Finite Difference Method

Size: px
Start display at page:

Download "Finite Difference Method"

Transcription

1 Finite Difference Method for BVP ODEs Dec 3,

2 Recall An ordinary differential equation is accompanied by auxiliary conditions. In the analytical method, these conditions are used to evaluate the constants of integration that result during the solution of the equation. For an nth-order equation, n conditions are required. If all the conditions are specified at the same value of the independent variable, then we are dealing with an initial-value problem. In contrast, there is another application for which the conditions are not known at a single point, but rather, are known at different values of the independent variable. Because these values are often specified at the extreme points or boundaries of a system, they are customarily referred to as boundary-value problems. 2

3 3

4 Shooting Method, Example Problem 4

5 Example.. The conservation of heat can be used to develop a heat balance for a long, thin rod (previous slide). If the rod is not insulated along its length and the system is at a steady state, the Temperature T along the rod can be given by the above equation. where h is a heat transfer coefficient (m 2 ) that parameterizes the rate of heat dissipation to the surrounding air and Ta is the temperature of the surrounding air. For L= 10-m rod T a = 20, T 1 = 40, T 2 = 200 h = Using the analytical method 5

6 Example The second-order equation can be expressed by a change of variables as two first order ODEs: 6

7 Example Let s deal with the BCs: The second-order equation can be expressed as two first order ODEs: To solve these equations, we require an initial value for z. We don t have it For the shooting method, we guess a value, e.g. z(0) = 10. 7

8 Example Using a fourth-order RK method with a step size of 2, we obtain a value at the end of the interval of T(10) = ,which differs from the boundary condition of T(10) = 200. Therefore, we make another guess, z(0) = 20, and perform the computation again. This time, the result of T(10) = is obtained. GUESS Computed Value Quality? z(0)=10 T(10)= LOW INTERPOLATE T(10)= 200 REAL z(0)=20 T(10)= HIGH 8

9 Example Now interpolate!! GUESS Computed Value Quality? z(0)=10 T(10)= LOW INTERPOLATE T(10)= 200 REAL z(0)=20 T(10)= HIGH Linear interpolation gives you a new guess 9

10 Example The second-order equation can be expressed as two first order ODEs: After linear interpolation, the guess becomes. z(0) =

11 The cartoon view 11

12 Finite Difference Method The main feature of the finite-difference method is to obtain discrete equations by replacing derivatives with appropriate finite divided differences. We derive and solve a finite difference system for the BVP in four steps. 1. Discretization of the domain of the problem 2. Discretization of the differential equation at the interior nodes 3. The third step is devoted to the treatment of the boundary conditions. 4. Solve the system of linear equations. The linear system is tridiagonal, and the solution of tridiagonal linear systems is a very well-studied problem. 12

13 13

14 A y b 14

15 Finite Difference Method for BVP The previous matrix equations can be solved easily using MATLAB For instance: % Finite Difference Method clc, clear A=[ some matrix of coefficients]; b=[some RHS vector]; y=a\b % y is the vector solution % That s it!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! % but you should graph the solution? 15

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter Boundary-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or

More information

SO x is a cubed root of t

SO x is a cubed root of t 7.6nth Roots 1) What do we know about x because of the following equation x 3 = t? All in one.docx SO x is a cubed root of t 2) Definition of nth root: 3) Study example 1 4) Now try the following problem

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Finite-Elements Method 2

Finite-Elements Method 2 Finite-Elements Method 2 January 29, 2014 2 From Applied Numerical Analysis Gerald-Wheatley (2004), Chapter 9. Finite-Elements Method 3 Introduction Finite-element methods (FEM) are based on some mathematical

More information

10.34 Numerical Methods Applied to Chemical Engineering. Quiz 2

10.34 Numerical Methods Applied to Chemical Engineering. Quiz 2 10.34 Numerical Methods Applied to Chemical Engineering Quiz 2 This quiz consists of three problems worth 35, 35, and 30 points respectively. There are 4 pages in this quiz (including this cover page).

