Uncertainty estimation in volumetrics for supporting hydrocarbon E&P decision making

Size: px
Start display at page:

Download "Uncertainty estimation in volumetrics for supporting hydrocarbon E&P decision making"

Transcription

1 Uncertainty estimation in volumetrics for supporting hydrocarbon E&P decision making Frans J.T. Floris 1 and Martin R.H.E. Peersmann Netherlands Institute of Applied Geoscience TNO P.O. Box 6012, 2600 JA, Delft floris@nitg.tno.nl, peersmann@nitg.tno.nl Abstract A methodology is presented for uncertainty estimation in volumetrics. Firstly, we stress the need for an open hierarchical methodology. This allows for a flexible work process in estimating uncertainty throughout the asset life-cycle, in which data of various scales and accuracy must be integrated. Secondly, a method is explained for the transfer of spatial uncertainty in structure and rock properties to uncertainty in hydrocarbon volume. Thirdly, a new technique is presented for calculating average water saturation. Application to a synthetic case study shows that scalar uncertainty calculation leads to an under-estimation of the uncertainty compared to a spatial approach. Spatial mapping of standard deviation of net hydrocarbon column indicates extra potential in the field. Incorporation of correlations in the field between, for example porosity, permeability and water saturation, increase the uncertainty range. Using extra wells in the uncertainty estimation reduces uncertainty. Now, the known volume lies within the estimated proven to probable range. Keywords : Spatial uncertainty, volumetric estimation, decision making, Monte Carlo Introduction Making decisions in reservoir management requires a method for quantifying uncertainty. In the early stages of the life cycle of a hydrocarbon asset, the estimation of hydrocarbon volume and associated uncertainty are of major importance. Later, when production history becomes available, focus shifts to asessing the uncertainty in the dynamic aspects of hydrocarbon recovery. This paper focuses on the volumetrics, ie. estimation of expectation and uncertainty of initial hydrocarbons in place. A review of current practise regarding probabilitistic volumetrics estimation in the oil industry can be found in Hefner and Thompson (1996). A formal framework for quantifying uncertainty in volumetrics has been presented in Berteig et al. (1988). The framework is applied to a simple case study, but in a later paper a realistic case study is performed (Lia et al. 1997). The resulting volumetric uncertainty estimates can be used as input for material balance calculation (see van Kruijsdijk, 1996) or for dynamic reservoir simulations which will provide a production forecast estimate with uncertainty. The production forecast in turn is used in economics or NPV calculations and further transformed into risk involved in decisions. In our approach we highlight three ingredients, process hierarchy, spatial uncertainty, water saturation estimation, that we believe are important in our approach. Process hierarchy During the asset life cycle more data is obtained in order to do technical analysis to provide input into the decision process. Initially, only very rough estimates of gross rock volume and hydrocarbon content can be made due to lack of data. When more data become available, for example from wells, the technical assessment study can become more detailed. Therefore, uncertainty estimation for supporting the decision making process must 1 Corresponding author

2 Uncertainty estimation in volumetrics for supporting... 2 allow for different levels of detail. A second problem is that correlations which hold in one field, may not be valid for another field. Therefore, we cannot completely fix the flow of processes that occur in the technical assessment. These two observations call for an open hierarchical system of calculation in which the user has enough control to specify the level of detail and process flow that he needs for the field under study. In order to accommodate the requirement of openness, we have developed an open Monte Carlo engine, in which the user can specify the calculations that need to be performed. In order to accommodate different levels of detail, the Monte Carlo engine can work with both scalar data for simple global estimates and arbitrary dimensional grid data, in order to allow for detailed calculations. Scalar and grid calculations can be mixed arbitrarily. The openness is realized by allowing the user to specify his own stochastic variables. The stochastic variables can be correlated through standard mathematical expressions. Moreover, a generic interface has been defined to couple any external calculation program in a transparent way. This external program may perform functions like interpolation, kriging or fluid flow simulation, in order to make more advanced correlations possible. Proprietary software may be plugged in this way. The Monte Carlo engine takes care of the calculation of probability distributions through the tree of stochastic variables. For certain fixed interpretation processes, templates can be used which pre-define the variables and calculations involved. Apart from being able to propagate probability distributions up through the processes, it is very important for the decision making process to be able to track the largest source of uncertainty down the tree. When the largest source of uncertainty has been found, data acquisition on this quantity will have the largest impact on the overall uncertainty. Figure 1 gives an example of a volumetrics calculation in which some of the components of the top level formula are expanded in more detail. We consider porosity as a scalar variable, but layer thickness is modelled in much more detail through velocity and reflection time grids derived from seismic. Note the use of spatial uncertainty grids, σ V and σ T which is the topic of the next section. Spatial uncertainty Some rock properties and rock property correlations of a reservoir are inherently spatial. Aggregating them into averages and estimating the expected hydrocarbon volume from these averages may lead to inaccurate and biased results, especially when the properties are correlated. Moreover, for estimating the uncertainty associated to the aggregate values their spatial distribution must be taken into account. Thus, in order to assess the impact of such rock property uncertainty and associated correlations on the uncertainty of total hydrocarbon volume, uncertainty should be included as a spatial characteristic. We note here that uncertainty tools such as the spreadsheet and CRISTAL BALL do not support this. Geostatistical methods can help to model spatial uncertainty. Here, we propose a method for generating possible images of the quantities occuring in spatial models, which each share the required geostatistical properties, mean, standard deviation and variogram. This method has been applied by Samson et al. (1996) in the context of gross rock volume estimation, but we use it in a more general context. Consider a quantity Y, e.g. the velocity or reflection time of the previous section or rock properties such as porosity or permeability. The mean of a quantity Y is defined as the map, Y µ, that would be obtained by a most likely interpretation of the raw data. A standard deviation map, Y µ, must be generated which reflects the uncertainty in the most likely interpretation of the data. Generally, uncertainty will be zero in the wells, if any are available. When the uncertainty map, Y σ, can be estimated in some other points, a smooth uncertainty map can be created by kriging. When considering seismic reflection time seismic resolution can be used to represent the uncertainty distant from the well locations.

