ISCA Archive

Size: px
Start display at page:

Download "ISCA Archive"

Transcription

1 ISCA Archve hp:// ODYSSEY4 - The Speaker and Language Recognon Workshop Toledo, Span May 3 - June 3, 4 Speaker Idenfcaon wh Dual Penalzed Logsc Regresson Machne Tomoko Masu and Kuno Tanabe The Insue of Sascal Mahemacs Tokyo, Japan {masu, anabe}@sm.ac.jp Absrac Ths paper proposes a novel speaker denfcaon mehod based on he dual Penalzed Logsc Regresson Machne (dplrm) for general mul-class dscrmnaon. The machne employs kernel funcons whch mplcly map an acousc feaure space o a hgher dmensonal space. Each speaker s dscrmnavely denfed n hs space mplcly. The penalzed logsc regresson model used n dplrm provdes a relable esmae of probably of each denfcaon decson. Tex-ndependen speech daa recorded by male speakers n four sessons over nne monhs was used o evaluae he new approach. The proposed mehod effecvely reduced he error rae of he convenonal GMM-based approach.. Inroducon Speaker recognon echnques are wdely appled no only o secure access conrols of nformaon servce sysems bu also o such problems as he speaker deecon problem n speech dalogue and speaker ndexng problem wh large audo archves. The demand has been ncreasng for echnques wh hgher-accuracy. The convenonal mehod for ex-ndependen speaker recognon s based on he Gaussan mxure model (GMM) []. In hs approach, uerance varaon s well capured by a mxure of a well-chosen number of Gaussan dsrbuons. However, he esmaon of he mxure dsrbuon end o be unrelable especally when he number of ranng daa s relavely small. In such a case addonal fne-unng process of he esmaed mxure s needed for ganng hgher dscrmnave power []. The suppor vecor machnes (SVMs) [3] have been successfully appled o varous paern recognon problems: handwren dg recognon, face deecon, ex caegorzaon and speaker recognon [4-8]. The SVMs are bascally desgned for wo-class dscrmnaon, and some specal echnques are necessary for mul-class dscrmnaon. The dual Penalzed Logsc Regresson Machne (dplrm), whch was employed n hs paper for he speaker denfcaon problem, was proposed by Tanabe [9,] based on penalzed logsc regresson model wh a specfc penaly erm for brngng abou nducon-generalzaon capacy of he machne. Maxmzaon of he dual penalzed logsc regresson lkelhood leads nrnccally o he kernel regressors as s he case wh SVMs whch employ a quadrac programmng model. One of he mos noable advanage of he machne over he oher mehods s ha can gve probablsc predcons. In hs paper, we show a new approach o he speaker denfcaon problem and demonsrae he power of dplrm. In he followng secon, we brefly skech he machne dplrm. In secon 3, we nroduce our speaker denfcaon procedure. In secon 4, our proposed mehod s evaluaed n exndependen speaker denfcaon expermens. In secon 5, we dscuss he choces of kernel funcons and assess he esmae of he probably on each denfcaon decson.. Dual penalzed logsc regresson machne Le x j s a column vecor of sze n and c j akes a value n he fne se {,,,K} of classes. The learnng machne dplrm feeds a fne number of ranng daa {( x j, c j )} j=, K,, and hen produces a condonal mulnomal dsrbuon n Μ( p ( ) of c gven x R, where p ( s a predcve probably vecor whose k-h elemen pk ( ndcaes he probably of c akng he value k. For mahemacal convenence, we code he class daa c j by j-h un column vecor ek (, K,, K) of sze K and defne an K consan marx Y by Y [ y ; L; y ] [ ec ; L; ec ] () whose j-h column vecor y j e c j ndcaes he class o whch he daa x j s aached. Whle SVM deermnes a sngle valued dchoomous dscrmnave funcon f ( vk( () where v s a row vecor of sze, we nroduce a mul-valued funcon f ( Vk( (3) K mappng R no R, where V s an K parameer marx whch s o be esmaed by usng he ranng daa se n {( x j, c j )} j =, K,, k( s a map from R no R defned by

