A map approximation for the restricted three-body problem

Size: px
Start display at page:

Download "A map approximation for the restricted three-body problem"

Transcription

1 A map approximation for the restricted three-body problem Shane Ross Engineering Science and Mechanics, Virginia Tech sdross Collaborators: P. Grover (Virginia Tech) & D. J. Scheeres (U Michigan) SIAM Conference on Applications of Dynamical Systems

2 Infinity to capture about small companion in binary pair? After consecutive gravity assists, large orbit changes 2

3 Kicks at periapsis Key idea: model particle motion as kicks at periapsis Semimajor Axis vs. Time Δa+ m 1 m 2 Δa Δa Δa+ In rotating frame where m 1, m 2 are fixed 3

4 Kicks at periapsis Sensitive dependence on argument of periapse ω Semimajor Axis vs. Time Δa+ m 1 m 2 Δa Δa Δa+ In rotating frame where m 1, m 2 are fixed 4

5 Kicks at periapsis Construct update map (ω 1, a 1, e 1 ) (ω 2, a 2, e 2 ) using average perturbation per orbit by smaller mass (ω 1,a 1,e 1 ) 5

6 Kicks at periapsis Construct update map (ω 1, a 1, e 1 ) (ω 2, a 2, e 2 ) using average perturbation per orbit by smaller mass (ω 1,a 1,e 1 ) (ω 2,a 2,e 2 ) 6

7 Kicks at periapsis Cumulative effect of consecutive gravity assists can be dramatic. 7

8 Not hyperbolic swing-by Occur outside sphere of influence (Hill radius) not the close, hyperbolic swing-bys of Voyager 8

9 Capture by secondary Dynamically connected to capture thru tubes 9

10 Starting model: restricted 3-body problem Particle assumed on near-keplerian orbit around m 1 In the frame co-rotating with m 2 and m 1, H rot (l, ω, L, G) = K(L) + µr(l, ω, L, G) G, in Delaunay variables Evolution is Hamitlon s equations: d (l, ω, L, G) = f(l, ω, L, G) dt Jacobi constant, C J = 2H rot conserved along trajectories 1

11 Change in orbital elements over one particle orbit Picard s method of approximation Let y(t) = x = unperturbed orbital elements Approximate change in orbital elements over one particle orbit is y = t +T t f(x, τ) dτ, where T = period of unperturbed orbit 11

12 Change in orbital elements over one particle orbit Assume greatest perturbation occurs at periapsis Limits of integration, apoapsis to apoapsis P m 1 m 2 12

13 Change in orbital elements over one particle orbit Evolution of G (angular momentum) dg dt = µ R ω, Picard s approximation: T/2 R G = µ T/2 ω dt [( = µ π ( ) 3 r sin(ω + ν t(ν)) dν) sin ω G π r 2 ( π ) ] 2 cos(ν t(ν)) dν K = Keplerian energy change over an orbit K = G µ R 13

14 Energy kick function Changes have form K = µf(ω), f is the energy kick function with parameters K, C J 2 1 f ω/π 14

15 Maximum changes on either side of perturber Semimajor Axis vs. Time Δa+ m 1 ω max m 2 ω max Δa Δa Δa+ 2 1 f ω/π 15

16 The periapsis kick map (Keplerian Map) Cumulative effect of consecutive passes by perturber Can construct an update map (ω n+1, K n+1 ) = F (ω n, K n ) on the cylinder Σ = S 1 R, i.e., F : Σ Σ where ( ) ( ) ωn+1 ωn 2π( 2(K = n + µf(ω n ))) 3/2 K n + µf(ω n ) K n+1 Area-preserving (symplectic twist) map Example: particle in Jupiter-Callisto system µ =

17 Verification of Keplerian map: phase portrait Keplerian map 17

18 Verification of Keplerian map: phase portrait Keplerian map numerical integration of ODEs Keplerian map = fast orbit propagator preserves phase space features but breaks left-right symmetry present in original system can be removed using another method (Hamilton-Jacobi) 18

19 Dynamics of Keplerian map a ω/π Resonance zone 1 Structured motion around resonance zones 1 in the terminology of MacKay, Meiss, and Percival [1987] 19

