Commun Nonlinear Sci Numer Simulat

Size: px
Start display at page:

Download "Commun Nonlinear Sci Numer Simulat"

Transcription

1 Commun Nonlinear Sci Numer Simulat 16 (2011) Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: Homotopy analysis method applied to electrohydrodynamic flow Antonio Mastroberardino School of Science, Penn State Erie, The Behrend College, Erie, Pennsylvania , USA article info abstract Article history: Received 20 July 2010 Received in revised form 30 September 2010 Accepted 2 October 2010 Available online 25 October 2010 Keywords: Homotopy analysis method Electrohydrodynamic flow Nonlinear boundary value problem In this paper, we consider the nonlinear boundary value problem (BVP) for the electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit. We present analytical solutions based on the homotopy analysis method (HAM) for various values of the relevant parameters and discuss the convergence of these solutions. We also compare our results with numerical solutions. The results provide another example of a highly nonlinear problem in which HAM is the only known analytical method that yields convergent solutions for all values of the relevant parameters. Ó 2010 Elsevier B.V. All rights reserved. 1. Introduction The electrohydrodynamic flow of a fluid in an ion drag configuration in a circular cylindrical conduit was first reviewed by McKee [1]. In that article, a full description of the problem was presented in which the governing equations were reduced to the nonlinear boundary value problem (BVP) d 2 w dr þ 1 2 r dw dr þ H2 1 w ¼ 0; 0 < r < 1; ð1:1þ 1 aw subject to the boundary conditions w 0 ð0þ ¼0; wð1þ ¼0; ð1:2þ ð1:3þ where w(r) is the fluid velocity, r is the radial distance from the center of the cylindrical conduit, H is the Hartmann electric number, and the parameter a is a measure of the strength of the nonlinearity. Perturbative and numerical solutions to (1.1) (1.3) for small/large values of a were provided. Paullet [2] proved the existence and uniqueness of a solution to (1.1) (1.3), and in addition, discovered an error in the perturbative and numerical solutions given in [1] for large values of a. The purpose of this present work is to present accurate analytical solutions to (1.1) (1.3) for all values of the relevant parameters using the homotopy analysis method (HAM), introduced by Liao [3 6]. We show that the analytical solutions are in excellent agreement with numerical solutions obtained with MATLAB. We also show that the homotopy perturbation method (HPM) yields divergent solutions for all of the cases considered. This is further illustration of the utility of HAM in comparison with other analytical methods used to solve highly nonlinear differential equations. We refer the reader to [7 14] for enlightening comparisons between HAM and HPM. Tel.: ; fax: address: axm62@psu.edu /$ - see front matter Ó 2010 Elsevier B.V. All rights reserved. doi: /j.cnsns

2 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) HAM is a nonperturbative analytical method for obtaining series solutions to nonlinear equations and has been successfully applied to numerous problems in science and engineering [15 22]. In comparison with other perturbative and nonperturbative analytical methods, HAM offers the ability to adjust and control the convergence of a solution via the so-called convergence-control parameter. Because of this, HAM has proved to be the most effective method for obtaining analytical solutions to highly nonlinear differential equations. Previous applications of HAM have mainly focused on nonlinear differential equations in which the nonlinearity is a polynomial in terms of the unknown function and its derivatives. As seen in (1.1), the nonlinearity present in electrohydrodynamic flow takes the form of a rational function, and thus, poses a greater challenge with respect to finding approximate solutions analytically. Our results show that even in this case, HAM yields excellent results. 2. Homotopy analysis method In this section, we apply HAM to solve (1.1) (1.3) for the fluid velocity w(r). We choose the initial guess to be w 0 ðrþ ¼0; which satisfies the boundary conditions in (1.2) and (1.3). Since the domain of the unknown function is bounded, it is appropriate to choose the linear operator to be [23] Lðf Þ¼f 00 ; with the property L½c 1 r þ c 2 Š¼0; where c 1 and c 2 are constants of integration. The zeroth-order deformation equation is ð1 pþl½ ^wðr; pþ w 0 ðrþš ¼ phn½^wðr; pþš; with the boundary conditions ^w ð0; pþ ¼0 and ^wð1; pþ ¼0; N½^wðr; pþš ¼ ð1 a 2 2 þ 1 ^w þ H 2 ð1 Here p 2 [0,1] is an embedding parameter, and h is the convergence-control parameter. Note that for p = 0 and p = 1 we have ^wðr; 0Þ ¼w 0 ðrþ and ^wðr; 1Þ ¼wðrÞ: ð2:10þ Thus as p increases from 0 to 1, ^wðr; pþ varies from the initial guess w 0 (r) to the desired solution w(r). Expanding ^wðr; pþ in a Taylor series with respect to p yields ð2:4þ ð2:5þ ð2:6þ ð2:7þ ð2:9þ ^wðr; pþ ¼w 0 ðrþþ X1 w m ðrþp m ; m¼1 where w m ðrþ ¼ m ^wðr; pþ m : p¼0 ð2:11þ ð2:12þ If the auxiliary linear operator, the initial guess, and the convergence-control parameter h are properly chosen, the series in (2.11) converges at p = 1, yielding the homotopy-series solution wðrþ ¼w 0 ðrþþ X1 m¼1 w m ðrþ; to (1.1) (1.3). Differentiating (2.7) m times with respect to the embedding parameter p, dividing by m!, and then setting p = 0, we obtain the mth-order deformation equation ð2:13þ L½w m ðrþ v m w m 1 ðrþš ¼ hr m ð~w m 1 Þ; ð2:14þ where R m ð~w m 1 Þ¼w 00 m 1 þ 1 r w0 m 1 þ H2 ½1 v m ð1þaþw m 1 Š a Xm 1 w i w 00 m 1 i a r i¼1 X m 1 i¼1 w i w 0 m 1 i ; ð2:15þ