2 k( ( K( x,, K, K( x, ), (4) and K(x, x ) s a ceran posve defne kernel funcon. Then we defne a model for mulnomal probablsc predcor p( by ˆ ˆ p( pˆ( f ( ) ( p( f ( ), K, p K ( f ( )), (5) exp( fk ( ) where pˆ k ( f ( ) s he logsc ransform. K exp( f ( ) = Under hs model assumpon, he negave-log-lkelhood funcon L (V) for p ( s gven by L( V ) log( pc ( x j )) = j log( pˆ c ( Vk( x j j ))) (6) j= j= whch s a convex funcon (see [9,]). Ths objecve funcon L(V) s of dscrmnave naure, and ha f he kernel funcon s appropraely chosen, he map f( can represen a wde varey of funcons so ha he resulng predcve probably p( can be expeced o be close o he realy. A predcve vecor p ( could be obaned by pung p ( = pˆ( ) where V s he he maxmum lkelhood esmae whch mnmze he funcon L(V) wh respec o V. However, over-learnng problems could occur wh V wh he lmed number of ranng daa. In order o oban an nducon power of dplrm, he penaly erm s nroduced and he negave-log-penalzed-lkelhood δ PL( V) L( V) + Γ VK (7) F s mnmzed o esmae V where s he Frobenus norm. F The marx Γ s an K K posve defne marx. A frequen choce of Γ s gven by Γ = YY (8) whch equlbraes a possble mbalance of classes n he ranng daa. The marx K s he consan marx, gven by K = [ K( x, x j )], j=, K,. (9) The δ s a regularzaon parameer and can be deermned by he emprcal Bayes mehod. oe ha by maxmzng he convex PL(V), our mehod can handle mul-class problem whou sufferng from he dffcules encounered by a parwse classfcaon mehod employed n SVM, whle SVM maxmzes he margn beween wo classes of daa, hence canno rea mul-class suaons a once. Due o he nroducon of he specfc quadrac penaly n (7), he mnmzer V of PL(V) s a soluon of he nea marx equaon, PL ( P ( V) Y + δ ΓV) K = Ο K,, () where P (V) s an K marx whose j-h column vecor s he probably vecor p( x j ) pˆ ( Vk( x j )). The marx Y s gven n (). The mnmzer V, whch gves he probablsc predcor ˆ p ( p( ), s eravely compued by he followng algorhm. Algorhm: Sarng wh an arbrary K marx V, we generae a sequence { V } of marces by where + V = V α V, =, K, () V s he soluon of he lnear marx equaon, Tranng daa se: {( x, j )} j K Tesng daa: x } Predcor: p ( x ) { =, K, M Probablsc predcon of speakers for each daa x : Calculae he summaon over samples and decde a deermnsc predcon of a sngle speaker: M c = arg max log( p ( x )) k x p ( ) = j c =,, Conver class daa {c j } no Y Learnng by dplrm Dual parameer marx: V Predcor : p ( pˆ( ) Fgure. Tranng procedure. k Fgure. Tesng procedure.