20 Dynamics of Keplerian map a ω/π Resonance zone 2 Structured motion around resonance zones 2 in the terminology of MacKay, Meiss, and Percival [1987] 2

21 Large orbit changes via multiple resonance zones multiple flybys for orbit reduction or expansion P m 1 m 2 21

22 Large orbit changes, Γ n = F n (Γ ) ω/π.1 Δa.5 Γ

23 Large orbit changes, Γ n = F n (Γ ) ω/π.1 Δa.5 Γ -.5 Γ

24 Large orbit changes, Γ n = F n (Γ ) ω/π.1 Δa.5 Γ -.5 Γ Γ Γ

25 Large orbit changes, Γ n = F n (Γ ) ω/π.1 Δa.5 Γ -.5 Γ Γ Γ Γ Γ

26 Large orbit changes, Γ n = F n (Γ ) ω/π.1 Δa.5 Γ -.5 Γ Γ Γ Γ Γ Γ Γ 25 b

27 Large orbit changes, Γ n = F n (Γ ) ω/π.1 Δa.5 Γ -.5 Γ Γ Γ Γ Γ Γ Γ 25 b example trajectory 27

28 Reachable orbits and diffusion Reachable Orbits 2 C J = 2.99 a C J = n Diffusion in semimajor axis... increases as C J decreases (larger kicks) 28

29 Reachable orbits: upper boundary for small µ A rotational invariant circle (RIC) RIC found in Keplerian map for µ =

30 Identify Keplerian map as Poincaré return map Σ (ω,a) F(ω,a) F Poincaré map at periapsis in orbital element space F : Σ Σ where Σ = {l = C J = constant} 3

31 Relationship to capture around perturber Σ e : Poincare Section at Periapsis P Jupiter exit from jovicentric to moon region Jovian Moon Exit: where tube of capture orbits intersects Σ 31

32 Relationship to capture around perturber Jovian Moon L 2 exit from jovicentric to moon region Exit: where tube of capture orbits intersects Σ Orbits reaching exit are ballistically captured, passing by L 2 32

33 Relationship to capture from infinity K > Hyperbolic orbits Elliptical orbits K < Captured from infinity after previous periapsis 1 1 ω/π 33

34 Summary and conclusions Consecutive gravity assists Reduced to simple lower-dimensional map nice analytical form many phase space features preserved Dynamically connected to capture to and escape from perturber capture to and escape from infinity Applicable to some astronomical phenomena Preliminary optimal trajectory design 34

35 Final word Extensions: out of plane motion (4D map) control in the presence of uncertainty eccentric orbits for the perturbers multiple perturbers transfer from one body to another E G Consider other problems with localized perturbations? chemistry, vortex dynamics,... Reference: Ross & Scheeres, SIAM J. Applied Dynamical Systems, 27. more at: 35

Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem

Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 6, No. 3, pp. 576 596 c 2007 Society for Industrial and Applied Mathematics Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem Shane

More information

MULTIPLE GRAVITY ASSISTS IN THE RESTRICTED THREE-BODY PROBLEM

MULTIPLE GRAVITY ASSISTS IN THE RESTRICTED THREE-BODY PROBLEM AAS 07-227 MULTIPLE GRAVITY ASSISTS IN THE RESTRICTED THREE-BODY PROBLEM Shane D. Ross and Daniel J. Scheeres Abstract For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter

More information

Design of a Multi-Moon Orbiter

Design of a Multi-Moon Orbiter C C Dynamical A L T E C S H Design of a Multi-Moon Orbiter Shane D. Ross Control and Dynamical Systems and JPL, Caltech W.S. Koon, M.W. Lo, J.E. Marsden AAS/AIAA Space Flight Mechanics Meeting Ponce, Puerto

More information

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists Final Summer Undergraduate Research Fellowship Report September 25, 2009 Natasha Bosanac Mentor: Professor Jerrold

More information

A SYMPLECTIC KEPLERIAN MAP FOR PERTURBED TWO-BODY DYNAMICS. Oier Peñagaricano Muñoa 1, Daniel J. Scheeres 2