3 2732 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) and 0; if m 6 1; v m ¼ 1; if m > 1; ð2:16þ subject to the boundary conditions w 0 m ð0þ ¼0; w mð1þ ¼0: ð2:17þ The general solution to (2.14) is w m ðrþ ¼w ] m ðrþþc 1r þ c 2 ; ð2:18þ where w ] mðrþ is the particular solution. The constants c 1 and c 2 are determined by the boundary conditions in (2.17) and are given by c 1 ¼ 0; c 2 ¼ w ] mð1þ: ð2:19þ Starting with the initial guess in (2.4), w m (r) for m P 1 are obtained iteratively by solving (2.14) and (2.17) with symbolic computational software. This procedure is terminated after a fixed number iterations N to yield the approximate analytical solution wðrþ ~w N ðrþ ¼ XN m¼0 w m ðrþ; to (1.1) (1.3). To facilitate the analysis in the next section, we substitute (2.20) into (1.1) to obtain the residual function RðrÞ ¼ d2 ~w N dr þ 1 d ~w N 2 r dr þ ~w N H2 1 : ð2:21þ 1 a ~w N We also define the square residual error [24] for the Nth order approximation to be ð2:20þ E N ðhþ ¼ Z 1 0 ½RðrÞŠ 2 dr: ð2:22þ 3. Convergence of the HAM solution In this section, we discuss the convergence of the HAM solution in (2.20) for N = 20. The convergence depends on the convergence-control parameter h, and so, we plot h-curves for w(0) in Fig. 1. As discussed in [3], the interval of convergence is determined by the flat portion of the h-curve. It is clear from Fig. 1 that the admissible values of h are contained in [ 0.7,0] for all of the cases considered and that as H 2 increases, this interval shrinks due to the increase in nonlinearity. Since h = 1is not contained in the interval of convergence, solutions obtained with HPM-a special case of HAM in which h = 1 [7] are divergent. To determine the optimal values of h, we minimize the square residual error given in (2.22). As discussed in [24], computing E N (h) directly with symbolic computational software is impractical. Thus, we approximate (2.22) using Gaussian Fig. 1. h-curves for the 20th order approximation for a = 0.5, 1.

4 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) Fig. 2. Square residual error for the 20th order approximation for a = 0.5, 1. quadrature with eight nodes and plot these approximations in Fig. 2. The optimal values of h for all of the cases considered are obtained by minimizing (2.22) using the Mathematica function Minimize and are given in Table 1. In addition, we plot the residual function R(r) in Figs. 3 6 for all of the cases considered. These plots demonstrate the accuracy of the HAM solution given in (2.20). It is worth noting the residual has been plotted as a function of r for a fixed value of h and not as a function of h for a fixed value of r as this is a better illustration of convergence. 4. Comparison with numerical solutions Here we solve (1.1) (1.3) numerically and compare with the analytical solutions obtained in the previous section for specific values of h. We first convert (1.1) (1.3) to an initial value problem for a two-dimensional first order system and use a shooting method in order to satisfy the right boundary condition in (1.3). To handle the singularity at r = 0, the numerical method involves a combination of Euler s implicit method for the first step of Dr = 0.05 and MATLAB s differential equation solver ode45 for the remainder of the interval. Fig. 7(a) and (b) demonstrate that the analytical solutions for various values of the relevant parameters compare extremely well with the numerical solutions. For all of the cases considered, the maximum difference between the analytical solution and the numerical solution was determined to be less than Table 1 The optimal values of h. a H 2 Optimal value of h Minimum value of E N Fig. 3. The residual of the 20th order approximation for H 2 = 0.5.

5 2734 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) Fig. 4. The residual of the 20th order approximation for H 2 =1. Fig. 5. The residual of the 20th order approximation for H 2 =2. Fig. 6. The residual of the 20th order approximation for H 2 =4. 5. Conclusions In this paper, the homotopy analysis method (HAM) has been applied to obtain analytical solutions for a nonlinear boundary value problem governing electrohydrodynamic flow. It has been noted that the nonlinearity confronted in this problem is in the form of a rational function, and thus, poses a significant challenge in regard to obtaining analytical solutions. Despite this fact, we have shown that the solutions obtained are convergent and that they compare extremely well with numerical solutions. It has also been shown that the homotopy perturbation method yields divergent solutions for all of the cases considered. These results demonstrate that HAM is a very effective analytical method for solving highly nonlinear problems in science and engineering.

6 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) (a) (b) Fig. 7. Comparison of 20th order HAM solution (solid line) and numerical solution for (a) a = 0.5 and (b) a =1. Acknowledgment The author thanks the referee for helpful suggestions that improved the content of the paper. References [1] McKee S. Calculation of electrohydrodynamic flow in a circular cylindrical conduit. Z Angew Math Mech 1997;77: [2] Paullet JE. On the solutions of electrohydrodynamic flow in a circular cylindrical conduit. Z Angew Math Mech 1999;79: [3] Liao SJ. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton, FL: Chapman & Hall-CRC Press; 2003.