3 ([ p( x j )] p( x j )( p( x j )) ) V ( k( x j )( k( x j )) ) j= () + δ Γ V K = ( P( V ) Y + δγv ) K. The dealed algorhm for esmaon s shown n [9-]. oe ha we only need o solve an unconsraned opmzaon of a srcly convex funcon PL(V) or equvalenly, o solve he smple marx nonlnear equaon (). SVM, however, has o solve a seres of nequaly consraned maxmzaon problems n mul-class suaons. 3. dplrm-based Speaker denfcaon Fg. shows he ranng procedure. The ranng daa se {( x j, c j )} j =, K, whch covers all he speakers daa s colleced. The class daa {c j } s convered no marx Y. The key marx V s esmaed by dplrm. Fnally he predcor p ( s obaned. Fg. shows he esng procedure. The predcve probably p ( x ) s calculaed for each daa x. Then we sum up he log-probably for each class over samples and choose he class whch aans s maxmum as he speaker who uers he esng daa. 4. Expermens and resuls The proposed mehod was evaluaed n ex-ndependen speaker denfcaon. The performance was compared wh ha of he convenonal GMM-based mehod. 4.. Daa and sysem descrpon The daabase consss of male speakers. Each speaker uers several senences and words as lsed n Table. Each senence s approxmaely four seconds n duraon and each word one second. The exs are common for all speakers. The same se of senence and word speech was repeaedly recorded n four sessons (T o T3) over nne monhs and sampled a 6 khz. A feaure vecor of 6 componens, conssng of mel-frequency cepsral coeffcens plus normalzed log energy and her frs dervaves, was derved once every ms over a 5.6 ms Hammng-wndowed speech segmen. For he dplrm ranng, hree senences from sesson T ( second speech n oal) were used for esmang V. The followng polynomal funcon was used as he kernel funcon. s K ( x, x ) = ( x x + ) (3) The power s was nne. The dplrm parameers α and δ were expermenally se o. n () and 7.7e-5 n (7), respecvely. In he esng, fve senences and fve words from hree sessons T o T3 were ndvdually esed. The case number s 5 for each senence and word daa. The senences for esng were dfferen from hose for ranng and were he same for all esng sessons. In he GMM-based mehod, dagonal covarance models were used as speaker models. The parameers were nalzed Table. Tranng and esng senences and words (he Hepburn sysem of romaj for Japanese scrps) Tranng: senences Tesng: senences Tesng: words Conens. seno akasaha hyakunanajussech hodode mega ookku yaya fuoeru. oogoeo dashsuge kasuregoen nae shmau 3. ashza hkzaha deknakuemo eha kakeru. obujyuuo eru kooha jruno yume daa. hajmee ruuburubjusukae haanoha juuyonemaeno kooda 3. jbuno jsuryokuha jbuga chba yoku sheru hazuda 4. koremade shouneyakyuu mamasa bareenado chksupoosuo sasae shmn mcchakushe kanoha musuuno boraadaa 5. gzakeno amagoo yunyuushe fukasase kachuude sodaeru youshokumo hajmaeru. mouchdo. orkaesh 3. ese 4. horyuu 5. shouka usng all ranng speech for all speakers wh he HMM oolk (HTK) [], and hen esmaed wh he EM algorhm usng he hree senences for each speaker. For esng, he speaker who aaned he maxmum collecve log-lkelhood was regarded as he speaker who uered he esng daa. 4.. Resuls Tables lss he numbers of senences and words denfed correcly for each sesson and he accuracy raes and he confdence nervals (%) averaged over sessons T o T3 when compared wh he GMM-based mehod. For he GMM-based mehod, 6-Gaussan-mxure models were used for senence speech and 4-Gaussan-mxure models for word speech, snce hose models showed he bes performance n he prelmnary expermens usng 8, 6, 4 and 3-Gaussan-mxure models as lsed n Table 3. Our mehod ouperformed he GMM-based mehod especally for word speech. These resuls ndcae ha he dplrm can precsely capure he speaker characerscs wh a small amoun of daa and effecvely dscrmnae each speaker dsrbuon. Fgure 3 shows he speaker denfcaon raes averaged over sessons T o T3 for each speaker. Especally for word speech, he dsperson n he raes for our mehod was smaller han ha for he GMM-based mehod. I can be consdered ha our mehod ends o sably denfy any speakers.