A SYMPLECTIC KEPLERIAN MAP FOR PERTURBED TWO-BODY DYNAMICS. Oier Peñagaricano Muñoa 1, Daniel J. Scheeres 2 AIAA/AAS Astrodynamics Specialist Conference and Exhibit 8 - August 008, Honolulu, Hawaii AIAA 008-7068 AIAA 008-7068 A SYMPLECTIC KEPLERIAN MAP FOR PERTURBED TWO-BODY DYNAMICS Oier Peñagaricano Muñoa,

More information

Identifying Safe Zones for Planetary Satellite Orbiters

Identifying Safe Zones for Planetary Satellite Orbiters AIAA/AAS Astrodynamics Specialist Conference and Exhibit 16-19 August 2004, Providence, Rhode Island AIAA 2004-4862 Identifying Safe Zones for Planetary Satellite Orbiters M.E. Paskowitz and D.J. Scheeres

More information

Design of Low Energy Space Missions using Dynamical Systems Theory

Design of Low Energy Space Missions using Dynamical Systems Theory Design of Low Energy Space Missions using Dynamical Systems Theory Koon, Lo, Marsden, and Ross W.S. Koon (Caltech) and S.D. Ross (USC) CIMMS Workshop, October 7, 24 Acknowledgements H. Poincaré, J. Moser

More information

Design of low energy space missions using dynamical systems theory

Design of low energy space missions using dynamical systems theory C C Dynamical A L T E C S H Design of low energy space missions using dynamical systems theory Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane Collaborators: J.E. Marsden

More information

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES Gislaine de Felipe and Antonio Fernando Bertachini de Almeida Prado Instituto Nacional de Pesquisas Espaciais - São José dos Campos - SP - 12227-010

More information

THE exploration of planetary satellites is currently an active area

THE exploration of planetary satellites is currently an active area JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 9, No. 5, September October 6 Design of Science Orbits About Planetary Satellites: Application to Europa Marci E. Paskowitz and Daniel J. Scheeres University

More information

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem C C Dynamical A L T E C S H Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane/pub/thesis/ April

More information

14 th AAS/AIAA Space Flight Mechanics Conference

14 th AAS/AIAA Space Flight Mechanics Conference Paper AAS 04-289 Application of Dynamical Systems Theory to a Very Low Energy Transfer S. D. Ross 1, W. S. Koon 1, M. W. Lo 2, J. E. Marsden 1 1 Control and Dynamical Systems California Institute of Technology

More information

Interplanetary Mission Analysis

Interplanetary Mission Analysis Interplanetary Mission Analysis Stephen Kemble Senior Expert EADS Astrium stephen.kemble@astrium.eads.net Page 1 Contents 1. Conventional mission design. Advanced mission design options Page 1. Conventional

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 5: Hyperbolic Orbits Introduction In this Lecture, you will learn: Hyperbolic orbits Hyperbolic Anomaly Kepler s Equation,

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Sang Koon and Martin Lo Shane Ross Control and Dynamical Systems, Caltech shane@cds.caltech.edu Constructing Orbits of Prescribed Itineraries:

More information

Connecting orbits and invariant manifolds in the spatial three-body problem

Connecting orbits and invariant manifolds in the spatial three-body problem C C Dynamical A L T E C S H Connecting orbits and invariant manifolds in the spatial three-body problem Shane D. Ross Control and Dynamical Systems, Caltech Work with G. Gómez, W. Koon, M. Lo, J. Marsden,

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu The Flow near L and L 2 : Outline Outline

More information

From the Earth to the Moon: the weak stability boundary and invariant manifolds -

From the Earth to the Moon: the weak stability boundary and invariant manifolds - From the Earth to the Moon: the weak stability boundary and invariant manifolds - Priscilla A. Sousa Silva MAiA-UB - - - Seminari Informal de Matemàtiques de Barcelona 05-06-2012 P.A. Sousa Silva (MAiA-UB)

More information

Dynamic Exoplanets. Alexander James Mustill

Dynamic Exoplanets. Alexander James Mustill Dynamic Exoplanets Alexander James Mustill Exoplanets: not (all) like the Solar System Exoplanets: not (all) like the Solar System Solar System Lissauer et al 14 Key questions to bear in mind What is role

