FoilTEX Typeset by FoilTEX 1 Mathematics

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Generalized Shearlets and Representation Theory

Generalized Shearlets and Representation Theory Generalized Shearlets and Representation Theory Emily J. King Laboratory of Integrative and Medical Biophysics National Institute of Child Health and Human Development National Institutes of Health Norbert

More information

arxiv: v1 [math.ho] 16 Dec 2015

arxiv: v1 [math.ho] 16 Dec 2015 arxiv:5.5v [math.ho] 6 Dec 5 Crystals with their regular shape and pronounced faceting have fascinated humans for ages. About a century ago, the understanding of the internal structure increased considerably

More information

Scattering Theory. In quantum mechanics the basic observable is the probability

Scattering Theory. In quantum mechanics the basic observable is the probability Scattering Theory In quantum mechanics the basic observable is the probability P = ψ + t ψ t 2, for a transition from and initial state, ψ t, to a final state, ψ + t. Since time evolution is unitary this

More information

THE CLASSIFICATION OF TILING SPACE FLOWS

THE CLASSIFICATION OF TILING SPACE FLOWS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 THE CLASSIFICATION OF TILING SPACE FLOWS by Alex Clark Abstract. We consider the conjugacy of the natural flows on one-dimensional tiling

More information

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS HIGHER INVARIANTS: TOPOLOGICAL INSULATORS Sponsoring This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia Institute of Technology,

More information

Geometric Aspects of Quantum Condensed Matter

Geometric Aspects of Quantum Condensed Matter Geometric Aspects of Quantum Condensed Matter November 13, 2013 Lecture V y An Introduction to Bloch-Floquet Theory (part. I) Giuseppe De Nittis Department Mathematik (room 02.317) +49 (0)9131 85 67071

More information

No Translation Symmetry no Bloch Theory

No Translation Symmetry no Bloch Theory NCG APPROACH TO TOPOLOGICAL INVARIANTS IN CONDENSED MATTER PHYSICS: LECTURE I JEAN BELLISSARD 1. Noncommutative Geometry: an Apology 1.1. Why Do We Need Noncommutative Geometry. Why do we need such a complicate

More information

Curriculum vitae Siegfried Beckus

Curriculum vitae Siegfried Beckus Curriculum vitae Siegfried Beckus Contact details Name Siegfried Beckus Mailing adress Technion Campus, Amado Bld., Office 700, 32000 Haifa (Israel) E-mail beckus.siegf@technion.ac.il Phone number +972

More information

Foliation dynamics, shape and classification

Foliation dynamics, shape and classification Foliation dynamics, shape and classification Steve Hurder University of Illinois at Chicago www.math.uic.edu/ hurder Theorem: [Denjoy, 1932] There exist a C 1 -foliation F of codimension-1 with an exceptional

More information

BRST and Dirac Cohomology

BRST and Dirac Cohomology BRST and Dirac Cohomology Peter Woit Columbia University Dartmouth Math Dept., October 23, 2008 Peter Woit (Columbia University) BRST and Dirac Cohomology October 2008 1 / 23 Outline 1 Introduction 2 Representation

More information

The Structure of C -algebras Associated with Hyperbolic Dynamical Systems

The Structure of C -algebras Associated with Hyperbolic Dynamical Systems The Structure of C -algebras Associated with Hyperbolic Dynamical Systems Ian F. Putnam* and Jack Spielberg** Dedicated to Marc Rieffel on the occasion of his sixtieth birthday. Abstract. We consider the

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

ON EFFECTIVE HAMILTONIANS FOR ADIABATIC PERTURBATIONS. Mouez Dimassi Jean-Claude Guillot James Ralston

ON EFFECTIVE HAMILTONIANS FOR ADIABATIC PERTURBATIONS. Mouez Dimassi Jean-Claude Guillot James Ralston ON EFFECTIVE HAMILTONIANS FOR ADIABATIC PERTURBATIONS Mouez Dimassi Jean-Claude Guillot James Ralston Abstract We construct almost invariant subspaces and the corresponding effective Hamiltonian for magnetic

