Choice-Based Revenue Management: An Empirical Study of Estimation and Optimization. Appendix. Brief description of maximum likelihood estimation

Size: px
Start display at page:

Download "Choice-Based Revenue Management: An Empirical Study of Estimation and Optimization. Appendix. Brief description of maximum likelihood estimation"

Transcription

1 Choice-Based Revenue Management: An Empirical Study of Estimation and Optimization Appendix Gustavo Vulcano Garrett van Ryzin Wassim Chaar In this online supplement we provide supplementary materials of the paper, including a brief description of maximum likelihood estimation, extensive statistics for the examples discussed in the paper, an alternative discrete choice formulation for Example 0, and the derivation of the asymptotic standard error used in the main body of the paper. A1 Brief description of maximum likelihood estimation Choice models are most frequently estimated using maximum likelihood estimation (MLE) methods. Let Z be a random variable, and let x be a vector of known attributes that influence the distribution of Z. Denote this dependence as Z f(x; θ), where f is the distribution of Z, and θ is a vector of parameters, at least some of which are unknown a priori. Using a sample of observations z 1,..., z N from the process being modeled, where N is the number of observations drawn from the whole population, an estimator function of the observations is constructed to estimate the unknown parameters. We will use ˆθ to denote an estimator of θ. The value ˆθ is (before the sample is drawn) a random variable. Of course, after the sample is taken and the utility functions are evaluated, ˆθ is simply a vector of numbers. To distinguish between the random variable ˆθ and its realization for any particular sample, we term the random variable an estimator and any given realization of it an estimate. MLE estimators are based on inferring the parameters θ that maximize the probability of observing the provided data. The likelihood of observing the n-th observation z n, 1 n N, is denoted f(z n x n, θ). The likelihood of observing independent draws ((z 1, x 1 ),..., (z n, x N )) conditioned on Leonard N. Stern School of Business, New York University, 44 West 4th Street, Suite 8-76, New York, NY 10012, gvulcano@stern.nyu.edu. Graduate School of Business, Columbia University, New York, NY 10027, gjv1@columbia.edu. Sabre Holdings, Research Group, Southlake, Texas 76092, wassim.chaar@sabre-holdings.com. 1

2 the parameters θ is simply N L(x, θ) = f(z n x n, θ) n=1 The MLE estimation problem is to solve for the estimate ˆθ which maximizes L(x, θ). The usual approach though is to take advantage of the strict monotonicity of the logarithmic function, and maximize the logarithm of L, which does not change the value of the optimal parameter estimate. For example, for the MNL model (5) (6), if we can observe the arrival process and the nth observation is z n, representing the fact that customer n chooses alternative i C n, then f(z n x n, β) P n (i); and if customer n does not purchase from our airline, f(z n x n, β) P n (0). A2 Supplemental material for Example 0 The tables and figures in this section supports with data some of the claims made in Section 4.3. Table A1 provides descriptive statistics for Example 0. This example corresponds to outbound flights from New York to Florida, and hence the arrival time attribute is used. In this table, the average observed bookings are computed based on the H = 100 histories generated by simulation. Table A1: Descriptive statistics for Example 0 Departure Flight Arrival Min. open Max. open Avg. obs. Time slots Departure day day number time fare fare bookings Mor. Noon Aft. Ev. d = 1 d = 2 d = 3 3/ : : : : / : : : : : / : : : : : Table A2 confirms the goodness-of-fit of the estimation for the base case in Example 0. Here, we generate H = 100 new histories of bookings, and compare the observed bookings with the number predicted by the estimated parameters. The p-value of the χ 2 -test is one. 2

3 Table A2: True expected and predicted bookings for Example 0 Flight Observed bookings Expected bookings Flight Observed bookings Expected bookings Figure A2.1 shows the quality of fit of the true and predicted probabilities for Example 0. True Expected vs. Predicted Choice Probabilities Probability B1,D1 B1,D3 B2,D1 B2,D3 B3,D1 B3,D3 Booking day, departure day B4,D1 B4, no purchase B5,D2 B5,D3 True Prob. Predicted Prob. Figure A2.1: Goodness-of-fit for the probabilities per combination (b, d), for booking days b = 1,..., 5 in Example 0. Table A3 shows the quality of the estimates obtained by the Em procedure starting from different initial values of ˆλ. It is indeed noticeably good, with the only exception that for the case when we start from ˆλ = 0.3, we can also reject the null hypothesis that the true value for the coefficient ˆβ 2 is zero (when it is indeed zero) at the 0.01 significance level. A3 Alternative preliminary example We present this preliminary, alternative example here that does not suffer from the identifiability problem of Example 0. The input parameters are described in Table A4. Here, the time slots are 3