4 Table. The numbers of (A) senences and (B) words denfed correcly for each sesson and he accuracy raes ± he confdence nervals (%) averaged over sessons T o T3. (A) senence speech Mehod T T T3 Average dplrm ±.9 GMM (6) ±. (B) word speech Mehod T T T3 Average dplrm ±.9 GMM (4) ± 3.5 Table 3. Accuracy raes (%) of speaker denfcaon averaged over sessons T o T3 usng he GMMbased mehod wh 8, 6, 4 and 3-Gaussan mxures. Tesng senence speech word speech Speaker ID (A) senence speech Speaker ID (B) word speech dplrm (sen.) GMM (sen.) dplrm (word) GMM (word) Fgure 3. Accuracy raes (%) of speaker denfcaon averaged over sessons T o T3 usng (A) senence and (B) word speech for each speaker. 5. Dscusson We nvesgae our dplrm-based mehod from he vewpons of he kernel funcons. The polynomal kernel funcons (3) wh several powers and he Gaussan kernel funcon, x x K ( x, x ) = exp h (4) were compared n performance n he case where he esmaon sep () was ermnaed a he -h eraon. Table 4 lss he accuracy raes of speaker denfcaon averaged over sessons T o T3 for he senence and word speech daa. The polynomal kernel funcon wh he power of nne performed he bes, and much beer han he Gaussan kernel funcon. For he polynomal kernel funcon, he performance wh he power of was worse han ha wh he power of nne because of he lack of precson wh 3-b compuers whch we used n he expermens. Table 4. Accuracy raes (%) of speaker denfcaon wh several kernel funcons. Kernel funcon Senence Word Polynomal s = s = s = Gaussan h = Conclusons Ths paper proposed a new speaker denfcaon mehod based on dplrm. In dplrm, he polynomal kernel funcon wh he power of nne was shown o be effecve for speaker dscrmnaon. In he expermens wh -second speech for ranng and speech wh several sessons for esng, our dplrm-based mehod was shown o perform beer han he convenonal GMM-based mehod. Our fuure work ncludes he evaluaon of dplrm wh a larger daase, he use for speaker verfcaon and end-pon deecon, and he comparson n performance wh convenonal dscrmnave mehods and SVM. 7. REFERECES [] D. A. Reynolds, Speaker Idenfcaon and Verfcaon Usng Mxure Speaker Models, Speech Communcaon, 7, pp. 9-8, 995. [] G. R. Doddngon, M. A. Przybock, A. F. Marn and D. A. Reynolds, The IST Speaker Recognon Evaluaon Overvew, Mehodology, Sysems, Resuls,

5 Perspecve, Speech Communcaon, 3, pp. 5-54,. [3] V.. Vapnk, The aure of Sascal Learnng Theory, Sprnger, 995. [4] M. Schmd and H. Gsh, Speaker Idenfcaon va Suppor Vecor Classfers, Proc. ICASSP, Alana, 996. [5] M. Schmd, Idenfyng Speakers Wh Suppor Vecor eworks, Proc. Inerface, Sydney, 996. [6] S. Fne, J. avral and R. A. Gopnah, A Hybrd GMM/SVM Approach o Speaker Idenfcaon, Proc. ICASSP, Sal Lake Cy,. [7] W. M. Campbell, A Sequence Kernel and s Applcaon o Speaker Recognon, IPS-4, pp ,. [8] V. Wan and S. Renals, SVMSVM: Suppor Vecor Machne Speaker Verfcaon Mehodology, Proc. ICASSP, Hong-Kong 3. [9] K. Tanabe, Penalzed Logsc Regresson Machnes: ew mehods for sascal predcon, ISM Cooperave Research Repor 43, pp ,. [] K. Tanabe, Penalzed Logsc Regresson Machnes: ew mehods for sascal predcon, Proc. IBIS, Tokyo, pp. 7-76,. [] K. Tanabe, Penalzed Logsc Regresson Machnes and Relaed Lnear umercal Algebra, KOKYUROKU 3, Insue for Mahemacal Scences, Kyoo Unversy, pp , 3. [] hp://hk.eng.cam.ac.uk, he hdden Markov model oolk (HTK).