More information

Cartan sub-c*-algebras in C*-algebras

Cartan sub-c*-algebras in C*-algebras Plan Cartan sub-c*-algebras in C*-algebras Jean Renault Université d Orléans 22 July 2008 1 C*-algebra constructions. 2 Effective versus topologically principal. 3 Cartan subalgebras in C*-algebras. 4

More information

arxiv: v2 [math-ph] 22 Sep 2016

arxiv: v2 [math-ph] 22 Sep 2016 arxiv:60.0284v2 [math-ph] 22 Sep 206 QUANTUM AND SPECTRAL PROPERTIES OF THE LABYRINTH MODEL YUKI TAKAHASHI Abstract. We consider the Labyrinth model, which is a two-dimensional quasicrystal model. We show

More information

Positive operator valued measures covariant with respect to an irreducible representation

Positive operator valued measures covariant with respect to an irreducible representation Positive operator valued measures covariant with respect to an irreducible representation G. Cassinelli, E. De Vito, A. Toigo February 26, 2003 Abstract Given an irreducible representation of a group G,

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

Errata Applied Analysis

Errata Applied Analysis Errata Applied Analysis p. 9: line 2 from the bottom: 2 instead of 2. p. 10: Last sentence should read: The lim sup of a sequence whose terms are bounded from above is finite or, and the lim inf of a sequence

More information

TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS

TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS Johannes Kellendonk To cite this version: Johannes Kellendonk. TOPOLOGICAL BRAGG PEAKS AND HOW THEY CHARACTERISE POINT SETS. Article for the

More information

Highest-weight Theory: Verma Modules

Highest-weight Theory: Verma Modules Highest-weight Theory: Verma Modules Math G4344, Spring 2012 We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or,

More information

INTEGER QUANTUM HALL EFFECT

INTEGER QUANTUM HALL EFFECT QHE Adelaide August 16-20 1999 1 The NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD 1 2 Université Paul Sabatier, Toulouse & Institut Universitaire de France Collaborations:

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

Spectral Measures, the Spectral Theorem, and Ergodic Theory

Spectral Measures, the Spectral Theorem, and Ergodic Theory Spectral Measures, the Spectral Theorem, and Ergodic Theory Sam Ziegler The spectral theorem for unitary operators The presentation given here largely follows [4]. will refer to the unit circle throughout.

More information

arxiv: v1 [math-ph] 31 Jan 2016

arxiv: v1 [math-ph] 31 Jan 2016 February 2, 2016 1:43 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in ProdanICMP2015 page 1 1 Topological Insulators at Strong Disorder Emil Prodan Physics Department, Yeshiva University, New York,

More information

Some icosahedral patterns and their isometries

Some icosahedral patterns and their isometries Some icosahedral patterns and their isometries Nicolae Cotfas 1 Faculty of Physics, University of Bucharest, PO Box 76-54, Postal Office 76, Bucharest, Romania Radu Slobodeanu 2 Faculty of Physics, University

More information

The Banach Tarski Paradox and Amenability Lecture 23: Unitary Representations and Amenability. 23 October 2012

The Banach Tarski Paradox and Amenability Lecture 23: Unitary Representations and Amenability. 23 October 2012 The Banach Tarski Paradox and Amenability Lecture 23: Unitary Representations and Amenability 23 October 2012 Subgroups of amenable groups are amenable One of today s aims is to prove: Theorem Let G be

More information

arxiv: v2 [math.fa] 27 Sep 2016

arxiv: v2 [math.fa] 27 Sep 2016 Decomposition of Integral Self-Affine Multi-Tiles Xiaoye Fu and Jean-Pierre Gabardo arxiv:43.335v2 [math.fa] 27 Sep 26 Abstract. In this paper we propose a method to decompose an integral self-affine Z

More information

MET Workshop: Exercises

MET Workshop: Exercises MET Workshop: Exercises Alex Blumenthal and Anthony Quas May 7, 206 Notation. R d is endowed with the standard inner product (, ) and Euclidean norm. M d d (R) denotes the space of n n real matrices. When

More information

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur s Lemma 1.2 Tensor products 1.3 Unitary representations