4 Table A3: Estimated parameters for Example 0 under different starting values of ˆλ. Parameter True Starting from ˆλ = 0.3 Starting from ˆλ = 0.6 value Est. value Bias ASE t-stat Est. value Bias ASE t-stat ˆβ % % ˆβ % % ˆβ ˆβ % % ˆβ % % ˆβ % % ˆβ % % ˆλ % % treated as in Example 0, but the indicator for the departure days are treated as standard category variables, where a flight on day d = 3 is represented by setting the attributes x 6 = x 7 = 0. In symbols, for customer n, given x in and β, and noting that x 2 + x 3 + x 4 + x 5 = 1, we would have: v in = β 1 x 1 + β 2 x β 7 x 7 = β 1 x 1 + (β 2 β 5 )x 2 + (β 3 β 5 )x 3 + (β 4 β 5 )x 4 + β 5 + β 6 x 6 + β 7 x 7. By defining β 0 = β 5, and relabeling the parameters to have a consecutive numbering, we can equivalently consider a mean utility of the form v in = β 0 +β T x in for the different purchase options. Table A4: Input parameter values for alternative preliminary example Attribute Description Value β 1 Base fare -1.0 β 2 Morning flight (before 11AM) 0.5 β 3 Noon flight (9AM 3PM) 0.7 β 4 Afternoon flight (1PM 7PM) 0.3 β 5 Evening flight (5PM Midnight) 0.5 β 6 Indicator for flying on day d = β 7 Indicator for flying on day d = λ Arrival rate 0.3 The output of the EM method is provided in Table A5. We observe there a strong bias in the 4

5 additive utility parameter, which implies a shift in the utilities of the different alternatives for the customers. However, we could verify that the true expected number of bookings and the true expected utilities are very close to the predicted ones. Table A5: Output parameters for alternative preliminary example Parameter Description True Value Est. value Bias ASE t-stat ˆβ 0 Base utility % for any purchase option ˆβ 1 Base fare % ˆβ 2 Morning flight (before 11AM) ˆβ 3 Noon flight (9AM 3PM) % ˆβ 4 Afternoon flight (1PM 7PM) % ˆβ 5 Indicator for flying on day d = % ˆβ 6 Indicator for flying on day d = % ˆλ Arrival rate % 2.26E A4 Supplemental material for Examples 1 and 2 Table A6 provides descriptive statistics for Examples 1 and 2. outbound flights from New York to Florida. These examples correspond to Table A6: Descriptive statistics for Examples 1 and 2 Example Flight Arrival Min. open Max. open Bookings Time slots number time fare fare observed Mor. Noon Aft. Ev : : : : : : : : : : Tables A7 and A8 show revenues obtained under randomly perturbed ˆλ and ( ˆβ 0, ˆβ) estimates for airline Examples 1 and 2, respectively. 5