More information

Numerical Methods - Boundary Value Problems for ODEs

Numerical Methods - Boundary Value Problems for ODEs Numerical Methods - Boundary Value Problems for ODEs Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Boundary Value Problems for ODEs 2013 1 / 14 Outline 1 Boundary Value

More information

MATH 333: Partial Differential Equations

MATH 333: Partial Differential Equations MATH 333: Partial Differential Equations Problem Set 9, Final version Due Date: Tues., Nov. 29, 2011 Relevant sources: Farlow s book: Lessons 9, 37 39 MacCluer s book: Chapter 3 44 Show that the Poisson

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

SME 3023 Applied Numerical Methods

SME 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SME 3023 Applied Numerical Methods Ordinary Differential Equations Abu Hasan Abdullah Faculty of Mechanical Engineering Sept 2012 Abu Hasan Abdullah (FME) SME 3023 Applied

More information

SKMM 3023 Applied Numerical Methods

SKMM 3023 Applied Numerical Methods UNIVERSITI TEKNOLOGI MALAYSIA SKMM 3023 Applied Numerical Methods Ordinary Differential Equations ibn Abdullah Faculty of Mechanical Engineering Òº ÙÐÐ ÚºÒÙÐÐ ¾¼½ SKMM 3023 Applied Numerical Methods Ordinary

More information

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction

Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction Page of 8 Partial Differential Equations (PDEs) and the Finite Difference Method (FDM). An introduction FILE:Chap 3 Partial Differential Equations-V6. Original: May 7, 05 Revised: Dec 9, 06, Feb 0, 07,

More information

Lecture 38 Insulated Boundary Conditions

Lecture 38 Insulated Boundary Conditions Lecture 38 Insulated Boundary Conditions Insulation In many of the previous sections we have considered fixed boundary conditions, i.e. u(0) = a, u(l) = b. We implemented these simply by assigning u j

More information

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group NUMERICAL METHODS lor CHEMICAL ENGINEERS Using Excel', VBA, and MATLAB* VICTOR J. LAW CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup,

More information

Ordinary Differential Equations (ODE)

Ordinary Differential Equations (ODE) Ordinary Differential Equations (ODE) Why study Differential Equations? Many physical phenomena are best formulated mathematically in terms of their rate of change. Motion of a swinging pendulum Bungee-jumper

More information

ODE Runge-Kutta methods

ODE Runge-Kutta methods ODE Runge-Kutta methods The theory (very short excerpts from lectures) First-order initial value problem We want to approximate the solution Y(x) of a system of first-order ordinary differential equations

More information

The family of Runge Kutta methods with two intermediate evaluations is defined by

The family of Runge Kutta methods with two intermediate evaluations is defined by AM 205: lecture 13 Last time: Numerical solution of ordinary differential equations Today: Additional ODE methods, boundary value problems Thursday s lecture will be given by Thomas Fai Assignment 3 will

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

Thomas Algorithm for Tridiagonal Matrix

Thomas Algorithm for Tridiagonal Matrix P a g e 1 Thomas Algorithm for Tridiagonal Matrix Special Matrices Some matrices have a particular structure that can be exploited to develop efficient solution schemes. Two of those such systems are banded

More information

Solutions Definition 2: a solution

Solutions Definition 2: a solution Solutions As was stated before, one of the goals in this course is to solve, or find solutions of differential equations. In the next definition we consider the concept of a solution of an ordinary differential

More information

Review for Exam 2 Ben Wang and Mark Styczynski

Review for Exam 2 Ben Wang and Mark Styczynski Review for Exam Ben Wang and Mark Styczynski This is a rough approximation of what we went over in the review session. This is actually more detailed in portions than what we went over. Also, please note

More information

Lesson 9: Diffusion of Heat (discrete rod) and ode45

Lesson 9: Diffusion of Heat (discrete rod) and ode45 Lesson 9: Diffusion of Heat (discrete rod) and ode45 9.1 Applied Problem. Consider the temperature in a thin rod such as a wire with electrical current. Assume the ends have a fixed temperature and the

More information

Ordinary Differential Equations- Boundary Value Problem

Ordinary Differential Equations- Boundary Value Problem Ordinry Differentil Equtions- Boundry Vlue Problem Shooting method Runge Kutt method Computer-bsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions

More information

FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS

FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS fc FOURIER SERIES, TRANSFORMS, AND BOUNDARY VALUE PROBLEMS Second Edition J. RAY HANNA Professor Emeritus University of Wyoming Laramie, Wyoming JOHN H. ROWLAND Department of Mathematics and Department

More information

[Engineering Mathematics]

[Engineering Mathematics] [MATHS IV] [Engineering Mathematics] [Partial Differential Equations] [Partial Differentiation and formation of Partial Differential Equations has already been covered in Maths II syllabus. Present chapter

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

Ordinary Differential Equations (ode)