3 Uncertainty estimation in volumetrics for supporting... 3 From the mean and standard deviation map, realizations can be constructed in the following way. A Gaussian random field, Z(x), is generated with a mean equal to zero, standard deviation equal to one and a given variogram (Deutsch & Journel, 1992). The variogram dictates the spatial structure in the Gaussian random field. A realization can then be constructed using Y(x) = Y µ (x) + Z(x) * Y σ (x) (1) Since the mean of Z equals zero, the mean of Y equals Y µ. Since the standard deviation of Z equals one, the standard deviation of the correction term equals Y µ. Thus, all realizations reflect the input mean and uncertainty map. Since Y σ is set to zero at the well locations, all maps will be conditioned to the values of Y µ at the wells. When spatial information of the uncertainty is not available, equation (1) can still be used. In such cases, a global (constant) estimate of the uncertainty can be used. Conditioning to the well data can now be done by conditioning the Gaussian random field, Z(x), to zero at the wells. In Figure 2 we show a mean and uncertainty map of the top of structure of an idealized anticline structure. The two white spots in the uncertainty grid (top right) indicate well locations, where uncertainty vanishes. The shown realizations were generated using a sequence of Gaussian random fields. Water saturation estimation Two approaches are in common use for calculating water saturation maps. The first approach makes maps of water saturation from well data in the same way as porosity or thickness may be mapped from well data. The second approach uses a saturation-height function to estimate the water saturation at any point above the oil water contact (OWC). Clearly, the first approach is not based on physical principles, but on a mapping algorithm. The second approach is based on physical principles. It must be combined with an integration technique to calculate in each point, the average water saturation over a complete layer. Usually, this is done by defining one or more integration points between the layers, calculating the water saturation in the integration points and doing the integration numerically. The selection of the location and number of integration points determines the accuracy of the integration process. This selection may be cumbersome in layers dipping into an oil-water contact, or in layers where the water saturation reaches connate saturation. In Appendix A, an analytical approach is explained, with which the integration can be done without the use of extra integration points and which is insensitive to the location of the layer with respect to fluid contacts or connate/residual saturations. The starting point is the capillary pressure law, which contains the Leverett-J function multiplied by an arbitrary rock property dependent function (traditionally (φ/k) is used here). The key of the method is to apply a preprocessing step in which the Leverett-J function is inverted and integrated. This needs to be done only once. The resulting function can be extended to incorporate the locations of the fluid contacts and connate/residual saturations. In a second step, the average water saturation for any location can be calculated simply but substituting the appropriate rock properties and layers elevations into the resulting expression for average water saturation. Although the method was developed to calculate average water saturation in complete geological layers, it can be used for any partitioning of the reservoir into homogeneous volumes, such as a 3D grid block model. Case study The synthetic case study we have chosen to demonstrate our approach is based on experience from the Northsea. In a synthetic case, the true reservoir is known. Its top structure, overburden velocity and two-way reflection time are given as 2D grids represented by maps (Figure 4). The STOIIP in the true reservoir equals 2.9 MM Sm 3. We

4 Uncertainty estimation in volumetrics for supporting... 4 note that in the uncertainty estimation average values and correlations are chosen to resemble as close as possible the true field. The top structure (Figure 4) shows that the reservoir comprises a simple elongated dome shape. However, the velocity map contains a high velocity anomaly caused by a set of stacked channels in the overburden. This high velocity anomaly distorts the structure of the reservoir in time (Figure 4C). When seismic processing and interpretation is focussed on mapping the top structure, the high velocity anomaly in the overburden may not be identified. The first well, indicated in Figure 4C, has been drilled in the crest of the seismic-defined structure. An oil/water contact is found at 2015 m. The next two wells are intended to constrain the structure. Since all three wells are in the center region of the high velocity anomaly (Figure 4B), the average velocities are all equal to the anomalous velocity. Thus, the interpretation using a constant overburden velocity seems justified. Thus, the two-way travel time map can be scaled to obtain the interpreted top of structure map. Obviously, we have run into a completely wrong interpretation, resulting in a far too small predicted reservoir structure. In a later phase, a water injector, well 4, is drilled in the supposed flank of our interpreted reservoir. This well, however, finds oil. In fact, it finds the highest top reservoir of all drilled wells (Figure 4A). Apparently, there is a large upside potential, and wells 5, 6 and 7 are drilled to assess it (Table 2). As shown in Figure 5, the reservoir has two layers above the oil/water contact. The layers dip eastward, just below 1 and are unconformly overlain by the reservoir seal. The thickness map of the true reservoir is given in Figure 5. The second layer is much thicker, thus it is unnecessary to consider any lower layers. The top layer has poorer reservoir quality than the bottom reservoir layer. Three wells; Scalar case We start off the uncertainty quantification with a scalar approach that uses only the data from wells 1 to 3. The basic equation for STOIIP calculation is (Figure 1) STOIIP = A*h*φ*NG*(1-S w ) /B o (2) The top reservoir seems fairly well constrained in the direction along the well trend. Perpendicular to the well trend, the flanks are fairly steep, thus suggesting that there is little uncertainty in the reservoir area. The same reasoning holds for the reservoir thickness. From the well data and background knowledge, the probability density functions (pdf s) for the rock and fluid parameters have been estimated (Table 3). Note that only pdf s for layer 1 are given, because in the current interpretation layer 2 is below the OWC and thus does not contribute to the HC volume. The resulting expectation curve for STOIIP obtained by applying Monte Carlo simulation, is given in Figure 6. The 85, 50 and 15 percentiles are equal to respectively 0.56, 0.87, 1.4 MM Sm 3. Due to the overconfidence of the interpretation, in particular the reservoir area and height, the expectation curve shows no upside potential and lies far below the true STOIIP. Three wells; Spatial uncertainty in structure Next, we go into more detail and apply the spatial uncertainty approach. The velocity field still is assumed to have a uniform average value of 2050 m/s. On top of that a standard deviation of 20 m/s is applied. One hundred Gaussian random fields are generated with this average and standard deviation, and conditioned to the well data (Table 4). For each possible velocity map the time-depth conversion is done. Note that for simplicity no uncertainty on the reflection time grid is used. The rock and fluid properties remain scalar at this stage. The average and error map for the net hydrocarbon column are given in Figure 7. The expectation curve is compared to the scalar case in Figure 8. The 85, 50 and 15 percentiles for STOIIP are now given by 2.0, 3.7, 7.7 MM Sm 3.