6 Table A7: Test of revenue robustness with respect to perturbed estimates for Example 1 Perturbation Perturbed Revenue E[%Gap] 95% CI range scenario for the %Gap 1 177, % (-5.31%, 3.19%) 2 178, % (-3.56%, 2.62%) ±10% 3 181, % (-2.66%, 4.62%) , % (-0.41%, 6.11%) , % (-3.70%, 4.49%) 1 142, % (-10.15%,-0.93%) 2 142, % (-6.70%,-1.79%) ±25% 3 161, % (-15.72%,-4.73%) 4 179, % (-2.42%, 2.77%) 5 176, % (-4.79%, 2.02%) 1 171, % (-8.63%, 0.18%) 2 165, % (-12.56%,-2.49%) ±50% 3 172, % (-8.97%, 1.11%) 4 165, % (-14.20%,-0.75%) 5 167, % (-11.61%,-1.75%) Table A8: Test of revenue robustness with respect to perturbed estimates for Example 2 Perturbation Perturbed Revenue E[%Gap] 95% CI range scenario for the %Gap 1 161, % ( 4.62%,12.28%) 2 157, % ( 2.95%, 9.18%) ±10% 3 153, % ( 0.13%, 6.51%) 4 153, % (-2.73%, 9.08%) 5 148, % (-3.10%, 3.27%) 1 160, % ( 4.17%,11.75%) 2 150, % (-4.35%, 6.85%) ±25% 3 153, % ( 0.70%, 6.21%) 4 159, % ( 2.64%,11.38%) 5 155, % ( 1.75%, 7.19%) 1 132, % (-14.45%,-7.82%) 2 123, % (-20.91%,-12.50%) ±50% 3 152, % (-0.54%, 5.26%) 4 122, % (-21.87%,-13.33%) 5 142, % (-7.49%,-1.00%) A5 Calculation of the asymptotic standard error (ASE) The asymptotic covariance matrix of the MLE is approximated using the gradient vector of the expected complete data log-likelihood function (9) evaluated at the MLE ˆθ (see McLachlan and Krishnan [25, Section 4.3] for a justification of the approximation, and Greene [18, Section ] for a comprehensive study of asymptotic covariance estimation for MLE). Let ĝ i be the gradient of the expected log-likelihood function (9) evaluated at observation i, where 6

7 each observation corresponds to a period of either a purchase or no-purchase transaction. symbols: ĝ i = ˆθ log f(z i x i, ˆθ) In There are three cases to consider when computing the gradient of the expected log-likelihood function (9) evaluated at observation i: 1. If i P b,h (i.e. in small period i of booking day b in history h, there is a customer who buys from our airline), then β 0 = 1 β k = x i,k λ = 1 λ e β 0+β T x j, e β 0+β T x j + 1 e β 0+β T x j x j,k, k = 1,..., K, j Cb a e β 0+β T x j If i P b irrespective of the booking history, and there is a customer arriving in period i who does not purchase from our airline, then = β 0 = β k λ = 1 λ e β 0+β T x j, e β 0+β T x j + 1 e β 0+β T x j x j,k, k = 1,..., K, j Cb a e β 0+β T x j If i P b irrespective of the booking history, and there is no arrival in period i: β k = 0, k = 0, 1,..., K, λ b = 1 λ b 1 From here, we build the gradient vector for observation i, depending on the case j = 1, 2, 3, just 7

8 described: ĝ T j,i = ( β 0, log f(z i x i, ˆθ) β 1 and then compute the sum of matrices: Î(ˆθ) = H B h=1 b=1 i P b,h ĝ 1,i ĝ T 1,i +,..., log f(z i x i, ˆθ) β K ( B H ) P b,h â b ĝ 2,i ĝ T 2,i + b=1 h=1 We approximate the information matrix by [ ] ] 1 1 [Î(ˆθ) = ĝ i ĝ T i, i, log f(z i x i, ˆθ),..., log f(z i x i, ˆθ) ), λ 1 λ B ( B H ) P b,h (1 â b )ĝ 3,i ĝ T 3,i b=1 h=1 ] 1 where if J is the number of parameters to estimate, ĝ i R J 1, and [Î(ˆθ) R J J. The asymptotic standard error of each estimate (coordinate in the vector ˆθ) is the square root of the corresponding element in the main diagonal. 8

Binary choice 3.3 Maximum likelihood estimation

Binary choice 3.3 Maximum likelihood estimation Binary choice 3.3 Maximum likelihood estimation Michel Bierlaire Output of the estimation We explain here the various outputs from the maximum likelihood estimation procedure. Solution of the maximum likelihood

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 8 P-values When reporting results, we usually report p-values in place of reporting whether or

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

To appear in The American Statistician vol. 61 (2007) pp

To appear in The American Statistician vol. 61 (2007) pp How Can the Score Test Be Inconsistent? David A Freedman ABSTRACT: The score test can be inconsistent because at the MLE under the null hypothesis the observed information matrix generates negative variance

More information

Likelihood-based inference with missing data under missing-at-random

Likelihood-based inference with missing data under missing-at-random Likelihood-based inference with missing data under missing-at-random Jae-kwang Kim Joint work with Shu Yang Department of Statistics, Iowa State University May 4, 014 Outline 1. Introduction. Parametric

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Answer Key for STAT 200B HW No. 8