7 2736 A. Mastroberardino / Commun Nonlinear Sci Numer Simulat 16 (2011) [4] Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004;147: [5] Liao SJ, Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud Appl Math 2007;119: [6] Liao SJ. Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 2009;14: [7] Liao SJ. Comparision between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 2005;169: [8] Abbasbandy S. The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006;360: [9] Hayat T, Sajid M. On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys Lett A 2007;361: [10] Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-newtonian fluids on a moving belt. Nonlinear Dyn 2007;50: [11] Sajid M, Hayat T. The application of homotopy analysis method to thin film flows of a third order fluid. Chaos Solitons Fractals 2008;38: [12] Sajid M, Hayat T. Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Anal Real World Appl 2008;9: [13] Sajid M, Hayat T. Comparison of HAM and HPM solutions in heat radiation equations. Int Commun Heat Mass Transfer 2009;36: [14] Liang S, Jeffrey DJ. Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Commun Nonlinear Sci Numer Simul 2010;15: [15] Liao SJ. An explicit totally analytic approximation of Blasius viscous flow problems. Int J Nonlinear Mech 1999;34: [16] Liao SJ. On the analytic solution of magnetohydrodynamic flows non-newtonian fluids over a stretching sheet. J Fluid Mech 2003;488: [17] Liao SJ. A new branch of boundary layer flows over a permeable stretching plate. Int J Nonlinear Mech 2007;42: [18] Tan Y, Xu H, Liao SJ. Explicit series solution of travelling waves with a front of Fisher equation. Chaos Solitons Fractals 2007;31: [19] Abbasbandy S. Soliton solutions for the FitzhughNagumo equation with the homotopy analysis method. Appl Math Model 2008;32: [20] Cheng J, Liao SJ, Mohapatra RN, Vajravelu K. Series solutions of nano boundary layer flows by means of the homotopy analysis method. J Math Anal Appl 2008;343: [21] Hayat T, Abbas Z. Heat transfer analysis on MHD flow of a second grade fluid in a channel with porous medium. Chaos Solitons Fractals 2008;38: [22] Hayat T, Naz R, Sajid M. On the homotopy solution for Poiseuille flow of a fourth grade fluid. Commun Nonlinear Sci Numer Simul 2010;15: [23] Van Gorder RA, Vajravelu K. On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach. Commun Nonlinear Sci Numer Simul 2009;14: [24] Liao SJ. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 2010;15:

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article

Journal of Engineering Science and Technology Review 2 (1) (2009) Research Article Journal of Engineering Science and Technology Review 2 (1) (2009) 118-122 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Thin film flow of non-newtonian fluids on a

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat xxx (2009) xxx xxx Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns A one-step optimal homotopy

More information

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation

Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation Songxin Liang, David J. Jeffrey Department of Applied Mathematics, University of Western Ontario, London,

More information

Newton-homotopy analysis method for nonlinear equations

Newton-homotopy analysis method for nonlinear equations Applied Mathematics and Computation 188 (2007) 1794 1800 www.elsevier.com/locate/amc Newton-homotopy analysis method for nonlinear equations S. Abbasbandy a, *, Y. Tan b, S.J. Liao b a Department of Mathematics,

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat xxx (9) xxx xxx Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Short communication Simple

More information

International Journal of Modern Mathematical Sciences, 2012, 3(2): International Journal of Modern Mathematical Sciences

International Journal of Modern Mathematical Sciences, 2012, 3(2): International Journal of Modern Mathematical Sciences Article International Journal of Modern Mathematical Sciences 2012 3(2): 63-76 International Journal of Modern Mathematical Sciences Journal homepage:wwwmodernscientificpresscom/journals/ijmmsaspx On Goursat

More information

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations

Homotopy Analysis Transform Method for Time-fractional Schrödinger Equations International Journal of Modern Mathematical Sciences, 2013, 7(1): 26-40 International Journal of Modern Mathematical Sciences Journal homepage:wwwmodernscientificpresscom/journals/ijmmsaspx ISSN:2166-286X

More information

An Analytical Scheme for Multi-order Fractional Differential Equations

An Analytical Scheme for Multi-order Fractional Differential Equations Tamsui Oxford Journal of Mathematical Sciences 26(3) (2010) 305-320 Aletheia University An Analytical Scheme for Multi-order Fractional Differential Equations H. M. Jaradat Al Al Bayt University, Jordan

More information

Improving homotopy analysis method for system of nonlinear algebraic equations

Improving homotopy analysis method for system of nonlinear algebraic equations Journal of Advanced Research in Applied Mathematics Vol., Issue. 4, 010, pp. -30 Online ISSN: 194-9649 Improving homotopy analysis method for system of nonlinear algebraic equations M.M. Hosseini, S.M.

More information

Research Article On a New Reliable Algorithm

Research Article On a New Reliable Algorithm Hindawi Publishing Corporation International Journal of Differential Equations Volume 2009, Article ID 710250, 13 pages doi:10.1155/2009/710250 Research Article On a New Reliable Algorithm A. K. Alomari,

More information

Example 2: a system of coupled ODEs with algebraic property at infinity

Example 2: a system of coupled ODEs with algebraic property at infinity Example 2: a system of coupled ODEs with algebraic property at infinity Consider a set of two coupled nonlinear differential equations 5 subject to f (η) + θ(η) f 2 = 0, (10) θ (η) = 3σf (η)θ(η), (11)

More information

Homotopy Analysis Method to Water Quality. Model in a Uniform Channel

Homotopy Analysis Method to Water Quality. Model in a Uniform Channel Applied Mathematical Sciences, Vol. 7, 201, no. 22, 1057-1066 HIKARI Ltd, www.m-hikari.com Homotopy Analysis Method to Water Quality Model in a Uniform Channel S. Padma Department of Mathematics School

More information

Series solutions of non-linear Riccati differential equations with fractional order

Series solutions of non-linear Riccati differential equations with fractional order Available online at www.sciencedirect.com Chaos, Solitons and Fractals 40 (2009) 1 9 www.elsevier.com/locate/chaos Series solutions of non-linear Riccati differential equations with fractional order Jie