5 Uncertainty estimation in volumetrics for supporting... 5 The comparison shows that the main effect of the use of grids, is a shift of the expectation curve to higher values. Secondly, the uncertainty range is larger (1.4 orders of magnitude instead of 1 order of magnitude). The increase in uncertainty is due to a more open interpretation of the structure, in which the structure is not assumed to be as fixed as before. Because the structure is given more flexibility, the high porosity layer 2 occurs more often in the realizations (see Table 5), resulting in a shift to higher STOIIP. Note that the 15-percentile of the scalar estimation (1.4 MM Sm 3 ) lies below the 85-percentile of the grid estimation (2.0 MM Sm 3 ). The error map suggests that there is major uncertainty around the flanks of the reservoir in particular in the south west corner of the study area. This indicates that there may be more volume in the structure than anticipated. In a later phase, the location of well 7 was chosen in order to reduce uncertainty in this area. Three wells; Spatial uncertainty in structure and properties In the next phase, more detail is introduced regarding the rock properties based on the σ v = 20 m/s case. From the wells, some correlations have been extracted. Firstly, the porosity and net gross in layer 1 increase with respectively 5 %, and 7 % going from the bottom to the top. Laterally, the porosity doesn t show a strong trend. Secondly, there is a good linlog correlation between porosity and permeability. Finally, a Leverett-J curve is used to assess the capillary rise of water (data from Table 1 and Figure 3). The spatial distribution of porosity and net gross of layer 2 is fairly uniform. Again a good lin-log correlation is found between porosity and permeability. To model the lower residual water saturation in layer 2, the Leverett-J curve is scaled with respect to water saturation. The result of the STOIIP calculation, compared with the scalar and σ v =20 calculation is shown in Figure 9. The 85, 50 and 15 percentiles are given by 0.66, 1.76 and 4.2 MM Sm 3. At this stage, comparison can be made with the true STOIIP of 2.9 MM Sm 3, which corresponds to the 27 percentile of the expectation curve: it is in the range but on the high side. Because the grid calculation includes a capillary water rise calculation, the expectation curve shows a general shift to the left compared to the case where the structure is modelled with grids. More importantly, the total uncertainty has increased (from 1.4 to 1.8 orders of magnitude). The reason for this is the fact that we have now modelled the correlations existing between porosity, net to gross, permeability and water saturation. The product of a number of independent variables has less uncertainty than the product of a number of correlated variables, because the occurrence of multiple extremes is more likely when the variables are correlated. This means that when the rock properties are correlated with structure, as in our case, a split of the calculation for gross rock volume and fluid contents of the reservoir leads to an underestimation of uncertainty. Thus, the spatial uncertainty assessment should not be focussed at GRV as proposed by Samson et al. (1996), but should be integrated with spatial fluid content estimation. Seven wells; spatial uncertainty Next, the data from the other wells are included, and we investigate how the estimates change. The most important data arising from this investigation is the different well velocities for wells 4 to 6, which are around 2000 m/s. Clearly it is inappropriate to use a uniform expected velocity grid. Instead the expected velocity grid is generated by kriging the well velocities. The expected velocity field and corresponding top structure map are given in Figure 10. The new top structure map clearly indicates the presence of a larger volume of oil compared to the three well case.

6 Uncertainty estimation in volumetrics for supporting... 6 Now the full spatial uncertainty estimation is repeated. Because the structure is estimated to be much larger, the correlation length used in the generation of Gaussian random fields is doubled. Also, because the structure appears less elongate and slightly differently oriented, the anisotropy is set equal to 0.5 and the angle equal to 40. Apart from the base velocity grid, the changes in geostatistical parameters and the availability of conditioning data in four more wells, all parameter values are the same as those for the three well case. In the expectation curve for STOIIP compared to the three well case, the 85, 50 and 15 percentiles are now given by 1.9, 3.7 and 6.0 MM Sm 3 (Figure 11). The true STOIIP corresponds to the 32 percentile. The comparison of STOIIP (Figure 11) shows that 1. The uncertainty has reduced from 1.8 to 1.2 orders of magnitude; 2. The proven reserves estimate (P85) has drastically increased from 0.66 to 1.9 MM Sm 3 ; 3. The true reservoir dimensions are within the proven (P85) and probable (P50) range. These results quantify the added value that the well data have had on the reserves estimation. Conclusions In this paper, we have presented an integrated method for uncertainty estimation for static earth models at various scales of detail. The methodology allows for spatial correlations of variables as well as correlations through mathematical expressions or external simulators. From the application of our uncertainty estimation methodology to the synthetic case study, we conclude the following. 1. Scalar estimation gives conservative estimates for uncertainty in STOIIP compared to grid estimation. Our experience with other cases has shown that this conclusion is not limited to the current test case. The expectation of STOIIP using scalar estimation was too low for this particular case, due to a too narrow interpretation of the structure and layering in the reservoir. 2. Treating mutually correlated variables, for example porosity with permeability, as uncorrelated results in conservative uncertainty estimates for STOIIP. In particular GRV estimation and fluid content estimation should not be done separately because of their correlation. 3. Extra well data showed a reduction in uncertainty and a better estimate of the expected STOIIP which was know for our synthetic field (quantification of value of information, VOI). References BERTEIG, V., HALVORSEN, K.B., OMRE, H., Prediction of hydrocarbon pore volume with uncertainties, SPE 18325, presented at SPE Ann. Tech. Conf. & Ex., Houston, 2-5 Oct, 1988 DEUTSCH, C.V., JOURNEL, A., 1992, GSLIB Geostatistical software library and user s guide, Oxford U. Press HEFNER, J.M., THOMPSON, R.S., A comparison of probabilistic and deterministic reserve estimates : A case study, SPE RE, Feb 1996, p KRUIJSDIJK, C.P.J.W. VAN, Uncertainty analysis of reserve estimates, SPE 35593, presented at SPE Gas Technology Conf., Calgary, 28 April - 1 May 1996 LIA, O., OMRE, H., TJELMELAND, H., HOLDEN, L., EGELAND, T., Uncertainties in reservoir production forecasts, AAPG Bulletin, 81, no 5, May, 1997, p SAMSON, P., DUBRULE, O., EULER, N., Quantifying the impact of structural uncertainties on gross-rock volume estimates, SPE 35535, presented at Europ. 3D Res. Mod. Conf., Stavanger, April 1996