Answer Key for STAT 200B HW No. 8 Answer Key for STAT 200B HW No. 8 May 8, 2007 Problem 3.42 p. 708 The values of Ȳ for x 00, 0, 20, 30 are 5/40, 0, 20/50, and, respectively. From Corollary 3.5 it follows that MLE exists i G is identiable

More information

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes Maximum Likelihood Estimation Econometrics II Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico Outline 1 3 4 General Approaches to Parameter

More information

Chapter 7, continued: MANOVA

Chapter 7, continued: MANOVA Chapter 7, continued: MANOVA The Multivariate Analysis of Variance (MANOVA) technique extends Hotelling T 2 test that compares two mean vectors to the setting in which there are m 2 groups. We wish to

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Answer Key for STAT 200B HW No. 7

Answer Key for STAT 200B HW No. 7 Answer Key for STAT 200B HW No. 7 May 5, 2007 Problem 2.2 p. 649 Assuming binomial 2-sample model ˆπ =.75, ˆπ 2 =.6. a ˆτ = ˆπ 2 ˆπ =.5. From Ex. 2.5a on page 644: ˆπ ˆπ + ˆπ 2 ˆπ 2.75.25.6.4 = + =.087;

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

Practical Econometrics. for. Finance and Economics. (Econometrics 2)

Practical Econometrics. for. Finance and Economics. (Econometrics 2) Practical Econometrics for Finance and Economics (Econometrics 2) Seppo Pynnönen and Bernd Pape Department of Mathematics and Statistics, University of Vaasa 1. Introduction 1.1 Econometrics Econometrics

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

2.6.3 Generalized likelihood ratio tests

2.6.3 Generalized likelihood ratio tests 26 HYPOTHESIS TESTING 113 263 Generalized likelihood ratio tests When a UMP test does not exist, we usually use a generalized likelihood ratio test to verify H 0 : θ Θ against H 1 : θ Θ\Θ It can be used

More information

Loglikelihood and Confidence Intervals

Loglikelihood and Confidence Intervals Stat 504, Lecture 2 1 Loglikelihood and Confidence Intervals The loglikelihood function is defined to be the natural logarithm of the likelihood function, l(θ ; x) = log L(θ ; x). For a variety of reasons,

More information

STAT FINAL EXAM

STAT FINAL EXAM STAT101 2013 FINAL EXAM This exam is 2 hours long. It is closed book but you can use an A-4 size cheat sheet. There are 10 questions. Questions are not of equal weight. You may need a calculator for some

More information

Cluster Validity. Oct. 28, Cluster Validity 10/14/ Erin Wirch & Wenbo Wang. Outline. Hypothesis Testing. Relative Criteria.

Cluster Validity. Oct. 28, Cluster Validity 10/14/ Erin Wirch & Wenbo Wang. Outline. Hypothesis Testing. Relative Criteria. 1 Testing Oct. 28, 2010 2 Testing Testing Agenda 3 Testing Review of Testing Testing Review of Testing 4 Test a parameter against a specific value Begin with H 0 and H 1 as the null and alternative hypotheses

More information

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Math 3080 1. Treibergs Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Name: Example April 4, 014 This R c program explores a goodness of fit test where the parameter is

More information

ECON 4160, Autumn term Lecture 1

ECON 4160, Autumn term Lecture 1 ECON 4160, Autumn term 2017. Lecture 1 a) Maximum Likelihood based inference. b) The bivariate normal model Ragnar Nymoen University of Oslo 24 August 2017 1 / 54 Principles of inference I Ordinary least

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

Appendix from L. J. Revell, On the Analysis of Evolutionary Change along Single Branches in a Phylogeny

Appendix from L. J. Revell, On the Analysis of Evolutionary Change along Single Branches in a Phylogeny 008 by The University of Chicago. All rights reserved.doi: 10.1086/588078 Appendix from L. J. Revell, On the Analysis of Evolutionary Change along Single Branches in a Phylogeny (Am. Nat., vol. 17, no.