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study) Inernaonal Mahemacal Forum, Vol. 8, 3, no., 7 - HIKARI Ld, www.m-hkar.com hp://dx.do.org/.988/mf.3.3488 New M-Esmaor Objecve Funcon n Smulaneous Equaons Model (A Comparave Sudy) Ahmed H. Youssef Professor

More information

A New Method for Computing EM Algorithm Parameters in Speaker Identification Using Gaussian Mixture Models

A New Method for Computing EM Algorithm Parameters in Speaker Identification Using Gaussian Mixture Models 0 IACSI Hong Kong Conferences IPCSI vol. 9 (0) (0) IACSI Press, Sngaore A New ehod for Comung E Algorhm Parameers n Seaker Idenfcaon Usng Gaussan xure odels ohsen Bazyar +, Ahmad Keshavarz, and Khaoon

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Ths documen s downloaded from DR-NTU, Nanyang Technologcal Unversy Lbrary, Sngapore. Tle A smplfed verb machng algorhm for word paron n vsual speech processng( Acceped verson ) Auhor(s) Foo, Say We; Yong,

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

Volatility Interpolation

Volatility Interpolation Volaly Inerpolaon Prelmnary Verson March 00 Jesper Andreasen and Bran Huge Danse Mares, Copenhagen wan.daddy@danseban.com brno@danseban.com Elecronc copy avalable a: hp://ssrn.com/absrac=69497 Inro Local

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Time-interval analysis of β decay. V. Horvat and J. C. Hardy

Time-interval analysis of β decay. V. Horvat and J. C. Hardy Tme-nerval analyss of β decay V. Horva and J. C. Hardy Work on he even analyss of β decay [1] connued and resuled n he developmen of a novel mehod of bea-decay me-nerval analyss ha produces hghly accurae

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

The Analysis of the Thickness-predictive Model Based on the SVM Xiu-ming Zhao1,a,Yan Wang2,band Zhimin Bi3,c

The Analysis of the Thickness-predictive Model Based on the SVM Xiu-ming Zhao1,a,Yan Wang2,band Zhimin Bi3,c h Naonal Conference on Elecrcal, Elecroncs and Compuer Engneerng (NCEECE The Analyss of he Thcknesspredcve Model Based on he SVM Xumng Zhao,a,Yan Wang,band Zhmn B,c School of Conrol Scence and Engneerng,

More information

Fitting a Conditional Linear Gaussian Distribution

Fitting a Conditional Linear Gaussian Distribution Fng a Condonal Lnear Gaussan Dsrbuon Kevn P. Murphy 28 Ocober 1998 Revsed 29 January 2003 1 Inroducon We consder he problem of fndng he maxmum lkelhood ML esmaes of he parameers of a condonal Gaussan varable

More information

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are Chaper 6 DEECIO AD EIMAIO: Fundamenal ssues n dgal communcaons are. Deecon and. Esmaon Deecon heory: I deals wh he desgn and evaluaon of decson makng processor ha observes he receved sgnal and guesses

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

An Effective TCM-KNN Scheme for High-Speed Network Anomaly Detection

An Effective TCM-KNN Scheme for High-Speed Network Anomaly Detection Vol. 24, November,, 200 An Effecve TCM-KNN Scheme for Hgh-Speed Nework Anomaly eecon Yang L Chnese Academy of Scences, Bejng Chna, 00080 lyang@sofware.c.ac.cn Absrac. Nework anomaly deecon has been a ho

More information

Using Fuzzy Pattern Recognition to Detect Unknown Malicious Executables Code

Using Fuzzy Pattern Recognition to Detect Unknown Malicious Executables Code Usng Fuzzy Paern Recognon o Deec Unknown Malcous Execuables Code Boyun Zhang,, Janpng Yn, and Jngbo Hao School of Compuer Scence, Naonal Unversy of Defense Technology, Changsha 40073, Chna hnxzby@yahoo.com.cn

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Pattern Classification (III) & Pattern Verification

Pattern Classification (III) & Pattern Verification Preare by Prof. Hu Jang CSE638 --4 CSE638 3. Seech & Language Processng o.5 Paern Classfcaon III & Paern Verfcaon Prof. Hu Jang Dearmen of Comuer Scence an Engneerng York Unversy Moel Parameer Esmaon Maxmum