7 Appendix In this appendix, a new approach is presented for the calculation of average saturation maps based on a layered description of a hydrocarbon reservoir. The starting point is capillarygravity equilibrium ρ g h(s w ) = σ cosθ F(φ, k, NG) J(S w ) (3) Here ρ is the density difference between the reservoir fluids, g is the acceleration of gravity, h is height above the fluid/fluid contact, σ is the surface tension, θ is the contact angle, F is an arbitrary function of porosity φ, permeability k and net-to-gross ratio NG; and finally J is the Leverett-J function. A typical choice for F is φ k. Our goal is to calculate the average water saturation over a layer in an arbitrary x-y location S top 1, = Sw ( h) dh h w avg h hbottom where h equals h top -h bottom. In our current setting, we assume that the porosity, permeability and net-to-gross ratio are only a function of the areal coordinates, and not of height within the layer. Then, F may be considered as a constant in our integration. For notational convenience, introduce α = σ cos θ F(φ, k, NG) (5) ρg which, as argued before, is constant in our integration. Then, equation (4) can be rewritten using (3) and (5) as S w, avg α = h htop / α hbottom / α top h h S d w Sw J dj = α α α h ( ) h / α hbottom / α where the integration variable has switched from h to J. Denote the primitive of S w (J) by IntS w (J). Then, we finally obtain S w, avg = α h IntS w htop IntS α w h α When the Leverett-J function is given as a formula, which can be inverted and integrated, equation (7) can be evaluated analytically. However, generally, the Leverett-J function is derived in tabular form from a capillary pressure table. Figure 3 shows the steps to calculate IntS w (J). Figure 3a shows the Leverett-J function as a function of S w. Firstly, the axes must be exchanged to get S w (J) (Figure 3b). Secondly, this function must be integrated. Define IntS w (0) = 0. Then, using an arbitrary integration scheme, the function S w ( ) is integrated from 0 to J (Figure 3c). Figure 3b can be extended to the left with a saturation equal to one, and to the right with a saturation equal to the connate water saturation, S wc. This implied that IntS w (J) can be extended to the left with the linear function J and to the right with the linear function S wc J (arrows in Figure 3c). Through these linear extensions the calculation of averaged water saturation has become independent of the exact location of the layer with respect to the fluid contacts or residual/connate saturations. Consider the following example based on data from Table 1. Using this data in equation (5) with the standard F = φ k relationship gives α = 10. Thus, for a layer with a top at h top = 20 m above OWC and a bottom at h bottom = 10 m above OWC equation (7) gives bottom (4) (6) (7)

8 Uncertainty estimation in volumetrics for supporting... 8 Sw, avg = IntSw( 2) IntSw( 1) = = 0. 5 (8) Next, we consider a case where the capillary transition zone is complete contained in the layer. For h top = 50 m above OWC and a bottom at h bottom = -10 m below OWC, the averaged water saturation is given by ( 1) Sw, avg = ( IntSw( 5) IntSw( 1) ) = = (9) 6 6 Application of the method to a 3D grid model is straightforward by using the grid block tops and bottoms in equation (7) instead of the layer tops and bottoms.

9 Uncertainty estimation in volumetrics for supporting... 9 List of tables Table 1 Data used for water saturation calculation Table 2 Well data for our case study Table 3 Probability density functions for the scalar case for layer 1. Table 4 Geostatistical data Table 5 Probability density functions for the scalar case for layer 2.

10 Uncertainty estimation in volumetrics for supporting List of figures Figure 1 Example of process hierarchy in volumetrics calculation. Data in three hierarchical levels are being processed into a final top level target : STOIIP (A = area, h = thickness, ΝΓ = Net to Gross ratio, φ = porosity, Sw = water saturation, Bo = oil volume formation factor,tos = Top of Structure, OWC = oil water contact, V = velocity, σv = velocity uncertainty, T = reflection time, σt = reflection time uncertainty). Figure 2 Based on a mean depth grid (top left) and an uncertainty grid (top right) a number of possible realizations of the depth map can be generated (bottom). Figure 3 Construction of integrated Sw-J curve: A) original J(Sw) curve, B) mirrored Sw(J) curve, C) IntSw(J) curve obtained using trapezoidal integration; arrows indicate extension of the curve outside initial J-range Figure 4 True reservoir with well locations indicated, A) Top Structure, B) Overburden velocity, C) Two-way travel time Figure 5 A) Cross-section of reservoir along wells 5, 4 and 1 and B) Thickness map of the top layer of the true reservoir. See table 2 for well data. Figure 6 Expectation curve of STOIIP for the scalar case with three wells. Figure 7 Average (left) and error (right) map of Net Hydrocarbon Column (darker indicates higher values). Figure 8 Comparison of expectation curve for scalar and grid case. Figure 9 Expectation curve for STOIIP using scalars, grids for structure or all grids. Figure 10 Velocity field obtained by kriging the well velocities and corresponding top of structure interpretation. Figure 11 Comparison of expectation curve for 7 well case with 3 well case.

11 Uncertainty estimation in volumetrics for supporting Table 1 Data used for water saturation calculation P cm = 0.02 N/m ρ = 200 kg/m 3 φ = 0.2 g = 10 m/s 2 k = 200 md S wc = 0.2 Table 2 Well data for our case study Well No X Y Top Depth Thickn Layer1 Poro Layer1 NG Layer1 Poro Layer2 NG Layer Table 3 Probability density functions for the scalar case for layer 1. Variable pdf-type layer 1 Area (10 6 m 2 ) TRIANGULAR Height (m 2 ) TRIANGULAR Porosity TRIANGULAR Net to Gross TRIANGULAR Water saturation TRIANGULAR Oil Formation Factor (Rm 3 /Sm 3 ) CONSTANT 1.2 Table 4 Geostatistical data Anisotropy factor = 0.3 Angle w.r.t. north-south axis = 30 Variogram type = spherical Range = triangularly distributed with min=1000, mode=2500, max=10000 Table 5 Probability density functions for the scalar case for layer 2. Variable pdf-type layer 2 Porosity TRIANGULAR Net to Gross TRIANGULAR Water saturation TRIANGULAR Oil Formation Factor Factor (Rm 3 /Sm 3 ) CONSTANT 1.2

12 Uncertainty estimation in volumetrics for supporting STOIIP A h NG φ S w B o Level 1 TOS OWC Level 2 V σ V T σ T Level 3 Figure 1 Example of process hierarchy in volumetrics calculation. Data in three hierarchical levels are being processed into a final top level target : STOIIP (A = area, h = thickness, NG = Net to Gross ratio, φ = porosity, S w = water saturation, B o = oil volume formation factor,tos = Top of Structure, OWC = oil water contact, V = velocity, σ V = velocity uncertainty, T = reflection time, σ T = reflection time uncertainty).