Ordinary Differential Equations (ode) Ordinary Differential Equations (ode) Numerical Methods for Solving Initial condition (ic) problems and Boundary value problems (bvp) What is an ODE? =,,...,, yx, dx dx dx dx n n 1 n d y d y d y In general,

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems

Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems Outline 1) Our basic example again: -u'' + u = f(x); u(0)=α, u(l)=β 2) Solution of 2-point Boundary value problems

More information

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 1 : Introduction

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 1 : Introduction Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 1 : Introduction 1 Introduction In this module, we develop solution techniques for numerically solving ordinary

More information

ECE2019 Sensors, Circuits, and Systems A2015. Lab #2: Temperature Sensing

ECE2019 Sensors, Circuits, and Systems A2015. Lab #2: Temperature Sensing ECE2019 Sensors, Circuits, and Systems A2015 Lab #2: Temperature Sensing Introduction This lab investigates the use of a resistor as a temperature sensor. Using the temperature-sensitive resistance as

More information

Mathematical Modeling using Partial Differential Equations (PDE s)

Mathematical Modeling using Partial Differential Equations (PDE s) Mathematical Modeling using Partial Differential Equations (PDE s) 145. Physical Models: heat conduction, vibration. 146. Mathematical Models: why build them. The solution to the mathematical model will

More information

Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

More information

Linear Systems of Equations. ChEn 2450

Linear Systems of Equations. ChEn 2450 Linear Systems of Equations ChEn 450 LinearSystems-directkey - August 5, 04 Example Circuit analysis (also used in heat transfer) + v _ R R4 I I I3 R R5 R3 Kirchoff s Laws give the following equations

More information

Maria Cameron Theoretical foundations. Let. be a partition of the interval [a, b].

Maria Cameron Theoretical foundations. Let. be a partition of the interval [a, b]. Maria Cameron 1 Interpolation by spline functions Spline functions yield smooth interpolation curves that are less likely to exhibit the large oscillations characteristic for high degree polynomials Splines

More information

Module 7: The Laplace Equation

Module 7: The Laplace Equation Module 7: The Laplace Equation In this module, we shall study one of the most important partial differential equations in physics known as the Laplace equation 2 u = 0 in Ω R n, (1) where 2 u := n i=1

More information

Computational Fluid Dynamics Prof. Dr. SumanChakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Computational Fluid Dynamics Prof. Dr. SumanChakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Computational Fluid Dynamics Prof. Dr. SumanChakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. #11 Fundamentals of Discretization: Finite Difference

More information

Qualitative Analysis of Tumor-Immune ODE System

Qualitative Analysis of Tumor-Immune ODE System of Tumor-Immune ODE System LG de Pillis and AE Radunskaya August 15, 2002 This work was supported in part by a grant from the WM Keck Foundation 0-0 QUALITATIVE ANALYSIS Overview 1 Simplified System of

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) =

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) = Bell Ringer 1. Make a table and sketch the graph of the piecewise function f(x) = Power and Radical Functions Learning Target: 1. I can graph and analyze power functions. 2. I can graph and analyze radical

More information

MECH : a Primer for Matlab s ode suite of functions

MECH : a Primer for Matlab s ode suite of functions Objectives MECH 4-563: a Primer for Matlab s ode suite of functions. Review the fundamentals of initial value problems and why numerical integration methods are needed.. Introduce the ode suite of numerical

More information

Boundary Layer Problems and Applications of Spectral Methods

Boundary Layer Problems and Applications of Spectral Methods Boundary Layer Problems and Applications of Spectral Methods Sumi Oldman University of Massachusetts Dartmouth CSUMS Summer 2011 August 4, 2011 Abstract Boundary layer problems arise when thin boundary

More information

Numerical Marine Hydrodynamics Summary

Numerical Marine Hydrodynamics Summary Numerical Marine Hydrodynamics Summary Fundamentals of Digital Computing Error Analysis Roots of Non-linear Equations Systems of Linear Equations Gaussian Elimination Iterative Methods Optimization, Curve

More information

Solution of Non Linear Singular Perturbation Equation. Using Hermite Collocation Method

Solution of Non Linear Singular Perturbation Equation. Using Hermite Collocation Method Applied Mathematical Sciences, Vol. 7, 03, no. 09, 5397-5408 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ams.03.37409 Solution of Non Linear Singular Perturbation Equation Using Hermite Collocation

More information

Approximate Linear Relationships

Approximate Linear Relationships Approximate Linear Relationships In the real world, rarely do things follow trends perfectly. When the trend is expected to behave linearly, or when inspection suggests the trend is behaving linearly,

More information

CMSC 451: Max-Flow Extensions

CMSC 451: Max-Flow Extensions CMSC 51: Max-Flow Extensions Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Section 7.7 of Algorithm Design by Kleinberg & Tardos. Circulations with

More information

INTRODUCTION TO COMPUTER METHODS FOR O.D.E.