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

On computing differential transform of nonlinear non-autonomous functions and its applications

On computing differential transform of nonlinear non-autonomous functions and its applications On compung dfferenal ransform of nonlnear non-auonomous funcons and s applcaons Essam. R. El-Zahar, and Abdelhalm Ebad Deparmen of Mahemacs, Faculy of Scences and Humanes, Prnce Saam Bn Abdulazz Unversy,

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

Video-Based Face Recognition Using Adaptive Hidden Markov Models

Video-Based Face Recognition Using Adaptive Hidden Markov Models Vdeo-Based Face Recognon Usng Adapve Hdden Markov Models Xaomng Lu and suhan Chen Elecrcal and Compuer Engneerng, Carnege Mellon Unversy, Psburgh, PA, 523, U.S.A. xaomng@andrew.cmu.edu suhan@cmu.edu Absrac

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500

Comparison of Supervised & Unsupervised Learning in βs Estimation between Stocks and the S&P500 Comparson of Supervsed & Unsupervsed Learnng n βs Esmaon beween Socks and he S&P500 J. We, Y. Hassd, J. Edery, A. Becker, Sanford Unversy T I. INTRODUCTION HE goal of our proec s o analyze he relaonshps

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

WiH Wei He

WiH Wei He Sysem Idenfcaon of onlnear Sae-Space Space Baery odels WH We He wehe@calce.umd.edu Advsor: Dr. Chaochao Chen Deparmen of echancal Engneerng Unversy of aryland, College Par 1 Unversy of aryland Bacground

More information

FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES

FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES H. Abrsham Moghaddam K. N. Toos Unversy of Technology, P.O. Box 635-355, Tehran, Iran moghadam@saba.knu.ac.r M. Ghayoum Islamc Azad Unversy,

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

Standard Error of Technical Cost Incorporating Parameter Uncertainty

Standard Error of Technical Cost Incorporating Parameter Uncertainty Sandard rror of echncal Cos Incorporang Parameer Uncerany Chrsopher Moron Insurance Ausrala Group Presened o he Acuares Insue General Insurance Semnar 3 ovember 0 Sydney hs paper has been prepared for

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

ECE 366 Honors Section Fall 2009 Project Description

ECE 366 Honors Section Fall 2009 Project Description ECE 366 Honors Secon Fall 2009 Projec Descrpon Inroducon: Muscal genres are caegorcal labels creaed by humans o characerze dfferen ypes of musc. A muscal genre s characerzed by he common characerscs shared

More information

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times Reacve Mehods o Solve he Berh AllocaonProblem wh Sochasc Arrval and Handlng Tmes Nsh Umang* Mchel Berlare* * TRANSP-OR, Ecole Polyechnque Fédérale de Lausanne Frs Workshop on Large Scale Opmzaon November

More information

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction ECOOMICS 35* -- OTE 9 ECO 35* -- OTE 9 F-Tess and Analyss of Varance (AOVA n he Smple Lnear Regresson Model Inroducon The smple lnear regresson model s gven by he followng populaon regresson equaon, or

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

Sampling Procedure of the Sum of two Binary Markov Process Realizations

Sampling Procedure of the Sum of two Binary Markov Process Realizations Samplng Procedure of he Sum of wo Bnary Markov Process Realzaons YURY GORITSKIY Dep. of Mahemacal Modelng of Moscow Power Insue (Techncal Unversy), Moscow, RUSSIA, E-mal: gorsky@yandex.ru VLADIMIR KAZAKOV

More information

Time Scale Evaluation of Economic Forecasts

Time Scale Evaluation of Economic Forecasts CENTRAL BANK OF CYPRUS EUROSYSTEM WORKING PAPER SERIES Tme Scale Evaluaon of Economc Forecass Anons Mchs February 2014 Worng Paper 2014-01 Cenral Ban of Cyprus Worng Papers presen wor n progress by cenral