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

FUSION: A GENERAL FRAMEWORK FOR HIERARCHICAL TILINGS OF R d

FUSION: A GENERAL FRAMEWORK FOR HIERARCHICAL TILINGS OF R d FUSION: A GENERAL FRAMEWORK FOR HIERARCHICAL TILINGS OF R d NATALIE PRIEBE FRANK AND LORENZO SADUN Abstract. We introduce a formalism for handling general spaces of hierarchical tilings, a category that

More information

Model sets, Meyer sets and quasicrystals

Model sets, Meyer sets and quasicrystals Model sets, Meyer sets and quasicrystals Technische Fakultät Universität Bielefeld University of the Philippines Manila 27. Jan. 2014 Model sets, Meyer sets and quasicrystals Quasicrystals, cut-and-project

More information

Shmuel Weinberger University of Chicago. Joint with. Jean Bellissard Departments of Mathematics and Physics Georgia Tech

Shmuel Weinberger University of Chicago. Joint with. Jean Bellissard Departments of Mathematics and Physics Georgia Tech DISORDERED SOLIDS AND THE DYNAMICS OF BOUNDED GEOMETRY Shmuel Weinberger University of Chicago Joint with Jean Bellissard Departments of Mathematics and Physics Georgia Tech Semail Ulgen-Yildirim International

More information

Finite propagation operators which are Fredholm

Finite propagation operators which are Fredholm Finite propagation operators which are Fredholm Vladimir Rabinovich IPN, Mexico Steffen Roch Darmstadt John Roe Penn State September 20, 2003 The translation algebra Let X be a metric space. We will assume

More information

MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS

MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS S. P. NOVIKOV I. In previous joint papers by the author and B. A. Dubrovin [1], [2] we computed completely

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Wannier functions, Bloch bundles and topological degree theory

Wannier functions, Bloch bundles and topological degree theory Wannier functions, Bloch bundles and topological degree theory Horia D. Cornean Department of Mathematical Sciences, Aalborg University, Denmark cornean@math.aau.dk Bilbao, June 17, 2016 The plan of the

More information

1.3.1 Definition and Basic Properties of Convolution

1.3.1 Definition and Basic Properties of Convolution 1.3 Convolution 15 1.3 Convolution Since L 1 (R) is a Banach space, we know that it has many useful properties. In particular the operations of addition and scalar multiplication are continuous. However,

More information

Review and problem list for Applied Math I

Review and problem list for Applied Math I Review and problem list for Applied Math I (This is a first version of a serious review sheet; it may contain errors and it certainly omits a number of topic which were covered in the course. Let me know

More information

Meyer sets, topological eigenvalues, and cantor fiber bundles

Meyer sets, topological eigenvalues, and cantor fiber bundles Meyer sets, topological eigenvalues, and cantor fiber bundles Johannes Kellendonk, Lorenzo Sadun To cite this version: Johannes Kellendonk, Lorenzo Sadun. Meyer sets, topological eigenvalues, and cantor

More information

Inequivalent bundle representations for the Noncommutative Torus

Inequivalent bundle representations for the Noncommutative Torus Inequivalent bundle representations for the Noncommutative Torus Chern numbers: from abstract to concrete Giuseppe De Nittis Mathematical Physics Sector of: SISSA International School for Advanced Studies,

More information

Partial semigroup actions and groupoids

Partial semigroup actions and groupoids Partial semigroup actions and groupoids Jean Renault University of Orléans May 12, 2014 PARS (joint work with Dana Williams) Introduction A few years ago, I was recruited by an Australian team to help

More information

QUANTUM TRANSPORT. KUBO S FORMULA for. Jean BELLISSARD 1 2. Collaborations:

QUANTUM TRANSPORT. KUBO S FORMULA for. Jean BELLISSARD 1 2. Collaborations: Oberwolfach May 4th, 2004 1 KUBO S FORMULA for QUANTUM TRANSPORT Jean BELLISSARD 1 2 Georgia Institute of Technology, Atlanta, & Institut Universitaire de France Collaborations: H. SCHULZ-BALDES (T.U.

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Self-adjoint extensions of symmetric operators

Self-adjoint extensions of symmetric operators Self-adjoint extensions of symmetric operators Simon Wozny Proseminar on Linear Algebra WS216/217 Universität Konstanz Abstract In this handout we will first look at some basics about unbounded operators.

More information