More information

Lecture 1: Oscillatory motions in the restricted three body problem

Lecture 1: Oscillatory motions in the restricted three body problem Lecture 1: Oscillatory motions in the restricted three body problem Marcel Guardia Universitat Politècnica de Catalunya February 6, 2017 M. Guardia (UPC) Lecture 1 February 6, 2017 1 / 31 Outline of the

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM JORGE K. S. FORMIGA 1,2 and ANTONIO F B A PRADO 2 National Institute for Space Research -INPE 1 Technology Faculty-FATEC-SJC

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dnamical Sstems and Space Mission Design Wang Koon, Martin Lo, Jerrold Marsden and Shane Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cds.caltech.edu Acknowledgements H. Poincaré, J. Moser

More information

Invariant Manifolds and Transport in the Three-Body Problem

Invariant Manifolds and Transport in the Three-Body Problem Dynamical S C C A L T E C H Invariant Manifolds and Transport in the Three-Body Problem Shane D. Ross Control and Dynamical Systems California Institute of Technology Classical N-Body Systems and Applications

More information

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, January 8, 2001 shane@cds.caltech.edu

More information

Orbital and Celestial Mechanics

Orbital and Celestial Mechanics Orbital and Celestial Mechanics John P. Vinti Edited by Gim J. Der TRW Los Angeles, California Nino L. Bonavito NASA Goddard Space Flight Center Greenbelt, Maryland Volume 177 PROGRESS IN ASTRONAUTICS

More information

OPTIMIZATION OF LOW-ENERGY RESONANT HOPPING TRANSFERS BETWEEN PLANETARY MOONS

OPTIMIZATION OF LOW-ENERGY RESONANT HOPPING TRANSFERS BETWEEN PLANETARY MOONS IAC-09.C1.1.1 OPTIMIZATION OF LOW-ENERGY RESONANT HOPPING TRANSFERS BETWEEN PLANETARY MOONS Gregory Lantoine Georgia Institute of Technology, Atlanta, United States of America gregory.lantoine@gatech.edu

More information

INVARIANT MANIFOLDS, DISCRETE MECHANICS, AND TRAJECTORY DESIGN FOR A MISSION TO TITAN

INVARIANT MANIFOLDS, DISCRETE MECHANICS, AND TRAJECTORY DESIGN FOR A MISSION TO TITAN AAS 9-226 INVARIANT MANIFOLDS, DISCRETE MECHANICS, AND TRAJECTORY DESIGN FOR A MISSION TO TITAN Evan S. Gawlik, Jerrold E. Marsden, Stefano Campagnola, Ashley Moore With an environment comparable to that

More information

TITAN TRAJECTORY DESIGN USING INVARIANT MANIFOLDS AND RESONANT GRAVITY ASSISTS

TITAN TRAJECTORY DESIGN USING INVARIANT MANIFOLDS AND RESONANT GRAVITY ASSISTS AAS 10-170 TITAN TRAJECTORY DESIGN USING INVARIANT MANIFOLDS AND RESONANT GRAVITY ASSISTS Natasha Bosanac, * Jerrold E. Marsden, Ashley Moore and Stefano Campagnola INTRODUCTION Following the spectacular

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 10. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 6. Interplanetary Trajectories 6.1 Patched conic method 6.2 Lambert s problem

More information

Extending the Patched-Conic Approximation to the Restricted Four-Body Problem

Extending the Patched-Conic Approximation to the Restricted Four-Body Problem Monografías de la Real Academia de Ciencias de Zaragoza 3, 133 146, (6). Extending the Patched-Conic Approximation to the Restricted Four-Body Problem Thomas R. Reppert Department of Aerospace and Ocean

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L06: Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 Problem Statement? Hint #1: design the Earth-Mars transfer using known concepts

More information

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS Francesco Topputo (), Massimiliano Vasile () and Franco Bernelli-Zazzera () () Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano,

More information

Lesson 11: Orbital Transfers II. 10/6/2016 Robin Wordsworth ES 160: Space Science and Engineering: Theory and ApplicaCons