More information

Modification and Improvement of Empirical Likelihood for Missing Response Problem

Modification and Improvement of Empirical Likelihood for Missing Response Problem UW Biostatistics Working Paper Series 12-30-2010 Modification and Improvement of Empirical Likelihood for Missing Response Problem Kwun Chuen Gary Chan University of Washington - Seattle Campus, kcgchan@u.washington.edu

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis TAMS39 Lecture 10 Principal Component Analysis Factor Analysis Martin Singull Department of Mathematics Mathematical Statistics Linköping University, Sweden Content - Lecture Principal component analysis

More information

1 Mixed effect models and longitudinal data analysis

1 Mixed effect models and longitudinal data analysis 1 Mixed effect models and longitudinal data analysis Mixed effects models provide a flexible approach to any situation where data have a grouping structure which introduces some kind of correlation between

More information

Assortment Optimization under the Multinomial Logit Model with Nested Consideration Sets

Assortment Optimization under the Multinomial Logit Model with Nested Consideration Sets Assortment Optimization under the Multinomial Logit Model with Nested Consideration Sets Jacob Feldman School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853,

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

BTRY 4090: Spring 2009 Theory of Statistics

BTRY 4090: Spring 2009 Theory of Statistics BTRY 4090: Spring 2009 Theory of Statistics Guozhang Wang September 25, 2010 1 Review of Probability We begin with a real example of using probability to solve computationally intensive (or infeasible)

More information

Introduction Large Sample Testing Composite Hypotheses. Hypothesis Testing. Daniel Schmierer Econ 312. March 30, 2007

Introduction Large Sample Testing Composite Hypotheses. Hypothesis Testing. Daniel Schmierer Econ 312. March 30, 2007 Hypothesis Testing Daniel Schmierer Econ 312 March 30, 2007 Basics Parameter of interest: θ Θ Structure of the test: H 0 : θ Θ 0 H 1 : θ Θ 1 for some sets Θ 0, Θ 1 Θ where Θ 0 Θ 1 = (often Θ 1 = Θ Θ 0

More information

Size Distortion and Modi cation of Classical Vuong Tests

Size Distortion and Modi cation of Classical Vuong Tests Size Distortion and Modi cation of Classical Vuong Tests Xiaoxia Shi University of Wisconsin at Madison March 2011 X. Shi (UW-Mdsn) H 0 : LR = 0 IUPUI 1 / 30 Vuong Test (Vuong, 1989) Data fx i g n i=1.

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X).

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X). 4. Interval estimation The goal for interval estimation is to specify the accurary of an estimate. A 1 α confidence set for a parameter θ is a set C(X) in the parameter space Θ, depending only on X, such

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Comparison between conditional and marginal maximum likelihood for a class of item response models

Comparison between conditional and marginal maximum likelihood for a class of item response models (1/24) Comparison between conditional and marginal maximum likelihood for a class of item response models Francesco Bartolucci, University of Perugia (IT) Silvia Bacci, University of Perugia (IT) Claudia

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Statistics 135 Fall 2008 Final Exam

Statistics 135 Fall 2008 Final Exam Name: SID: Statistics 135 Fall 2008 Final Exam Show your work. The number of points each question is worth is shown at the beginning of the question. There are 10 problems. 1. [2] The normal equations

More information

Score test for random changepoint in a mixed model

Score test for random changepoint in a mixed model Score test for random changepoint in a mixed model Corentin Segalas and Hélène Jacqmin-Gadda INSERM U1219, Biostatistics team, Bordeaux GDR Statistiques et Santé October 6, 2017 Biostatistics 1 / 27 Introduction

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

. Also, in this case, p i = N1 ) T, (2) where. I γ C N(N 2 2 F + N1 2 Q)

. Also, in this case, p i = N1 ) T, (2) where. I γ C N(N 2 2 F + N1 2 Q) Supplementary information S7 Testing for association at imputed SPs puted SPs Score tests A Score Test needs calculations of the observed data score and information matrix only under the null hypothesis,

More information

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Hypothesis Testing Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA An Example Mardia et al. (979, p. ) reprint data from Frets (9) giving the length and breadth (in

More information

Label switching and its solutions for frequentist mixture models

Label switching and its solutions for frequentist mixture models Journal of Statistical Computation and Simulation ISSN: 0094-9655 (Print) 1563-5163 (Online) Journal homepage: http://www.tandfonline.com/loi/gscs20 Label switching and its solutions for frequentist mixture

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Negative binomial distribution and multiplicities in p p( p) collisions