More information

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method 10 h US Naonal Congress on Compuaonal Mechancs Columbus, Oho 16-19, 2009 Sngle-loop Sysem Relably-Based Desgn & Topology Opmzaon (SRBDO/SRBTO): A Marx-based Sysem Relably (MSR) Mehod Tam Nguyen, Junho

More information

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair TECHNI Inernaonal Journal of Compung Scence Communcaon Technologes VOL.5 NO. July 22 (ISSN 974-3375 erformance nalyss for a Nework havng Sby edundan Un wh ang n epar Jendra Sngh 2 abns orwal 2 Deparmen

More information

CHAPTER FOUR REPEATED MEASURES IN TOXICITY TESTING

CHAPTER FOUR REPEATED MEASURES IN TOXICITY TESTING CHAPTER FOUR REPEATED MEASURES IN TOXICITY TESTING 4. Inroducon The repeaed measures sudy s a very commonly used expermenal desgn n oxcy esng because no only allows one o nvesgae he effecs of he oxcans,

More information

Bayesian Inference of the GARCH model with Rational Errors

Bayesian Inference of the GARCH model with Rational Errors 0 Inernaonal Conference on Economcs, Busness and Markeng Managemen IPEDR vol.9 (0) (0) IACSIT Press, Sngapore Bayesan Inference of he GARCH model wh Raonal Errors Tesuya Takash + and Tng Tng Chen Hroshma

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

Hidden Markov Models

Hidden Markov Models 11-755 Machne Learnng for Sgnal Processng Hdden Markov Models Class 15. 12 Oc 2010 1 Admnsrva HW2 due Tuesday Is everyone on he projecs page? Where are your projec proposals? 2 Recap: Wha s an HMM Probablsc

More information

Appendix to Online Clustering with Experts

Appendix to Online Clustering with Experts A Appendx o Onlne Cluserng wh Expers Furher dscusson of expermens. Here we furher dscuss expermenal resuls repored n he paper. Ineresngly, we observe ha OCE (and n parcular Learn- ) racks he bes exper

More information

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria IOSR Journal of Mahemacs (IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume 0, Issue 4 Ver. IV (Jul-Aug. 04, PP 40-44 Mulple SolonSoluons for a (+-dmensonalhroa-sasuma shallow waer wave equaon UsngPanlevé-Bӓclund

More information

Author s Accepted Manuscript

Author s Accepted Manuscript Auhor s Acceped anuscrp Dscrmnave srucure selecon mehod of gaussan mxure models wh s applcaon o handwren dg recognon Xuefeng Chen Xab Lu Yunde Ja PII: S095-3(0)0047-6 DOI: do:0.06/j.neucom.00..00 Reference:

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Modeling and Solving of Multi-Product Inventory Lot-Sizing with Supplier Selection under Quantity Discounts

Modeling and Solving of Multi-Product Inventory Lot-Sizing with Supplier Selection under Quantity Discounts nernaonal ournal of Appled Engneerng Research SSN 0973-4562 Volume 13, Number 10 (2018) pp. 8708-8713 Modelng and Solvng of Mul-Produc nvenory Lo-Szng wh Suppler Selecon under Quany Dscouns Naapa anchanaruangrong

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) 5h Inernaonal onference on Advanced Desgn and Manufacurng Engneerng (IADME 5 The Falure Rae Expermenal Sudy of Specal N Machne Tool hunshan He, a, *, La Pan,b and Bng Hu 3,c,,3 ollege of Mechancal and

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment EEL 6266 Power Sysem Operaon and Conrol Chaper 5 Un Commmen Dynamc programmng chef advanage over enumeraon schemes s he reducon n he dmensonaly of he problem n a src prory order scheme, here are only N

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA

RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA Mchaela Chocholaá Unversy of Economcs Braslava, Slovaka Inroducon (1) one of he characersc feaures of sock reurns

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Prakkum Polymer Scence/Polymersaonsechnk Versuch Resdence Tme Dsrbuon Polymerzaon Technology Laboraory Course Resdence Tme Dsrbuon of Chemcal Reacors If molecules or elemens of a flud are akng dfferen