Lesson 11: Orbital Transfers II. 10/6/2016 Robin Wordsworth ES 160: Space Science and Engineering: Theory and ApplicaCons Lesson 11: Orbital Transfers II 10/6/2016 Robin Wordsworth ES 160: Space Science and Engineering: Theory and ApplicaCons ObjecCves Introduce concept of sphere of influence Study the patched conics approach

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

Design of a Multi-Moon Orbiter. Jerrold E. Marsden

Design of a Multi-Moon Orbiter. Jerrold E. Marsden C A L T E C H Control & Dynamical Systems Design of a Multi-Moon Orbiter Jerrold E. Marsden Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ marsden/ Wang Sang Koon (CDS), Martin Lo (JPL),

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

Previous Lecture. The Von Zeipel Method. Application 1: The Brouwer model. Application 2: The Cid-Lahulla model. Simplified Brouwer transformation.

Previous Lecture. The Von Zeipel Method. Application 1: The Brouwer model. Application 2: The Cid-Lahulla model. Simplified Brouwer transformation. 2 / 36 Previous Lecture The Von Zeipel Method. Application 1: The Brouwer model. Application 2: The Cid-Lahulla model. Simplified Brouwer transformation. Review of Analytic Models 3 / 36 4 / 36 Review:

More information

ASE 366K Spacecraft Dynamics

ASE 366K Spacecraft Dynamics ASE 366K Spacecraft Dynamics Homework 2 Solutions 50 Points Total: 10 points each for 1.16, 1.19, 2.6, 2.7, and 10 points for completing the rest. 1.13 Show that the position vector is a min or max at

More information

A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter

A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3: RESONANCE Érica C. Nogueira, Othon C. Winter Grupo de Dinâmica Orbital e Planetologia UNESP -- Guaratinguetá -- Brazil Antonio F.B. de

More information

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points)

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) PROBLEM 1 A) Summarize the content of the three Kepler s Laws. B) Derive any two of the Kepler

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

The B-Plane Interplanetary Mission Design

The B-Plane Interplanetary Mission Design The B-Plane Interplanetary Mission Design Collin Bezrouk 2/11/2015 2/11/2015 1 Contents 1. Motivation for B-Plane Targeting 2. Deriving the B-Plane 3. Deriving Targetable B-Plane Elements 4. How to Target

More information

Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network

Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network C C Dynamical A L T E C S H Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network Shane D. Ross Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ shane W.S.

More information

TP 3:Runge-Kutta Methods-Solar System-The Method of Least Squares

TP 3:Runge-Kutta Methods-Solar System-The Method of Least Squares TP :Runge-Kutta Methods-Solar System-The Method of Least Squares December 8, 2009 1 Runge-Kutta Method The problem is still trying to solve the first order differential equation dy = f(y, x). (1) dx In

More information

Today in Astronomy 111: rings, gaps and orbits

Today in Astronomy 111: rings, gaps and orbits Today in Astronomy 111: rings, gaps and orbits Gap sizes: the Hill radius Perturbations and resonances The variety of structures in planetary rings Spiral density waves Titan Bending waves Horseshoe and

More information

F. Marzari, Dept. Physics, Padova Univ. Planetary migration

F. Marzari, Dept. Physics, Padova Univ. Planetary migration F. Marzari, Dept. Physics, Padova Univ. Planetary migration Standard model of planet formation based on Solar system exploration Small semimajor axes Large eccentricities The standard model Protostar +Disk

More information

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING Orbit selection and sensor characteristics are closely related to the strategy required to achieve the desired results. Different types

More information

Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia,

Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia, Regular n-gon as a model of discrete gravitational system Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia, E-mail: hegem@mail.ru Introduction A system of N points, each having mass m, forming a planar regular

More information

Invariant Manifolds, Material Transport and Space Mission Design

Invariant Manifolds, Material Transport and Space Mission Design C A L T E C H Control & Dynamical Systems Invariant Manifolds, Material Transport and Space Mission Design Shane D. Ross Control and Dynamical Systems, Caltech Candidacy Exam, July 27, 2001 Acknowledgements