13 Uncertainty estimation in volumetrics for supporting Figure 2 Based on a mean depth grid (top left) and an uncertainty grid (top right) a number of possible realizations of the depth map can be generated (bottom).

14 Uncertainty estimation in volumetrics for supporting J 4 A S w 1.8 B S wc = J 4 S w IntS w C J 5 Figure 3 Construction of integrated S w -J curve: A) original J(S w ) curve, B) mirrored S w (J) curve, C) IntS w (J) curve obtained using trapezoidal integration; arrows indicate extension of the curve outside initial J-range

15 Uncertainty estimation in volumetrics for supporting A B C Figure 4 True reservoir with well locations indicated, A) Top Structure, B) Overburden velocity, C) Two-way travel time

16 Uncertainty estimation in volumetrics for supporting well 5 well 4 well OWC A Figure 5 A) Cross-section of reservoir along wells 5, 4 and 1 and B) Thickness map of the top layer of the true reservoir. See Table 2 for well data B

17 Uncertainty estimation in volumetrics for supporting Figure 6 Expectation curve of STOIIP for the scalar case with three wells.

18 Uncertainty estimation in volumetrics for supporting Figure 7 Average (left) and error (right) map of Net Hydrocarbon Column (darker indicates higher values).

19 Uncertainty estimation in volumetrics for supporting all scalar grids for structure true STOIIP Figure 8 Comparison of expectation curve for scalar and grid case.

20 Uncertainty estimation in volumetrics for supporting all grids grids for structure all scalar true STOIIP Figure 9 Expectation curve for STOIIP using scalars, grids for structure or all grids.

21 Uncertainty estimation in volumetrics for supporting Figure 10 Velocity field obtained by kriging the well velocities and corresponding top of structure interpretation.

22 Uncertainty estimation in volumetrics for supporting wells 7 wells true STOIIP Figure 11 Comparison of expectation curve for 7 well case with 3 well case.

Reservoir Uncertainty Calculation by Large Scale Modeling

Reservoir Uncertainty Calculation by Large Scale Modeling Reservoir Uncertainty Calculation by Large Scale Modeling Naeem Alshehri and Clayton V. Deutsch It is important to have a good estimate of the amount of oil or gas in a reservoir. The uncertainty in reserve

More information

Constraining Uncertainty in Static Reservoir Modeling: A Case Study from Namorado Field, Brazil*

Constraining Uncertainty in Static Reservoir Modeling: A Case Study from Namorado Field, Brazil* Constraining Uncertainty in Static Reservoir Modeling: A Case Study from Namorado Field, Brazil* Juliana F. Bueno 1, Rodrigo D. Drummond 1, Alexandre C. Vidal 1, Emilson P. Leite 1, and Sérgio S. Sancevero

More information

Opportunities in Oil and Gas Fields Questions TABLE OF CONTENTS

Opportunities in Oil and Gas Fields Questions TABLE OF CONTENTS TABLE OF CONTENTS A. Asset... 3 1. What is the size of the opportunity (size the prize)?... 3 2. Volumetric Evaluation... 3 3. Probabilistic Volume Estimates... 3 4. Material Balance Application... 3 5.

More information

We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization

We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization A. Moradi Tehrani* (CGG), A. Stallone (Roma Tre University), R. Bornard (CGG) & S. Boudon (CGG) SUMMARY

More information

Reservoir connectivity uncertainty from stochastic seismic inversion Rémi Moyen* and Philippe M. Doyen (CGGVeritas)

Reservoir connectivity uncertainty from stochastic seismic inversion Rémi Moyen* and Philippe M. Doyen (CGGVeritas) Rémi Moyen* and Philippe M. Doyen (CGGVeritas) Summary Static reservoir connectivity analysis is sometimes based on 3D facies or geobody models defined by combining well data and inverted seismic impedances.

More information

3D Geological Modeling and Uncertainty Analysis of Pilot Pad in the Long Lake Field with Lean Zone and Shale Layer

3D Geological Modeling and Uncertainty Analysis of Pilot Pad in the Long Lake Field with Lean Zone and Shale Layer Datapages/Search and Discovery Article #9224 GeoConvention 214, FOCUS - Adapt, Refine, Sustain Calgary, Alberta, Canada, May 12-16, 214 3D Geological Modeling and Uncertainty Analysis of Pilot Pad in the

More information

Subsurface Consultancy Services

Subsurface Consultancy Services Subsurface Consultancy Services Porosity from Reservoir Modeling Perspective Arnout Everts with contributions by Peter Friedinger and Laurent Alessio FESM June 2011 LEAP Energy Main Office: G-Tower, level

More information

Reservoir Modeling with GSLIB. Overview

Reservoir Modeling with GSLIB. Overview Reservoir Modeling with GSLIB Overview Objectives of the Course What is Geostatistics? Why Geostatistics / 3-D Modeling? Uncertainty Quantification and Decision Making Heterogeneous Reservoir Modeling

More information

Reservoir characterization

Reservoir characterization 1/15 Reservoir characterization This paper gives an overview of the activities in geostatistics for the Petroleum industry in the domain of reservoir characterization. This description has been simplified

More information

Training Venue and Dates Ref # Reservoir Geophysics October, 2019 $ 6,500 London

Training Venue and Dates Ref # Reservoir Geophysics October, 2019 $ 6,500 London Training Title RESERVOIR GEOPHYSICS Training Duration 5 days Training Venue and Dates Ref # Reservoir Geophysics DE035 5 07 11 October, 2019 $ 6,500 London In any of the 5 star hotels. The exact venue