Negative binomial distribution and multiplicities in p p( p) collisions Negative binomial distribution and multiplicities in p p( p) collisions Institute of Theoretical Physics University of Wroc law Zakopane June 12, 2011 Summary s are performed for the hypothesis that charged-particle

More information

Inferring biological dynamics Iterated filtering (IF)

Inferring biological dynamics Iterated filtering (IF) Inferring biological dynamics 101 3. Iterated filtering (IF) IF originated in 2006 [6]. For plug-and-play likelihood-based inference on POMP models, there are not many alternatives. Directly estimating

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Frequentist properties of estimators (v4) Ramesh Johari ramesh.johari@stanford.edu 1 / 39 Frequentist inference 2 / 39 Thinking like a frequentist Suppose that for some

More information

A New Dynamic Programming Decomposition Method for the Network Revenue Management Problem with Customer Choice Behavior

A New Dynamic Programming Decomposition Method for the Network Revenue Management Problem with Customer Choice Behavior A New Dynamic Programming Decomposition Method for the Network Revenue Management Problem with Customer Choice Behavior Sumit Kunnumkal Indian School of Business, Gachibowli, Hyderabad, 500032, India sumit

More information

Gallego et al. [Gallego, G., G. Iyengar, R. Phillips, A. Dubey Managing flexible products on a network.

Gallego et al. [Gallego, G., G. Iyengar, R. Phillips, A. Dubey Managing flexible products on a network. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 10, No. 2, Spring 2008, pp. 288 310 issn 1523-4614 eissn 1526-5498 08 1002 0288 informs doi 10.1287/msom.1070.0169 2008 INFORMS On the Choice-Based Linear

More information

Lecture 4 January 23

Lecture 4 January 23 STAT 263/363: Experimental Design Winter 2016/17 Lecture 4 January 23 Lecturer: Art B. Owen Scribe: Zachary del Rosario 4.1 Bandits Bandits are a form of online (adaptive) experiments; i.e. samples are

More information

A column generation algorithm for choice-based network revenue management

A column generation algorithm for choice-based network revenue management A column generation algorithm for choice-based network revenue management Juan José Miranda Bront Isabel Méndez-Díaz Gustavo Vulcano April 30, 2007 Abstract In the last few years, there has been a trend

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level

Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level A Monte Carlo Simulation to Test the Tenability of the SuperMatrix Approach Kyle M Lang Quantitative Psychology

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ )

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ ) Setting RHS to be zero, 0= (θ )+ 2 L(θ ) (θ θ ), θ θ = 2 L(θ ) 1 (θ )= H θθ (θ ) 1 d θ (θ ) O =0 θ 1 θ 3 θ 2 θ Figure 1: The Newton-Raphson Algorithm where H is the Hessian matrix, d θ is the derivative

More information

Label Switching and Its Simple Solutions for Frequentist Mixture Models

Label Switching and Its Simple Solutions for Frequentist Mixture Models Label Switching and Its Simple Solutions for Frequentist Mixture Models Weixin Yao Department of Statistics, Kansas State University, Manhattan, Kansas 66506, U.S.A. wxyao@ksu.edu Abstract The label switching

More information

Quantile Regression for Residual Life and Empirical Likelihood

Quantile Regression for Residual Life and Empirical Likelihood Quantile Regression for Residual Life and Empirical Likelihood Mai Zhou email: mai@ms.uky.edu Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA Jong-Hyeon Jeong email: jeong@nsabp.pitt.edu

More information

A tractable consideration set structure for network revenue management

A tractable consideration set structure for network revenue management A tractable consideration set structure for network revenue management Arne Strauss, Kalyan Talluri February 15, 2012 Abstract The dynamic program for choice network RM is intractable and approximated

More information

You can compute the maximum likelihood estimate for the correlation

You can compute the maximum likelihood estimate for the correlation Stat 50 Solutions Comments on Assignment Spring 005. (a) _ 37.6 X = 6.5 5.8 97.84 Σ = 9.70 4.9 9.70 75.05 7.80 4.9 7.80 4.96 (b) 08.7 0 S = Σ = 03 9 6.58 03 305.6 30.89 6.58 30.89 5.5 (c) You can compute

More information

Stat 135 Fall 2013 FINAL EXAM December 18, 2013

Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Name: Person on right SID: Person on left There will be one, double sided, handwritten, 8.5in x 11in page of notes allowed during the exam. The exam is closed