More information

APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD

APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD APPROXIMATING THE FORTH ORDER STRUM-LIOUVILLE EIGENVALUE PROBLEMS BY HOMOTOPY ANALYSIS METHOD * Nader Rafatimaleki Department of Mathematics, College of Science, Islamic Azad University, Tabriz Branch,

More information

Improving convergence of incremental harmonic balance method using homotopy analysis method

Improving convergence of incremental harmonic balance method using homotopy analysis method Acta Mech Sin (2009) 25:707 712 DOI 10.1007/s10409-009-0256-4 RESEARCH PAPER Improving convergence of incremental harmonic balance method using homotopy analysis method Yanmao Chen Jike Liu Received: 10

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat 14 (2009) 3833 3843 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns Homotopy analysis solution

More information

Approximate Analytical Solutions of Two. Dimensional Transient Heat Conduction Equations

Approximate Analytical Solutions of Two. Dimensional Transient Heat Conduction Equations Applied Mathematical Sciences Vol. 6 2012 no. 71 3507-3518 Approximate Analytical Solutions of Two Dimensional Transient Heat Conduction Equations M. Mahalakshmi Department of Mathematics School of Humanities

More information

An analytic approach to solve multiple solutions of a strongly nonlinear problem

An analytic approach to solve multiple solutions of a strongly nonlinear problem Applied Mathematics and Computation 169 (2005) 854 865 www.elsevier.com/locate/amc An analytic approach to solve multiple solutions of a strongly nonlinear problem Shuicai Li, Shi-Jun Liao * School of

More information

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM

Analytical solution for determination the control parameter in the inverse parabolic equation using HAM Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017, pp. 1072 1087 Applications and Applied Mathematics: An International Journal (AAM Analytical solution

More information

On the convergence of the homotopy analysis method to solve the system of partial differential equations

On the convergence of the homotopy analysis method to solve the system of partial differential equations Journal of Linear and Topological Algebra Vol. 04, No. 0, 015, 87-100 On the convergence of the homotopy analysis method to solve the system of partial differential equations A. Fallahzadeh a, M. A. Fariborzi

More information

A Numerical Study of One-Dimensional Hyperbolic Telegraph Equation

A Numerical Study of One-Dimensional Hyperbolic Telegraph Equation Journal of Mathematics and System Science 7 (2017) 62-72 doi: 10.17265/2159-5291/2017.02.003 D DAVID PUBLISHING A Numerical Study of One-Dimensional Hyperbolic Telegraph Equation Shaheed N. Huseen Thi-Qar

More information

A new method for homoclinic solutions of ordinary differential equations

A new method for homoclinic solutions of ordinary differential equations Chaos, Solitons and Fractals xxx (2007) xxx xxx www.elsevier.com/locate/chaos A new method for homoclinic solutions of ordinary differential equations F. Talay Akyildiz a, K. Vajravelu b, *, S.-J. Liao

More information

Analytical solution for nonlinear Gas Dynamic equation by Homotopy Analysis Method

Analytical solution for nonlinear Gas Dynamic equation by Homotopy Analysis Method Available at http://pvau.edu/aa Appl. Appl. Math. ISSN: 932-9466 Vol. 4, Issue (June 29) pp. 49 54 (Previously, Vol. 4, No. ) Applications and Applied Matheatics: An International Journal (AAM) Analytical

More information

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(21) No.4,pp.414-421 Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy

More information

SOLUTION TO BERMAN S MODEL OF VISCOUS FLOW IN POROUS CHANNEL BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD

SOLUTION TO BERMAN S MODEL OF VISCOUS FLOW IN POROUS CHANNEL BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD SOLUTION TO BERMAN S MODEL OF VISCOUS FLOW IN POROUS CHANNEL BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD Murad Ullah Khan 1*, S. Zuhra 2, M. Alam 3, R. Nawaz 4 ABSTRACT Berman developed the fourth-order nonlinear

More information

Basic Ideas and Brief History of the Homotopy Analysis Method

Basic Ideas and Brief History of the Homotopy Analysis Method 1 Basic Ideas and Brief History of the Homotopy Analysis Method 1 Introduction Nonlinear equations are much more difficult to solve than linear ones, especially by means of analytic methods. In general,

More information

The Series Solution of Problems in the Calculus of Variations via the Homotopy Analysis Method

The Series Solution of Problems in the Calculus of Variations via the Homotopy Analysis Method The Series Solution of Problems in the Calculus of Variations via the Homotopy Analysis Method Saeid Abbasbandy and Ahmand Shirzadi Department of Mathematics, Imam Khomeini International University, Ghazvin,

More information

Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations

Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations Appl. Math. Inf. Sci. 7, No. 5, 1951-1956 (013) 1951 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.1785/amis/070533 Approximate Analytical Solution to Time-Fractional

More information

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS Hossein Jafari & M. A. Firoozjaee Young Researchers club, Islamic Azad University, Jouybar Branch, Jouybar, Iran

More information

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (21), 89 98 HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS Hossein Jafari and M. A. Firoozjaee Abstract.