More information

23855 Rock Physics Constraints on Seismic Inversion

23855 Rock Physics Constraints on Seismic Inversion 23855 Rock Physics Constraints on Seismic Inversion M. Sams* (Ikon Science Ltd) & D. Saussus (Ikon Science) SUMMARY Seismic data are bandlimited, offset limited and noisy. Consequently interpretation of

More information

Traps for the Unwary Subsurface Geoscientist

Traps for the Unwary Subsurface Geoscientist Traps for the Unwary Subsurface Geoscientist ashley.francis@sorviodvnvm.co.uk http://www.sorviodvnvm.co.uk Presented at SEG Development & Production Forum, 24-29 th June 2001, Taos, New Mexico, USA 24-29

More information

Advances in Locally Varying Anisotropy With MDS

Advances in Locally Varying Anisotropy With MDS Paper 102, CCG Annual Report 11, 2009 ( 2009) Advances in Locally Varying Anisotropy With MDS J.B. Boisvert and C. V. Deutsch Often, geology displays non-linear features such as veins, channels or folds/faults

More information

Geostatistical Determination of Production Uncertainty: Application to Firebag Project

Geostatistical Determination of Production Uncertainty: Application to Firebag Project Geostatistical Determination of Production Uncertainty: Application to Firebag Project Abstract C. V. Deutsch, University of Alberta (cdeutsch@civil.ualberta.ca) E. Dembicki and K.C. Yeung, Suncor Energy

More information

A MultiGaussian Approach to Assess Block Grade Uncertainty

A MultiGaussian Approach to Assess Block Grade Uncertainty A MultiGaussian Approach to Assess Block Grade Uncertainty Julián M. Ortiz 1, Oy Leuangthong 2, and Clayton V. Deutsch 2 1 Department of Mining Engineering, University of Chile 2 Department of Civil &

More information

Statistical Rock Physics

Statistical Rock Physics Statistical - Introduction Book review 3.1-3.3 Min Sun March. 13, 2009 Outline. What is Statistical. Why we need Statistical. How Statistical works Statistical Rock physics Information theory Statistics

More information

A Method for Developing 3D Hydrocarbon Saturation Distributions in Old and New Reservoirs

A Method for Developing 3D Hydrocarbon Saturation Distributions in Old and New Reservoirs A Method for Developing 3D Hydrocarbon Saturation Distributions in Old and New Reservoirs Michael J. Heymans, Consultant 590 Prairie Ridge Road Highlands Ranch, CO 80126-2036 ABSTRACT In order to estimate

More information

Multiple-Point Geostatistics: from Theory to Practice Sebastien Strebelle 1

Multiple-Point Geostatistics: from Theory to Practice Sebastien Strebelle 1 Multiple-Point Geostatistics: from Theory to Practice Sebastien Strebelle 1 Abstract The limitations of variogram-based simulation programs to model complex, yet fairly common, geological elements, e.g.

More information

Multiple realizations using standard inversion techniques a

Multiple realizations using standard inversion techniques a Multiple realizations using standard inversion techniques a a Published in SEP report, 105, 67-78, (2000) Robert G Clapp 1 INTRODUCTION When solving a missing data problem, geophysicists and geostatisticians

More information

Building an Integrated Static Reservoir Model 5-day Course

Building an Integrated Static Reservoir Model 5-day Course Building an Integrated Static Reservoir Model 5-day Course Prepared by International Reservoir Technologies Lakewood, Colorado http://www.irt-inc.com/ 1 Agenda Day 1 Day 2 Day 3 Day 4 Day 5 Morning Introduction

More information

Combining geological surface data and geostatistical model for Enhanced Subsurface geological model

Combining geological surface data and geostatistical model for Enhanced Subsurface geological model Combining geological surface data and geostatistical model for Enhanced Subsurface geological model M. Kurniawan Alfadli, Nanda Natasia, Iyan Haryanto Faculty of Geological Engineering Jalan Raya Bandung

More information

Time to Depth Conversion and Uncertainty Characterization for SAGD Base of Pay in the McMurray Formation, Alberta, Canada*

Time to Depth Conversion and Uncertainty Characterization for SAGD Base of Pay in the McMurray Formation, Alberta, Canada* Time to Depth Conversion and Uncertainty Characterization for SAGD Base of Pay in the McMurray Formation, Alberta, Canada* Amir H. Hosseini 1, Hong Feng 1, Abu Yousuf 1, and Tony Kay 1 Search and Discovery

More information

AFI (AVO Fluid Inversion)

AFI (AVO Fluid Inversion) AFI (AVO Fluid Inversion) Uncertainty in AVO: How can we measure it? Dan Hampson, Brian Russell Hampson-Russell Software, Calgary Last Updated: April 2005 Authors: Dan Hampson, Brian Russell 1 Overview

More information

Porosity prediction using cokriging with multiple secondary datasets

Porosity prediction using cokriging with multiple secondary datasets Cokriging with Multiple Attributes Porosity prediction using cokriging with multiple secondary datasets Hong Xu, Jian Sun, Brian Russell, Kris Innanen ABSTRACT The prediction of porosity is essential for

More information

A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field

A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field T. Coleou* (CGG), A.J. van Wijngaarden (Hydro), A. Norenes Haaland (Hydro), P. Moliere (Hydro), R. Ona (Hydro) &

More information

Tim Carr - West Virginia University

Tim Carr - West Virginia University Tim Carr - West Virginia University Role of Geology in Field Development Develop static geological model of the reservoir(s) Analyze relevant geoscience and engineering data, integrate them into model

More information

Reservoir Forecast Optimism Impact of Geostatistics, Reservoir Modeling, Heterogeneity, and Uncertainty

Reservoir Forecast Optimism Impact of Geostatistics, Reservoir Modeling, Heterogeneity, and Uncertainty Reservoir Forecast Optimism Impact of Geostatistics, Reservoir Modeling, Heterogeneity, and Uncertainty W. Scott Meddaugh, W. Terry Osterloh, and Nicole Champenoy Chevron, Houston scottmeddaugh@chevron.com