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona Likelihood based Statistical Inference Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona L. Pace, A. Salvan, N. Sartori Udine, April 2008 Likelihood: observed quantities,

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

ASSESSING A VECTOR PARAMETER

ASSESSING A VECTOR PARAMETER SUMMARY ASSESSING A VECTOR PARAMETER By D.A.S. Fraser and N. Reid Department of Statistics, University of Toronto St. George Street, Toronto, Canada M5S 3G3 dfraser@utstat.toronto.edu Some key words. Ancillary;

More information

Modelling of Dependent Credit Rating Transitions

Modelling of Dependent Credit Rating Transitions ling of (Joint work with Uwe Schmock) Financial and Actuarial Mathematics Vienna University of Technology Wien, 15.07.2010 Introduction Motivation: Volcano on Iceland erupted and caused that most of the

More information

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Econometrics Working Paper EWP0401 ISSN 1485-6441 Department of Economics AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Lauren Bin Dong & David E. A. Giles Department of Economics, University of Victoria

More information

1 Degree distributions and data

1 Degree distributions and data 1 Degree distributions and data A great deal of effort is often spent trying to identify what functional form best describes the degree distribution of a network, particularly the upper tail of that distribution.

More information

Goodness of Fit Goodness of fit - 2 classes

Goodness of Fit Goodness of fit - 2 classes Goodness of Fit Goodness of fit - 2 classes A B 78 22 Do these data correspond reasonably to the proportions 3:1? We previously discussed options for testing p A = 0.75! Exact p-value Exact confidence

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Lawrence D. Brown* and Daniel McCarthy*

Lawrence D. Brown* and Daniel McCarthy* Comments on the paper, An adaptive resampling test for detecting the presence of significant predictors by I. W. McKeague and M. Qian Lawrence D. Brown* and Daniel McCarthy* ABSTRACT: This commentary deals

More information

Comparing Means from Two-Sample

Comparing Means from Two-Sample Comparing Means from Two-Sample Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 3, 2015 Kwonsang Lee STAT111 April 3, 2015 1 / 22 Inference from One-Sample We have two options to

More information

Gaussian Graphical Models and Graphical Lasso

Gaussian Graphical Models and Graphical Lasso ELE 538B: Sparsity, Structure and Inference Gaussian Graphical Models and Graphical Lasso Yuxin Chen Princeton University, Spring 2017 Multivariate Gaussians Consider a random vector x N (0, Σ) with pdf

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

Statistics 135: Fall 2004 Final Exam

Statistics 135: Fall 2004 Final Exam Name: SID#: Statistics 135: Fall 2004 Final Exam There are 10 problems and the number of points for each is shown in parentheses. There is a normal table at the end. Show your work. 1. The designer of

More information

Purchasing power parity: A nonlinear multivariate perspective. Abstract

Purchasing power parity: A nonlinear multivariate perspective. Abstract Purchasing power parity: A nonlinear multivariate perspective Frédérique Bec THEMA, University of Cergy-Pontoise and CREST, France Mélika Ben Salem OEP, Paris-Est University and LEA-INRA (PSE), France

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator by Emmanuel Flachaire Eurequa, University Paris I Panthéon-Sorbonne December 2001 Abstract Recent results of Cribari-Neto and Zarkos

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

Logistic Regression Analysis

Logistic Regression Analysis Logistic Regression Analysis Predicting whether an event will or will not occur, as well as identifying the variables useful in making the prediction, is important in most academic disciplines as well

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

POLI 8501 Introduction to Maximum Likelihood Estimation

POLI 8501 Introduction to Maximum Likelihood Estimation POLI 8501 Introduction to Maximum Likelihood Estimation Maximum Likelihood Intuition Consider a model that looks like this: Y i N(µ, σ 2 ) So: E(Y ) = µ V ar(y ) = σ 2 Suppose you have some data on Y,

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Assume X P θ, θ Θ, with joint pdf (or pmf) f(x θ). Suppose we observe X = x. The Likelihood function is L(θ x) = f(x θ) as a function of θ (with the data x held fixed). The

More information

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 STAT 391 - Spring Quarter 2017 - Midterm 1 - April 27, 2017 Name: Student ID Number: Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 Directions. Read directions carefully and show all your

More information