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Three objects; 2+1 problem

Three objects; 2+1 problem Three objects; 2+1 problem Having conquered the two-body problem, we now set our sights on more objects. In principle, we can treat the gravitational interactions of any number of objects by simply adding

More information

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3)

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3) The standard or Taylor Chirikov map is a family of area-preserving maps, z = f(z)where z = (x, y) is the original position and z = (x,y ) the new position after application of the map, which is defined

More information

Geometric Mechanics and the Dynamics of Asteroid Pairs

Geometric Mechanics and the Dynamics of Asteroid Pairs Geometric Mechanics and the Dynamics of Asteroid Pairs Wang-Sang Koon, Jerrold E. Marsden and Shane Ross Control and Dynamical Systems 107-81 Caltech, Pasadena, CA 91125 Martin Lo Navigation and Mission

More information

Geometric Mechanics and the Dynamics of Asteroid Pairs

Geometric Mechanics and the Dynamics of Asteroid Pairs Geometric Mechanics and the Dynamics of Asteroid Pairs WANG-SANG KOON, a JERROLD E. MARSDEN, a SHANE D. ROSS, a MARTIN LO, b AND DANIEL J. SCHEERES c a Control and Dynamical Systems, Caltech, Pasadena,

More information

List of Tables. Table 3.1 Determination efficiency for circular orbits - Sample problem 1 41

List of Tables. Table 3.1 Determination efficiency for circular orbits - Sample problem 1 41 List of Tables Table 3.1 Determination efficiency for circular orbits - Sample problem 1 41 Table 3.2 Determination efficiency for elliptical orbits Sample problem 2 42 Table 3.3 Determination efficiency

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

EESC 9945 Geodesy with the Global Posi6oning System. Class 2: Satellite orbits

EESC 9945 Geodesy with the Global Posi6oning System. Class 2: Satellite orbits EESC 9945 Geodesy with the Global Posi6oning System Class 2: Satellite orbits Background The model for the pseudorange was Today, we ll develop how to calculate the vector posi6on of the satellite The

More information

THE THREE-BODY PROBLEM

THE THREE-BODY PROBLEM STUDIES IN ASTRONAUTICS 4 THE THREE-BODY PROBLEM CHRISTIAN MARCH AL Office National d'etudes et de RecherchesAerospatiales, Chätillon, France Amsterdam - Oxford - New York -Tokyo 1990 X CONTENTS Foreword

More information

Astromechanics. 10. The Kepler Problem

Astromechanics. 10. The Kepler Problem Astromechanics 10. The Kepler Problem One of the fundamental problems in astromechanics is the Kepler problem The Kepler problem is stated as follows: Given the current position a velocity vectors and

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

Chaos in Hamiltonian systems

Chaos in Hamiltonian systems Chaos in Hamiltonian systems Teemu Laakso April 26, 2013 Course material: Chapter 7 from Ott 1993/2002, Chaos in Dynamical Systems, Cambridge http://matriisi.ee.tut.fi/courses/mat-35006 Useful reading:

More information

Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission

Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P.,

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Effect of Coordinate Switching on Translunar Trajectory Simulation Accuracy

Effect of Coordinate Switching on Translunar Trajectory Simulation Accuracy Effect of Coordinate Switching on Translunar Trajectory Simulation Accuracy Mana P. Vautier Auburn University, Auburn, AL, 36849, USA This paper focuses on the affect of round-off error in the accurate

More information

Patch Conics. Basic Approach

Patch Conics. Basic Approach Patch Conics Basic Approach Inside the sphere of influence: Planet is the perturbing body Outside the sphere of influence: Sun is the perturbing body (no extra-solar system trajectories in this class...)