More information

(Received 1 February 2012, accepted 29 June 2012) address: kamyar (K. Hosseini)

(Received 1 February 2012, accepted 29 June 2012)  address: kamyar (K. Hosseini) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.14(2012) No.2,pp.201-210 Homotopy Analysis Method for a Fin with Temperature Dependent Internal Heat Generation

More information

Research Article Series Solution of the Multispecies Lotka-Volterra Equations by Means of the Homotopy Analysis Method

Research Article Series Solution of the Multispecies Lotka-Volterra Equations by Means of the Homotopy Analysis Method Hindawi Publishing Corporation Differential Equations and Nonlinear Mechanics Volume 28, Article ID 816787, 14 pages doi:1.1155/28/816787 Research Article Series Solution of the Multispecies Lotka-Volterra

More information

Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface

Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface Applied Mathematics Volume 01, Article ID 13185, 9 pages doi:10.1155/01/13185 Research Article Analytic Solution for MHD Falkner-Skan Flow over a Porous Surface Fatheah A. Hendi 1 and Majid Hussain 1 Department

More information

AN AUTOMATIC SCHEME ON THE HOMOTOPY ANALYSIS METHOD FOR SOLVING NONLINEAR ALGEBRAIC EQUATIONS. Safwan Al-Shara

AN AUTOMATIC SCHEME ON THE HOMOTOPY ANALYSIS METHOD FOR SOLVING NONLINEAR ALGEBRAIC EQUATIONS. Safwan Al-Shara italian journal of pure and applied mathematics n. 37 2017 (5 14) 5 AN AUTOMATIC SCHEME ON THE HOMOTOPY ANALYSIS METHOD FOR SOLVING NONLINEAR ALGEBRAIC EQUATIONS Safwan Al-Shara Department of Mathematics

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 7, August 2014 HOMOTOPY ANALYSIS TO THERMAL RADIATION EFFECTS ON HEAT TRANSFER OF WALTERS LIQUID-B FLOW OVER A STRETCHING SHEET FOR LARGE PRANDTL NUMBERS HYMAVATHI TALLA* P.VIJAY KUMAR** V.MALLIPRIYA*** *Dept. of Mathematics,

More information

An Effective Approach for solving MHD Viscous Flow Due to A Shrinking Sheet

An Effective Approach for solving MHD Viscous Flow Due to A Shrinking Sheet Appl. Math. Inf. Sci. 10, No. 4, 145-143 (016) 145 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/10041 An Effective Approach for solving MHD Viscous

More information

An explicit solution of the large deformation of a cantilever beam under point load at the free tip

An explicit solution of the large deformation of a cantilever beam under point load at the free tip Journal of Computational and Applied Mathematics 212 (2008) 320 330 www.elsevier.com/locate/cam An explicit solution of the large deformation of a cantilever beam under point load at the free tip Ji Wang

More information

Analytic solution of fractional integro-differential equations

Analytic solution of fractional integro-differential equations Annals of the University of Craiova, Mathematics and Computer Science Series Volume 38(1), 211, Pages 1 1 ISSN: 1223-6934 Analytic solution of fractional integro-differential equations Fadi Awawdeh, E.A.

More information

CONSTRUCTION OF SOLITON SOLUTION TO THE KADOMTSEV-PETVIASHVILI-II EQUATION USING HOMOTOPY ANALYSIS METHOD

CONSTRUCTION OF SOLITON SOLUTION TO THE KADOMTSEV-PETVIASHVILI-II EQUATION USING HOMOTOPY ANALYSIS METHOD (c) Romanian RRP 65(No. Reports in 1) Physics, 76 83Vol. 2013 65, No. 1, P. 76 83, 2013 CONSTRUCTION OF SOLITON SOLUTION TO THE KADOMTSEV-PETVIASHVILI-II EQUATION USING HOMOTOPY ANALYSIS METHOD A. JAFARIAN

More information

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate

Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate Physics Letters A 37 007) 33 38 www.elsevier.com/locate/pla Application of He s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate M. Esmaeilpour, D.D. Ganji

More information

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013)

V. G. Gupta 1, Pramod Kumar 2. (Received 2 April 2012, accepted 10 March 2013) ISSN 749-3889 (print, 749-3897 (online International Journal of Nonlinear Science Vol.9(205 No.2,pp.3-20 Approimate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy

More information

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field

Boundary Layer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with Variable Magnetic Field International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 78 088 Volume 4, Issue 6, June 05 67 Boundary ayer Flow and Heat Transfer due to an Exponentially Shrinking Sheet with

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat 15 (21) 3965 3973 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns A similarity solution in

More information

Riyadh 11451, Saudi Arabia. ( a b,c Abstract

Riyadh 11451, Saudi Arabia. ( a b,c Abstract Effects of internal heat generation, thermal radiation, and buoyancy force on boundary layer over a vertical plate with a convective boundary condition a Olanrewaju, P. O., a Gbadeyan, J.A. and b,c Hayat

More information

Study of Couette and Poiseuille flows of an Unsteady MHD Third Grade Fluid

Study of Couette and Poiseuille flows of an Unsteady MHD Third Grade Fluid J. Appl. Environ. Biol. Sci., 4(10)12-21, 2014 2014, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com Study of Couette and Poiseuille flows

More information

Homotopy Analysis Method for Nonlinear Jaulent-Miodek Equation

Homotopy Analysis Method for Nonlinear Jaulent-Miodek Equation ISSN 746-7659, England, UK Journal of Inforation and Coputing Science Vol. 5, No.,, pp. 8-88 Hootopy Analysis Method for Nonlinear Jaulent-Miodek Equation J. Biazar, M. Eslai Departent of Matheatics, Faculty

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat 6 (2) 63 75 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns The scaled boundary FEM for nonlinear

More information

Boundary layer flow of nanofluid over an exponentially stretching surface

Boundary layer flow of nanofluid over an exponentially stretching surface NANO IDEA Boundary layer flow of nanofluid over an exponentially stretching surface Sohail Nadeem 1* and Changhoon Lee 2 Open Access Abstract The steady boundary layer flow of nanofluid over an exponential

More information

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD

ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD ACTA UNIVERSITATIS APULENSIS No 18/2009 NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS BY USING MODIFIED HOMOTOPY PERTURBATION METHOD Arif Rafiq and Amna Javeria Abstract In this paper, we establish

More information

ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS

ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS (c) Romanian RRP 66(No. Reports in 2) Physics, 296 306 Vol. 2014 66, No. 2, P. 296 306, 2014 ANALYTICAL APPROXIMATE SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATIONS A. JAFARIAN 1, P. GHADERI 2, ALIREZA K.