INTRODUCTION TO COMPUTER METHODS FOR O.D.E. INTRODUCTION TO COMPUTER METHODS FOR O.D.E. 0. Introduction. The goal of this handout is to introduce some of the ideas behind the basic computer algorithms to approximate solutions to differential equations.

More information

1.1 Motivation: Why study differential equations?

1.1 Motivation: Why study differential equations? Chapter 1 Introduction Contents 1.1 Motivation: Why stu differential equations?....... 1 1.2 Basics............................... 2 1.3 Growth and decay........................ 3 1.4 Introduction to Ordinary

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

! 1.1 Definitions and Terminology

! 1.1 Definitions and Terminology ! 1.1 Definitions and Terminology 1. Introduction: At times, mathematics aims to describe a physical phenomenon (take the population of bacteria in a petri dish for example). We want to find a function

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro September 19, 2014 1 / 55 Motivation

More information

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 28 PART II Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 29 BOUNDARY VALUE PROBLEMS (I) Solving a TWO

More information

Ordinary Differential Equations

Ordinary Differential Equations CHAPTER 8 Ordinary Differential Equations 8.1. Introduction My section 8.1 will cover the material in sections 8.1 and 8.2 in the book. Read the book sections on your own. I don t like the order of things

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Ordinary Differential Equations (ODEs) NRiC Chapter 16. ODEs involve derivatives wrt one independent variable, e.g. time t. ODEs can always be reduced to a set of firstorder equations (involving only first

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

Maths III - Numerical Methods

Maths III - Numerical Methods Maths III - Numerical Methods Matt Probert matt.probert@york.ac.uk 4 Solving Differential Equations 4.1 Introduction Many physical problems can be expressed as differential s, but solving them is not always

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera CURRENT ELECTRICITY Q # 1. What do you know about electric current? Ans. Electric Current The amount of electric charge that flows through a cross section of a conductor per unit time is known as electric

More information

Finite difference models: one dimension

Finite difference models: one dimension Chapter 6 Finite difference models: one dimension 6.1 overview Our goal in building numerical models is to represent differential equations in a computationally manageable way. A large class of numerical

More information

A first order divided difference

A first order divided difference A first order divided difference For a given function f (x) and two distinct points x 0 and x 1, define f [x 0, x 1 ] = f (x 1) f (x 0 ) x 1 x 0 This is called the first order divided difference of f (x).

More information

Multistep Methods for IVPs. t 0 < t < T

Multistep Methods for IVPs. t 0 < t < T Multistep Methods for IVPs We are still considering the IVP dy dt = f(t,y) t 0 < t < T y(t 0 ) = y 0 So far we have looked at Euler s method, which was a first order method and Runge Kutta (RK) methods

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Finite Difference Methods (FDMs) 1

Finite Difference Methods (FDMs) 1 Finite Difference Methods (FDMs) 1 1 st - order Approxima9on Recall Taylor series expansion: Forward difference: Backward difference: Central difference: 2 nd - order Approxima9on Forward difference: Backward

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Second-Order Linear ODEs (Textbook, Chap 2)

Second-Order Linear ODEs (Textbook, Chap 2) Second-Order Linear ODEs (Textbook, Chap ) Motivation Recall from notes, pp. 58-59, the second example of a DE that we introduced there. d φ 1 1 φ = φ 0 dx λ λ Q w ' (a1) This equation represents conservation

More information

Efficient solution of stationary Euler flows with critical points and shocks

Efficient solution of stationary Euler flows with critical points and shocks Efficient solution of stationary Euler flows with critical points and shocks Hans De Sterck Department of Applied Mathematics University of Waterloo 1. Introduction consider stationary solutions of hyperbolic

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions # (Section.4: The following functions are defined on an interval of length. Sketch the even and odd etensions of each function over the interval [, ]. (a f( =, f ( Even etension of

More information

Interpolation & Polynomial Approximation. Hermite Interpolation I

Interpolation & Polynomial Approximation. Hermite Interpolation I Interpolation & Polynomial Approximation Hermite Interpolation I Numerical Analysis (th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form.