More information

Problem Description for the 6 th Global Trajectory Optimisation Competition. Anastassios E. Petropoulos 1

Problem Description for the 6 th Global Trajectory Optimisation Competition. Anastassios E. Petropoulos 1 Problem Description for the 6 th Global Trajectory Optimisation Competition Anastassios E. Petropoulos 1 Outer Planet Mission Analysis Group Jet Propulsion Laboratory California Institute of Technology

More information

Low-energy capture of asteroids onto KAM tori

Low-energy capture of asteroids onto KAM tori Low-energy capture of asteroids onto KAM tori Patricia E. Verrier 1 and Colin R. McInnes 2 University of Strathclyde, Glasgow, Scotland G1 1XJ, United Kingdom I. Introduction Engineering the artificial

More information

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado Boulder Lecture 29: Interplanetary 1 HW 8 is out Due Wednesday, Nov 12. J2 effect Using VOPs Announcements Reading:

More information

Theory of mean motion resonances.

Theory of mean motion resonances. Theory of mean motion resonances. Mean motion resonances are ubiquitous in space. They can be found between planets and asteroids, planets and rings in gaseous disks or satellites and planetary rings.

More information

Post-Newtonian N-body Codes. Sverre Aarseth. Institute of Astronomy, Cambridge

Post-Newtonian N-body Codes. Sverre Aarseth. Institute of Astronomy, Cambridge Post-Newtonian N-body Codes Sverre Aarseth Institute of Astronomy, Cambridge Introduction N-body tools Three-body formulation PN implementations Numerical examples Discussion Hermite Integration Taylor

More information

Area-PReserving Dynamics

Area-PReserving Dynamics Area-PReserving Dynamics James Meiss University of Colorado at Boulder http://amath.colorado.edu/~jdm/stdmap.html NZMRI Summer Workshop Raglan, New Zealand, January 9 14, 2011 The Standard Map K(θ,t) Frictionless,

More information

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation.

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation. Interplanetary Path Early Design Tools at Space Transportation Nathalie DELATTRE Space Transportation Page 1 Interplanetary missions Prime approach: -ST has developed tools for all phases Launch from Earth

More information

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space Noname manuscript No. (will be inserted by the editor) Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space L. Hagen A. Utku P. Palmer Received: date / Accepted:

More information

The Astrodynamics and Mechanics of Orbital Spaceflight

The Astrodynamics and Mechanics of Orbital Spaceflight The Astrodynamics and Mechanics of Orbital Spaceflight Vedant Chandra 11-S1, TSRS Moulsari 1 1 Introduction to Rocketry Before getting into the details of orbital mechanics, we must understand the fundamentals

More information

Celestial mechanics and dynamics. Solar System and Planetary Astronomy Astro 9601

Celestial mechanics and dynamics. Solar System and Planetary Astronomy Astro 9601 Celestial mechanics and dynamics Solar System and Planetary Astronomy Astro 9601 1 Topics to be covered The two-body problem (2.1) The three-body problem (2.2) Perturbations ti and resonances (2.3) Long-term

More information

Optimized Three-Body Gravity Assists and Manifold Transfers in End-to-End Lunar Mission Design

Optimized Three-Body Gravity Assists and Manifold Transfers in End-to-End Lunar Mission Design MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Optimized Three-Body Gravity Assists and Manifold Transfers in End-to-End Lunar Mission Design Grover, P.; Andersson, C. TR2012-024 January

More information

Astromechanics. 6. Changing Orbits

Astromechanics. 6. Changing Orbits Astromechanics 6. Changing Orbits Once an orbit is established in the two body problem, it will remain the same size (semi major axis) and shape (eccentricity) in the original orbit plane. In order to

More information

Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration

Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration Sato, Y.; Grover, P.; Yoshikawa, S. TR0- June

More information

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE DOING PHYSICS WITH MATLAB A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE Download Directory: Matlab mscripts mec_satellite_gui.m The [2D] motion of a satellite around the Earth is computed from

More information

A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA

A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA ISTS 26-d-2 A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA Gerard Gomez Dept. Matematica Aplicada i Analisi, Universitat de Barcelona, 8 7 Barcelona, Spain (gerard@maia.ub.es)

More information

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS POINCARÉ-MELNIKOV-ARNOLD METHOD FOR TWIST MAPS AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS 1. Introduction A general theory for perturbations of an integrable planar map with a separatrix to a hyperbolic fixed

More information

Phys 2101 Gabriela González

Phys 2101 Gabriela González Phys 2101 Gabriela González Newton s law : F = Gm 1 m 2 /r 2 Explains why apples fall, why the planets move around the Sun, sciencebulletins.amnh.org And in YouTube! Explains just as well as Newtons why