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Forecasting customer behaviour in a multi-service financial organisation: a profitability perspective

Forecasting customer behaviour in a multi-service financial organisation: a profitability perspective Forecasng cusomer behavour n a mul-servce fnancal organsaon: a profably perspecve A. Audzeyeva, Unversy of Leeds & Naonal Ausrala Group Europe, UK B. Summers, Unversy of Leeds, UK K.R. Schenk-Hoppé, Unversy

More information

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov June 7 e-ournal Relably: Theory& Applcaons No (Vol. CONFIDENCE INTERVALS ASSOCIATED WITH PERFORMANCE ANALYSIS OF SYMMETRIC LARGE CLOSED CLIENT/SERVER COMPUTER NETWORKS Absrac Vyacheslav Abramov School

More information

Hybrid of Chaos Optimization and Baum-Welch Algorithms for HMM Training in Continuous Speech Recognition

Hybrid of Chaos Optimization and Baum-Welch Algorithms for HMM Training in Continuous Speech Recognition Inernaonal Conference on Inellgen Conrol and Informaon Processng Augus 3-5, - Dalan, Chna Hybrd of Chaos Opmzaon and Baum-Welch Algorhms for HMM ranng n Connuous Speech Recognon Somayeh Cheshom, Saeed

More information

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys Dual Approxmae Dynamc Programmng for Large Scale Hydro Valleys Perre Carpener and Jean-Phlppe Chanceler 1 ENSTA ParsTech and ENPC ParsTech CMM Workshop, January 2016 1 Jon work wh J.-C. Alas, suppored

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Anomaly Detection. Lecture Notes for Chapter 9. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Anomaly eecon Lecure Noes for Chaper 9 Inroducon o aa Mnng, 2 nd Edon by Tan, Senbach, Karpane, Kumar 2/14/18 Inroducon o aa Mnng, 2nd Edon 1 Anomaly/Ouler eecon Wha are anomales/oulers? The se of daa

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure Sldes for INTRDUCTIN T Machne Learnng ETHEM ALAYDIN The MIT ress, 2004 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/2ml CHATER 3: Hdden Marov Models Inroducon Modelng dependences n npu; no

More information

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition EHEM ALPAYDI he MI Press, 04 Lecure Sldes for IRODUCIO O Machne Learnng 3rd Edon alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/ml3e Sldes from exboo resource page. Slghly eded and wh addonal examples

More information

A HIERARCHICAL KALMAN FILTER

A HIERARCHICAL KALMAN FILTER A HIERARCHICAL KALMAN FILER Greg aylor aylor Fry Consulng Acuares Level 8, 3 Clarence Sree Sydney NSW Ausrala Professoral Assocae, Cenre for Acuaral Sudes Faculy of Economcs and Commerce Unversy of Melbourne

More information

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System Communcaons n Sascs Theory and Mehods, 34: 475 484, 2005 Copyrgh Taylor & Francs, Inc. ISSN: 0361-0926 prn/1532-415x onlne DOI: 10.1081/STA-200047430 Survval Analyss and Relably A Noe on he Mean Resdual

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems Genec Algorhm n Parameer Esmaon of Nonlnear Dynamc Sysems E. Paeraks manos@egnaa.ee.auh.gr V. Perds perds@vergna.eng.auh.gr Ah. ehagas kehagas@egnaa.ee.auh.gr hp://skron.conrol.ee.auh.gr/kehagas/ndex.hm

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

Phone Recognition on TIMIT Database Using Mel-Frequency Cepstral Coefficients and Support Vector Machine Classifier

Phone Recognition on TIMIT Database Using Mel-Frequency Cepstral Coefficients and Support Vector Machine Classifier IJISET - Inernaonal Journal of Innovave Scence, Engneerng & Technology, Vol. Issue, January 05. www.jse.com Phone Recognon on TIMIT Daabase Usng Mel-Frequency Cepsral Coeffcens and Suppor Vecor Machne

More information