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form. Lecture IX Abstract When solving PDEs it is often necessary to represent the solution in terms of a series of orthogonal functions. One way to obtain an orthogonal family of functions is by solving a particular

More information

SCORE BOOSTER JAMB PREPARATION SERIES II

SCORE BOOSTER JAMB PREPARATION SERIES II BOOST YOUR JAMB SCORE WITH PAST Polynomials QUESTIONS Part II ALGEBRA by H. O. Aliu J. K. Adewole, PhD (Editor) 1) If 9x 2 + 6xy + 4y 2 is a factor of 27x 3 8y 3, find the other factor. (UTME 2014) 3x

More information

Lecture 3: Growth Model, Dynamic Optimization in Continuous Time (Hamiltonians)

Lecture 3: Growth Model, Dynamic Optimization in Continuous Time (Hamiltonians) Lecture 3: Growth Model, Dynamic Optimization in Continuous Time (Hamiltonians) ECO 503: Macroeconomic Theory I Benjamin Moll Princeton University Fall 2014 1/16 Plan of Lecture Growth model in continuous

More information

Residual Force Equations

Residual Force Equations 3 Residual Force Equations NFEM Ch 3 Slide 1 Total Force Residual Equation Vector form r(u,λ) = 0 r = total force residual vector u = state vector with displacement DOF Λ = array of control parameters

More information

HANDOUT E.22 - EXAMPLES ON STABILITY ANALYSIS

HANDOUT E.22 - EXAMPLES ON STABILITY ANALYSIS Example 1 HANDOUT E. - EXAMPLES ON STABILITY ANALYSIS Determine the stability of the system whose characteristics equation given by 6 3 = s + s + 3s + s + s + s +. The above polynomial satisfies the necessary

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Part 4 Massimo Ricotti ricotti@astro.umd.edu University of Maryland Ordinary Differential Equations p. 1/23 Two-point Boundary Value Problems NRiC 17. BCs specified at two

More information

Chap. 3 Laplace Transforms and Applications

Chap. 3 Laplace Transforms and Applications Chap 3 Laplace Transforms and Applications LS 1 Basic Concepts Bilateral Laplace Transform: where is a complex variable Region of Convergence (ROC): The region of s for which the integral converges Transform

More information

Algebra 1. Predicting Patterns & Examining Experiments. Unit 5: Changing on a Plane Section 4: Try Without Angles

Algebra 1. Predicting Patterns & Examining Experiments. Unit 5: Changing on a Plane Section 4: Try Without Angles Section 4 Examines triangles in the coordinate plane, we will mention slope, but not angles (we will visit angles in Unit 6). Students will need to know the definition of collinear, isosceles, and congruent...

More information

Second Order Linear Equations

Second Order Linear Equations Second Order Linear Equations Linear Equations The most general linear ordinary differential equation of order two has the form, a t y t b t y t c t y t f t. 1 We call this a linear equation because the

More information

arxiv: v3 [math.na] 1 Jan 2015

arxiv: v3 [math.na] 1 Jan 2015 On Solving Pentadiagonal Linear Systems via Transformations arxiv:14094802v3 [mathna] 1 Jan 2015 A A KARAWIA Computer Science Unit Deanship of Educational Services Qassim University POBox 6595 Buraidah

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

551614:Advanced Mathematics for Mechatronics. Numerical solution for ODEs School of Mechanical Engineering

551614:Advanced Mathematics for Mechatronics. Numerical solution for ODEs School of Mechanical Engineering 551614:Advanced Mathematics for Mechatronics Numerical solution for ODEs School of Mechanical Engineering 1 Prescribed text : Numerical Method for Engineering, Seventh Edition, Steven C.Chapra, Raymond

More information

A Computational Approach to Study a Logistic Equation

A Computational Approach to Study a Logistic Equation Communications in MathematicalAnalysis Volume 1, Number 2, pp. 75 84, 2006 ISSN 0973-3841 2006 Research India Publications A Computational Approach to Study a Logistic Equation G. A. Afrouzi and S. Khademloo

More information

Statistical Analysis: The Vibrating Beam Example

Statistical Analysis: The Vibrating Beam Example : The Vibrating Beam Example. Surajit Ray Minjung Kyung Jiezhun (Sherry) Gu Ray SAMSI, June 2 2005 - slide #1 Our Goal Estimate σ 2 (the variance of the measurement error) Estimate the standard errors