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

INVARIANT TORI IN THE LUNAR PROBLEM. Kenneth R. Meyer, Jesús F. Palacián, and Patricia Yanguas. Dedicated to Jaume Llibre on his 60th birthday

INVARIANT TORI IN THE LUNAR PROBLEM. Kenneth R. Meyer, Jesús F. Palacián, and Patricia Yanguas. Dedicated to Jaume Llibre on his 60th birthday Publ. Mat. (2014), 353 394 Proceedings of New Trends in Dynamical Systems. Salou, 2012. DOI: 10.5565/PUBLMAT Extra14 19 INVARIANT TORI IN THE LUNAR PROBLEM Kenneth R. Meyer, Jesús F. Palacián, and Patricia

More information

Vortex Motion and Soliton

Vortex Motion and Soliton International Meeting on Perspectives of Soliton Physics 16-17 Feb., 2007, University of Tokyo Vortex Motion and Soliton Yoshi Kimura Graduate School of Mathematics Nagoya University collaboration with

More information

Patched Conic Interplanetary Trajectory Design Tool

Patched Conic Interplanetary Trajectory Design Tool Copyright by Martin James Brennan 2011 The Thesis committee for Martin James Brennan Certifies that this is the approved version of the following thesis: Patched Conic Interplanetary Trajectory Design

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Escape Trajectories from the L 2 Point of the Earth-Moon System

Escape Trajectories from the L 2 Point of the Earth-Moon System Trans. Japan Soc. Aero. Space Sci. Vol. 57, No. 4, pp. 238 244, 24 Escape Trajectories from the L 2 Point of the Earth-Moon System By Keita TANAKA Þ and Jun ichiro KAWAGUCHI 2Þ Þ Department of Aeronautics

More information

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a

The Law of Ellipses (Kepler s First Law): all planets orbit the sun in a Team Number Team Members Present Learning Objectives 1. Practice the Engineering Process a series of steps to follow to design a solution to a problem. 2. Practice the Five Dimensions of Being a Good Team

More information

Elastic Collisions. Chapter Center of Mass Frame

Elastic Collisions. Chapter Center of Mass Frame Chapter 11 Elastic Collisions 11.1 Center of Mass Frame A collision or scattering event is said to be elastic if it results in no change in the internal state of any of the particles involved. Thus, no

More information

Orbital Stability Regions for Hypothetical Natural Satellites

Orbital Stability Regions for Hypothetical Natural Satellites Orbital Stability Regions for Hypothetical Natural Satellites By Samantha RIEGER, 1) Daniel SCHEERES, 1) 1) Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder,

More information

The effects of YORP on the spin rate distribution of the Near Earth Objects

The effects of YORP on the spin rate distribution of the Near Earth Objects The effects of YORP on the spin rate distribution of the Near Earth Objects A. Rossi, F. Marzari, D.J. Scheeres ISTI CNR, Pisa Università di Padova University of Colorado Binary Asteroid Dynamics Workshop

More information

Joseph Castro Mentor: Nader Haghighipour

Joseph Castro Mentor: Nader Haghighipour ON THE POSSIBILITY OF ADDITIONAL PLANETS IN THE γ CEPHEI BINARY-PLANETARY SYSTEM Joseph Castro Mentor: Nader Haghighipour ABSTRACT Results of the simulations of the dynamical stability of additional hypothetical

More information

Hamiltonian Chaos and the standard map

Hamiltonian Chaos and the standard map Hamiltonian Chaos and the standard map Outline: What happens for small perturbation? Questions of long time stability? Poincare section and twist maps. Area preserving mappings. Standard map as time sections

More information

A Study of the Close Approach Between a Planet and a Cloud of Particles

A Study of the Close Approach Between a Planet and a Cloud of Particles A Study of the Close Approach Between a Planet a Cloud of Particles IIAN MARTINS GOMES, ANTONIO F. B. A. PRADO National Institute for Space Research INPE - DMC Av. Dos Astronautas 1758 São José dos Campos

More information