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

arxiv: v1 [math.ap] 21 Apr 2016

arxiv: v1 [math.ap] 21 Apr 2016 arxiv:164.6711v1 [math.ap] 21 Apr 216 Analytic Solutions of Von Kármán Plate under Arbitrary Uniform Pressure Part (II): Equations in Integral Form Xiaoxu Zhong 3, Shijun Liao 1,2,3 1 State Key Laboratory

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat (9) Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns On the use of homotopy analysis method

More information

Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet

Boundary Layer Stagnation-Point Flow of Micropolar Fluid over an Exponentially Stretching Sheet International Journal of Fluid Mechanics & Thermal Sciences 2017; 3(3): 25-31 http://www.sciencepublishinggroup.com/j/ijfmts doi: 10.11648/j.ijfmts.20170303.11 ISSN: 2469-8105 (Print); ISSN: 2469-8113

More information

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE

THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE THE UNSTEADY FREE CONVECTION FLOW OF ROTATING MHD SECOND GRADE FLUID IN POROUS MEDIUM WITH EFFECT OF RAMPED WALL TEMPERATURE 1 AHMAD QUSHAIRI MOHAMAD, ILYAS KHAN, 3 ZULKHIBRI ISMAIL AND 4* SHARIDAN SHAFIE

More information

Explicit Analytic Solution for an. Axisymmetric Stagnation Flow and. Heat Transfer on a Moving Plate

Explicit Analytic Solution for an. Axisymmetric Stagnation Flow and. Heat Transfer on a Moving Plate Int. J. Contep. Math. Sciences, Vol. 5,, no. 5, 699-7 Explicit Analytic Solution for an Axisyetric Stagnation Flow and Heat Transfer on a Moving Plate Haed Shahohaadi Mechanical Engineering Departent,

More information

Chaos, Solitons and Fractals

Chaos, Solitons and Fractals Chaos, Solitons and Fractals 42 (2009) 3047 3052 Contents lists available at ScienceDirect Chaos, Solitons and Fractals journal homepage: www.elsevier.com/locate/chaos Solutions of the SIR models of epidemics

More information

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM

UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM THERMAL SCIENCE, Year 2016, No. 5, pp. 875-887 875 UNSTEADY MAGNETOHYDRODYNAMICS THIN FILM FLOW OF A THIRD GRADE FLUID OVER AN OSCILLATING INCLINED BELT EMBEDDED IN A POROUS MEDIUM by Fazal GHANI a, Taza

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat 15 (2010) 2003 2016 Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: www.elsevier.com/locate/cnsns An optimal homotopy-analysis

More information

MAGNETOHYDRODYNAMIC FLOW OF POWELL-EYRING FLUID BY A STRETCHING CYLINDER WITH NEWTONIAN HEATING

MAGNETOHYDRODYNAMIC FLOW OF POWELL-EYRING FLUID BY A STRETCHING CYLINDER WITH NEWTONIAN HEATING THERMAL SCIENCE: Year 2018, Vol. 22, No. 1B, pp. 371-382 371 MAGNETOHYDRODYNAMIC FLOW OF POWELL-EYRING FLUID BY A STRETCHING CYLINDER WITH NEWTONIAN HEATING by Tasawar HAYAT a,b, Zakir HUSSAIN a*, Muhammad

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 58 (29) 27 26 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Study on

More information

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Unsteady Hydromagnetic Couette Flow within a Porous Channel Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 7 14 (2011) 7 Unsteady Hydromagnetic Couette Flow within a Porous Channel G. S. Seth*, Md. S. Ansari and R. Nandkeolyar Department of Applied

More information

MELTING HEAT TRANSFER IN THE STAGNATION-POINT FLOW OF THIRD GRADE FLUID PAST A STRETCHING SHEET WITH VISCOUS DISSIPATION

MELTING HEAT TRANSFER IN THE STAGNATION-POINT FLOW OF THIRD GRADE FLUID PAST A STRETCHING SHEET WITH VISCOUS DISSIPATION THERMAL SCIENCE: Year 0, Vol. 7, No., pp. 865-875 865 MELTING HEAT TRANSFER IN THE STAGNATION-POINT FLOW OF THIRD GRADE FLUID PAST A STRETCHING SHEET WITH VISCOUS DISSIPATION by Tasawar HAYAT a, b, Zahid

More information

Research Article Effects of Thermocapillarity and Thermal Radiation on Flow and Heat Transfer in a Thin Liquid Film on an Unsteady Stretching Sheet

Research Article Effects of Thermocapillarity and Thermal Radiation on Flow and Heat Transfer in a Thin Liquid Film on an Unsteady Stretching Sheet Mathematical Problems in Engineering Volume 22, Article ID 2732, 4 pages doi:.55/22/2732 Research Article Effects of Thermocapillarity and Thermal Radiation on Flow and Heat Transfer in a Thin Liquid Film

More information

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH International Journal of Pure and Applied Mathematics Volume 98 No. 4 2015, 491-502 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v98i4.8

More information

Flow of a Weakly Conducting Fluid in a Channel Filled with a Darcy Brinkman Forchheimer Porous Medium

Flow of a Weakly Conducting Fluid in a Channel Filled with a Darcy Brinkman Forchheimer Porous Medium Transp Porous Med 2010) 85:131 142 DOI 10.1007/s11242-010-9550-7 Flow of a Weakly Conducting Fluid in a Channel Filled with a rcy Brinkman Forchheimer Porous Medium B. Q. Zhao A. Pantokratoras T. G. Fang