More information

IJMGE Int. J. Min. & Geo-Eng. Vol.49, No.1, June 2015, pp

IJMGE Int. J. Min. & Geo-Eng. Vol.49, No.1, June 2015, pp IJMGE Int. J. Min. & Geo-Eng. Vol.49, No.1, June 2015, pp.131-142 Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis Moslem Moradi 1, Omid Asghari 1,

More information

Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53

Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53 Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53 40 Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53 Short Note Multiple realizations using standard inversion

More information

NEW GEOLOGIC GRIDS FOR ROBUST GEOSTATISTICAL MODELING OF HYDROCARBON RESERVOIRS

NEW GEOLOGIC GRIDS FOR ROBUST GEOSTATISTICAL MODELING OF HYDROCARBON RESERVOIRS FOR ROBUST GEOSTATISTICAL MODELING OF HYDROCARBON RESERVOIRS EMMANUEL GRINGARTEN, BURC ARPAT, STANISLAS JAYR and JEAN- LAURENT MALLET Paradigm Houston, USA. ABSTRACT Geostatistical modeling of reservoir

More information

4th HR-HU and 15th HU geomathematical congress Geomathematics as Geoscience Reliability enhancement of groundwater estimations

4th HR-HU and 15th HU geomathematical congress Geomathematics as Geoscience Reliability enhancement of groundwater estimations Reliability enhancement of groundwater estimations Zoltán Zsolt Fehér 1,2, János Rakonczai 1, 1 Institute of Geoscience, University of Szeged, H-6722 Szeged, Hungary, 2 e-mail: zzfeher@geo.u-szeged.hu

More information

Assessing the Value of Information from Inverse Modelling for Optimising Long-Term Oil Reservoir Performance

Assessing the Value of Information from Inverse Modelling for Optimising Long-Term Oil Reservoir Performance Assessing the Value of Information from Inverse Modelling for Optimising Long-Term Oil Reservoir Performance Eduardo Barros, TU Delft Paul Van den Hof, TU Eindhoven Jan Dirk Jansen, TU Delft 1 Oil & gas

More information

Characterization of Geoobjects Continuity using Moments of Inertia

Characterization of Geoobjects Continuity using Moments of Inertia Characterization of Geoobjects Continuity using Moments of Inertia Saina Lajevardi, Olena Babak, and Clayton V. Deutsch Well-placement is one of the main challenges in reservoir engineering. The connectivity

More information

Automatic Determination of Uncertainty versus Data Density

Automatic Determination of Uncertainty versus Data Density Automatic Determination of Uncertainty versus Data Density Brandon Wilde and Clayton V. Deutsch It is useful to know how various measures of uncertainty respond to changes in data density. Calculating

More information

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field K. Gjerding* (Statoil), N. Skjei (Statoil), A. Norenes Haaland (Statoil), I. Machecler (CGGVeritas Services) & T.

More information

Determination of Locally Varying Directions through Mass Moment of Inertia Tensor

Determination of Locally Varying Directions through Mass Moment of Inertia Tensor Determination of Locally Varying Directions through Mass Moment of Inertia Tensor R. M. Hassanpour and C.V. Deutsch Centre for Computational Geostatistics Department of Civil and Environmental Engineering

More information

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH

PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH PRODUCING PROBABILITY MAPS TO ASSESS RISK OF EXCEEDING CRITICAL THRESHOLD VALUE OF SOIL EC USING GEOSTATISTICAL APPROACH SURESH TRIPATHI Geostatistical Society of India Assumptions and Geostatistical Variogram

More information

Best Practice Reservoir Characterization for the Alberta Oil Sands

Best Practice Reservoir Characterization for the Alberta Oil Sands Best Practice Reservoir Characterization for the Alberta Oil Sands Jason A. McLennan and Clayton V. Deutsch Centre for Computational Geostatistics (CCG) Department of Civil and Environmental Engineering

More information

Multiple Scenario Inversion of Reflection Seismic Prestack Data

Multiple Scenario Inversion of Reflection Seismic Prestack Data Downloaded from orbit.dtu.dk on: Nov 28, 2018 Multiple Scenario Inversion of Reflection Seismic Prestack Data Hansen, Thomas Mejer; Cordua, Knud Skou; Mosegaard, Klaus Publication date: 2013 Document Version

More information

The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger

The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger www.nr.no The GIG consortium Geophysical Inversion to Geology Per Røe, Ragnar Hauge, Petter Abrahamsen FORCE, Stavanger 17. November 2016 Consortium goals Better estimation of reservoir parameters from

More information

A Short Note on the Proportional Effect and Direct Sequential Simulation

A Short Note on the Proportional Effect and Direct Sequential Simulation A Short Note on the Proportional Effect and Direct Sequential Simulation Abstract B. Oz (boz@ualberta.ca) and C. V. Deutsch (cdeutsch@ualberta.ca) University of Alberta, Edmonton, Alberta, CANADA Direct

More information

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland

Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland EnviroInfo 2004 (Geneva) Sh@ring EnviroInfo 2004 Advanced analysis and modelling tools for spatial environmental data. Case study: indoor radon data in Switzerland Mikhail Kanevski 1, Michel Maignan 1

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell

Stochastic vs Deterministic Pre-stack Inversion Methods. Brian Russell Stochastic vs Deterministic Pre-stack Inversion Methods Brian Russell Introduction Seismic reservoir analysis techniques utilize the fact that seismic amplitudes contain information about the geological

More information

Fifteenth International Congress of the Brazilian Geophysical Society. Copyright 2017, SBGf - Sociedade Brasileira de Geofísica

Fifteenth International Congress of the Brazilian Geophysical Society. Copyright 2017, SBGf - Sociedade Brasileira de Geofísica Geostatistical Reservoir Characterization in Barracuda Field, Campos Basin: A case study Frank Pereira (CGG)*, Ted Holden (CGG), Mohammed Ibrahim (CGG) and Eduardo Porto (CGG). Copyright 2017, SBGf - Sociedade

More information

Modeling of Atmospheric Effects on InSAR Measurements With the Method of Stochastic Simulation

Modeling of Atmospheric Effects on InSAR Measurements With the Method of Stochastic Simulation Modeling of Atmospheric Effects on InSAR Measurements With the Method of Stochastic Simulation Z. W. LI, X. L. DING Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hung