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat 16 (2011) 2730 2736 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Homotopy analysis method

More information

CHAPTER 5. Higher Order Linear ODE'S

CHAPTER 5. Higher Order Linear ODE'S A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 2 A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY

More information

A First Course on Kinetics and Reaction Engineering Example 26.3

A First Course on Kinetics and Reaction Engineering Example 26.3 Example 26.3 unit. Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this Problem Statement A perfectly insulated tubular reactor with a diameter

More information

c2 2 x2. (1) t = c2 2 u, (2) 2 = 2 x x 2, (3)

c2 2 x2. (1) t = c2 2 u, (2) 2 = 2 x x 2, (3) ecture 13 The wave equation - final comments Sections 4.2-4.6 of text by Haberman u(x,t), In the previous lecture, we studied the so-called wave equation in one-dimension, i.e., for a function It was derived

More information

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb.

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb. umerical solutions of higher order ODE We can convert a high order ODE into a system of first order ODEs and then apply RK method to solve it. Stiff ODEs Stiffness is a special problem that can arise in

More information

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

An Introduction to Numerical Methods for Differential Equations. Janet Peterson An Introduction to Numerical Methods for Differential Equations Janet Peterson Fall 2015 2 Chapter 1 Introduction Differential equations arise in many disciplines such as engineering, mathematics, sciences

More information

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 26 (LU Factorization) May 30 th, 2013 The material in these lectures is partly taken from the books: Elementary Numerical Analysis,

More information

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms. Process Dynamics and Control Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

More information

Solving Ordinary Differential Equations

Solving Ordinary Differential Equations Solving Ordinary Differential Equations Sanzheng Qiao Department of Computing and Software McMaster University March, 2014 Outline 1 Initial Value Problem Euler s Method Runge-Kutta Methods Multistep Methods

More information

Computing DC operating points of non-linear circuits using homotopy methods

Computing DC operating points of non-linear circuits using homotopy methods ENSC 895: SPECIAL TOPICS: THEORY, ANALYSIS, AND SIMULATION OF NONLINEAR CIRCUITS Computing DC operating points of non-linear circuits using homotopy methods Spring 2004 Final Project Report Renju S. Narayanan

More information

Nonlinear Normal Modes of a Full-Scale Aircraft

Nonlinear Normal Modes of a Full-Scale Aircraft Nonlinear Normal Modes of a Full-Scale Aircraft M. Peeters Aerospace & Mechanical Engineering Dept. Structural Dynamics Research Group University of Liège, Belgium Nonlinear Modal Analysis: Motivation?

More information

Lecture 1: Overview, Hamiltonians and Phase Diagrams. ECO 521: Advanced Macroeconomics I. Benjamin Moll. Princeton University, Fall

Lecture 1: Overview, Hamiltonians and Phase Diagrams. ECO 521: Advanced Macroeconomics I. Benjamin Moll. Princeton University, Fall Lecture 1: Overview, Hamiltonians and Phase Diagrams ECO 521: Advanced Macroeconomics I Benjamin Moll Princeton University, Fall 2016 1 Course Overview Two Parts: (1) Substance: income and wealth distribution

More information

Numerical solution of ODEs

Numerical solution of ODEs Péter Nagy, Csaba Hős 2015. H-1111, Budapest, Műegyetem rkp. 3. D building. 3 rd floor Tel: 00 36 1 463 16 80 Fax: 00 36 1 463 30 91 www.hds.bme.hu Table of contents Homework Introduction to Matlab programming

More information

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics Fundamental Solutions and Green s functions Simulation Methods in Acoustics Definitions Fundamental solution The solution F (x, x 0 ) of the linear PDE L {F (x, x 0 )} = δ(x x 0 ) x R d Is called the fundamental

More information

Lecture 11: Fourier Cosine Series

Lecture 11: Fourier Cosine Series Introductory lecture notes on Partial Differential Equations - c Anthony Peirce Not to be copied, used, or revised without eplicit written permission from the copyright owner ecture : Fourier Cosine Series

More information

Final year project. Methods for solving differential equations

Final year project. Methods for solving differential equations Final year project Methods for solving differential equations Author: Tej Shah Supervisor: Dr. Milan Mihajlovic Date: 5 th May 2010 School of Computer Science: BSc. in Computer Science and Mathematics

More information