More information

Research Article The One Step Optimal Homotopy Analysis Method to Circular Porous Slider

Research Article The One Step Optimal Homotopy Analysis Method to Circular Porous Slider Mathematical Problems in Engineering Volume 2012, Article ID 135472, 14 pages doi:10.1155/2012/135472 Research Article The One Step Optimal Homotopy Analysis Method to Circular Porous Slider Mohammad Ghoreishi,

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Dynamics of four coupled phase-only oscillators

Dynamics of four coupled phase-only oscillators Communications in Nonlinear Science and Numerical Simulation 13 (2008) 501 507 www.elsevier.com/locate/cnsns Short communication Dynamics of four coupled phase-only oscillators Richard Rand *, Jeffrey

More information

Periodic wave solution of a second order nonlinear ordinary differential equation by Homotopy analysis method

Periodic wave solution of a second order nonlinear ordinary differential equation by Homotopy analysis method Periodic wave solution of a second order nonlinear ordinary differential equation by Homotopy analysis method Author Song, Hao, Tao, L. Published 2010 Journal Title ANZIAM Journal Copyright Statement 2010

More information

Homotopy Perturbation Method for Solving MHD Nanofluid Flow with Heat and Mass Transfer Considering Chemical Reaction Effect

Homotopy Perturbation Method for Solving MHD Nanofluid Flow with Heat and Mass Transfer Considering Chemical Reaction Effect Current Science International Volume : 06 Issue : 01 Jan.- Mar. 2017 Pages: 12-22 Homotopy Perturbation Method for Solving MHD Nanofluid Flow with Heat and Mass Transfer Considering Chemical Reaction Effect

More information

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method

Numerical Solution of 12 th Order Boundary Value Problems by Using Homotopy Perturbation Method ohamed I. A. Othman, A.. S. ahdy and R.. Farouk / TJCS Vol. No. () 4-7 The Journal of athematics and Computer Science Available online at http://www.tjcs.com Journal of athematics and Computer Science

More information

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation

Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation DOI 10.1186/s40064-016-2655-x RESEARCH Open Access Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation Shimaa E. Waheed 1,2* *Correspondence:

More information

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders Yin-Ping Liu and Zhi-Bin Li Department of Computer Science, East China Normal University, Shanghai, 200062, China Reprint

More information

American Academic & Scholarly Research Journal Special Issue - January 2012

American Academic & Scholarly Research Journal Special Issue - January 2012 Proceeding of 2 nd International Conference on Mathematics and Information Sciences, 9-13 Nov. 2011, Sohag, Egypt American Academic & Scholarly Research Journal Special Issue - January 2012 Heat and mass

More information

Homotopy perturbation method for solving hyperbolic partial differential equations

Homotopy perturbation method for solving hyperbolic partial differential equations Computers and Mathematics with Applications 56 2008) 453 458 wwwelseviercom/locate/camwa Homotopy perturbation method for solving hyperbolic partial differential equations J Biazar a,, H Ghazvini a,b a

More information

Application of Homotopy Perturbation Method (HPM) for Nonlinear Heat Conduction Equation in Cylindrical Coordinates

Application of Homotopy Perturbation Method (HPM) for Nonlinear Heat Conduction Equation in Cylindrical Coordinates Application of Homotopy Perturbation Method (HPM) for Nonlinear Heat Conduction Equation in Cylindrical Coordinates Milad Boostani * - Sadra Azizi - Hajir Karimi Department of Chemical Engineering, Yasouj

More information

Flow of a micropolar fluid in channel with heat and mass transfer

Flow of a micropolar fluid in channel with heat and mass transfer Flow of a micropolar fluid in channel with heat and mass transfer PRECIOUS SIBANDA and FAIZ GA AWAD University of KwaZulu-Natal School of Mathematical Sciences Private Bag X, Scottsville Pietermaritzburg

More information

MEAN SQUARE SOLUTIONS OF SECOND-ORDER RANDOM DIFFERENTIAL EQUATIONS BY USING HOMOTOPY ANALYSIS METHOD

MEAN SQUARE SOLUTIONS OF SECOND-ORDER RANDOM DIFFERENTIAL EQUATIONS BY USING HOMOTOPY ANALYSIS METHOD (c) Romanian RRP 65(No. Reports in 2) Physics, 350 362 Vol. 2013 65, No. 2, P. 350 362, 2013 MEAN SQUARE SOLUTIONS OF SECOND-ORDER RANDOM DIFFERENTIAL EQUATIONS BY USING HOMOTOPY ANALYSIS METHOD ALIREZA

More information

Homotopy Analysis Transform Method for Integro-Differential Equations

Homotopy Analysis Transform Method for Integro-Differential Equations Gen. Math. Notes, Vol. 32, No. 1, January 2016, pp. 32-48 ISSN 2219-7184; Copyright ICSRS Publication, 2016 www.i-csrs.org Available free online at http://www.geman.in Homotopy Analysis Transform Method

More information

Introduction. Page 1 of 6. Research Letter. Authors: Philip O. Olanrewaju 1 Jacob A. Gbadeyan 1 Tasawar Hayat 2 Awatif A. Hendi 3.

Introduction. Page 1 of 6. Research Letter. Authors: Philip O. Olanrewaju 1 Jacob A. Gbadeyan 1 Tasawar Hayat 2 Awatif A. Hendi 3. Page of 6 Effects of internal heat generation, thermal radiation buoyancy force on a boundary layer over a vertical plate with a convective surface boundary condition Authors: Philip O. Olanrewaju Jacob

More information

ANALYTICAL SOLUTION FOR VIBRATION OF BUCKLED BEAMS

ANALYTICAL SOLUTION FOR VIBRATION OF BUCKLED BEAMS IJRRAS August ANALYTICAL SOLUTION FOR VIBRATION OF BUCKLED BEAMS A. Fereidoon, D.D. Ganji, H.D. Kaliji & M. Ghadimi,* Department of Mechanical Engineering, Faculty of Engineering, Semnan University, Iran

More information

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method Journal of Linear and Topological Algebra Vol. 02, No. 02, 2013, 105-115 A new approach to solve fuzzy system of linear equations by Homotopy perturbation method M. Paripour a,, J. Saeidian b and A. Sadeghi

More information

arxiv: v1 [nlin.ao] 10 Jun 2008

arxiv: v1 [nlin.ao] 10 Jun 2008 Formulas for the amplitude of the van der Pol limit cycle arxiv:0806.1634v1 [nlin.ao] 10 Jun 2008 J.L. López a, S. Abbasbandy b,c, R. López-Ruiz d a Department of Mathematical and Informatics Engineering,

More information

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics

International Journal of Modern Theoretical Physics, 2012, 1(1): International Journal of Modern Theoretical Physics International Journal of Modern Theoretical Physics, 2012, 1(1): 13-22 International Journal of Modern Theoretical Physics Journal homepage:www.modernscientificpress.com/journals/ijmtp.aspx ISSN: 2169-7426

More information

ISSN Article

ISSN Article Entropy 23, 5, 28-299; doi:.339/e5628 OPEN ACCESS entropy ISSN 99-43 www.mdpi.com/journal/entropy Article Analysis of Entropy Generation Rate in an Unsteady Porous Channel Flow with Navier Slip and Convective

More information

Application of Optimal Homotopy Asymptotic Method for Solving Linear Boundary Value Problems Differential Equation

Application of Optimal Homotopy Asymptotic Method for Solving Linear Boundary Value Problems Differential Equation General Letters in Mathematic, Vol. 1, No. 3, December 2016, pp. 81-94 e-issn 2519-9277, p-issn 2519-9269 Available online at http:\\ www.refaad.com Application of Optimal Homotopy Asymptotic Method for

More information

Application of Homotopy Analysis Method for Linear Integro-Differential Equations

Application of Homotopy Analysis Method for Linear Integro-Differential Equations International Mathematical Forum, 5, 21, no. 5, 237-249 Application of Homotopy Analysis Method for Linear Integro-Differential Equations Zulkifly Abbas a, Saeed Vahdati a,1, Fudziah Ismail a,b and A.

More information

Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins

Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins *Corresponding author: mertcuce@gmail.com Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins... Pinar Mert Cuce 1 *, Erdem Cuce

More information

HOMOTOPY ANALYSIS METHOD FOR SOLVING COUPLED RAMANI EQUATIONS

HOMOTOPY ANALYSIS METHOD FOR SOLVING COUPLED RAMANI EQUATIONS HOMOTOPY ANALYSIS METHOD FOR SOLVING COUPLED RAMANI EQUATIONS A. JAFARIAN 1, P. GHADERI 2, ALIREZA K. GOLMANKHANEH 3, D. BALEANU 4,5,6 1 Department of Mathematics, Uremia Branch, Islamic Azan University,

More information

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method

Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method Nonlinear Analysis: Real World Applications, Vol. 10, Nº 1, 416-427 (2009) Solution of an anti-symmetric quadratic nonlinear oscillator by a modified He s homotopy perturbation method A. Beléndez, C. Pascual,

More information

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method

Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 38-44 Soliton solution of the Kadomtse-Petviashvili equation by homotopy perturbation method H. Mirgolbabaei

More information

Research Article On Critical Buckling Loads of Columns under End Load Dependent on Direction

Research Article On Critical Buckling Loads of Columns under End Load Dependent on Direction International Scholarly Research Notices, Article ID 531438, 6 pages http://dx.doi.org/1.1155/214/531438 Research Article On Critical Buckling Loads of Columns under End Load Dependent on Direction Musa

More information

Vidyasagar et al., International Journal of Advanced Engineering Technology E-ISSN A.P., India.

Vidyasagar et al., International Journal of Advanced Engineering Technology E-ISSN A.P., India. Research Paper MHD CONVECTIVE HEAT AND MASS TRANSFER FLOW OVER A PERMEABLE STRETCHING SURFACE WITH SUCTION AND INTERNAL HEAT GENERATION/ABSORPTION G.Vidyasagar 1 B.Ramana P. Bala Anki Raddy 3 Address for

More information

SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS

SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Volumen 52, Número 1, 2011, Páginas 143 148 SOLUTION OF TROESCH S PROBLEM USING HE S POLYNOMIALS SYED TAUSEEF MOHYUD-DIN Abstract. In this paper, we apply He s

More information

A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels

A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels Applied Mathematical Sciences, Vol. 8, 2014, no. 7, 321-336 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39495 A Comparison of Adomian and Generalized Adomian Methods in Solving the

More information

Adomain Decomposition Method for Solving Non Linear Partial Differential Equations

Adomain Decomposition Method for Solving Non Linear Partial Differential Equations IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 10, Issue 5 Ver. V (Sep-Oct. 2014), PP 60-66 Adomain Decomposition Method for Solving Non Linear Partial Differential

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 60 (00) 3088 3097 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Symmetry

More information

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Motahar Reza, Rajni Chahal, Neha Sharma Abstract This article addresses the boundary layer flow and heat

More information

New interpretation of homotopy perturbation method

New interpretation of homotopy perturbation method From the SelectedWorks of Ji-Huan He 26 New interpretation of homotopy perturbation method Ji-Huan He, Donghua University Available at: https://works.bepress.com/ji_huan_he/3/ International Journal of

More information