More information

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Summary Madhumita Sengupta*, Ran Bachrach, Niranjan Banik, esterngeco. Net-to-gross (N/G ) is

More information

5 ORIGINAL HYDROCARBONS IN PLACE

5 ORIGINAL HYDROCARBONS IN PLACE 5 ORIGINAL HYDROCARBONS IN PLACE The deterministic estimation of oil in place for the White Rose Field was completed using 3-D geological modelling in the RMS software package. This procedure involves

More information

A033 PRACTICAL METHODS FOR UNCERTAINTY ASSESSMENT

A033 PRACTICAL METHODS FOR UNCERTAINTY ASSESSMENT A33 PRACTICAL METHODS FOR UNCERTAINTY ASSESSMENT OF FLOW PREDICTIONS FOR RESERVOIRS WITH SIGNIFICANT HISTORY AFIELD CASE STUDY ALEXANDRE CASTELLINl, JORGE L. LANDA, JITENDRA KIKANI 2 () ChevronTexaco,

More information

Quantitative Seismic Interpretation An Earth Modeling Perspective

Quantitative Seismic Interpretation An Earth Modeling Perspective Quantitative Seismic Interpretation An Earth Modeling Perspective Damien Thenin*, RPS, Calgary, AB, Canada TheninD@rpsgroup.com Ron Larson, RPS, Calgary, AB, Canada LarsonR@rpsgroup.com Summary Earth models

More information

Lithology prediction and fluid discrimination in Block A6 offshore Myanmar

Lithology prediction and fluid discrimination in Block A6 offshore Myanmar 10 th Biennial International Conference & Exposition P 141 Lithology prediction and fluid discrimination in Block A6 offshore Myanmar Hanumantha Rao. Y *, Loic Michel, Hampson-Russell, Kyaw Myint, Ko Ko,

More information

GENERAL WORKFLOW AND DATA REQUIREMENTS FOR RESERVOIR CHARACTERIZATION AND SIMULATION WORKFLOW TABLE OF CONTENTS

GENERAL WORKFLOW AND DATA REQUIREMENTS FOR RESERVOIR CHARACTERIZATION AND SIMULATION WORKFLOW TABLE OF CONTENTS WORKFLOW TABLE OF CONTENTS A. Basic Support Tasks...4 1. Construction of base maps... 4 2. Digitize well logs where not available in digital format... 4 3. Organize and QC fundamental database... 4 B.

More information

A NEW APPROACH FOR QUANTIFYING THE IMPACT OF GEOSTATISTICAL UNCERTAINTY ON PRODUCTION FORECASTS: THE JOINT MODELING METHOD

A NEW APPROACH FOR QUANTIFYING THE IMPACT OF GEOSTATISTICAL UNCERTAINTY ON PRODUCTION FORECASTS: THE JOINT MODELING METHOD A NEW APPROACH FOR QUANTIFYING THE IMPACT OF GEOSTATISTICAL UNCERTAINTY ON PRODUCTION FORECASTS: THE JOINT MODELING METHOD IAMG, Cancun, September 6-1, 001 Isabelle Zabalza-Mezghani, IFP Emmanuel Manceau,

More information

An Overview of the Tapia Canyon Field Static Geocellular Model and Simulation Study

An Overview of the Tapia Canyon Field Static Geocellular Model and Simulation Study An Overview of the Tapia Canyon Field Static Geocellular Model and Simulation Study Prepared for Sefton Resources Inc. Jennifer Dunn, Chief Geologist Petrel Robertson Consulting Ltd. Outline Background

More information

Thomas Bayes versus the wedge model: An example inference using a geostatistical prior function

Thomas Bayes versus the wedge model: An example inference using a geostatistical prior function Thomas Bayes versus the wedge model: An example inference using a geostatistical prior function Jason M. McCrank, Gary F. Margrave, and Don C. Lawton ABSTRACT The Bayesian inference is used to estimate

More information

B008 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES

B008 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES 1 B8 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES Alv-Arne Grimstad 1 and Trond Mannseth 1,2 1 RF-Rogaland Research 2 Now with CIPR - Centre for Integrated Petroleum Research,

More information

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study Naimeh Riazi*, Larry Lines*, and Brian Russell** Department of Geoscience, University of Calgary **Hampson-Russell

More information

Quantitative Interpretation

Quantitative Interpretation Quantitative Interpretation The aim of quantitative interpretation (QI) is, through the use of amplitude analysis, to predict lithology and fluid content away from the well bore. This process should make

More information

INFLUENCE ESTIMATION OF SEISMIC DATA UNCERTAINTIES ON OIL IN PLACE CALCULATION

INFLUENCE ESTIMATION OF SEISMIC DATA UNCERTAINTIES ON OIL IN PLACE CALCULATION 294 UDC 550.1 INFLUENCE ESTIMATION OF SEISMIC DATA UNCERTAINTIES ON OIL IN PLACE CALCULATION I.G. Khameta 1, S.M. Bikbulatov RN-Ufanipineft LLC, Ufa, Russia e-mail: 1 HametaIG@ufanipi.ru R.V. Akhmetzyanov

More information

Facies Modeling in Presence of High Resolution Surface-based Reservoir Models

Facies Modeling in Presence of High Resolution Surface-based Reservoir Models Facies Modeling in Presence of High Resolution Surface-based Reservoir Models Kevin Zhang Centre for Computational Geostatistics Department of Civil and Environmental Engineering University of Alberta

More information

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives:

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives: Learning Objectives Reservoir Rock Properties Core Sources and Seals Porosity and Permeability This section will cover the following learning objectives: Explain why petroleum fluids are found in underground

More information

Relinquishment Report

Relinquishment Report Relinquishment Report Licence P1403 Block 13/22d Chevron North Sea Limited Korean National Oil Company Chevron North Sea Limited December 2009 1 SYNOPSIS... 3 2 INTRODUCTION. 3 2.1 Licence Terms.. 3 2.2

More information

RESERVOIR MODELING & CHARACTERIZATION TOOLS: APPLYING METHODS & TOOLS FROM THE OIL AND GAS INDUSTRY TO ENHANCE GEOTHERMAL RESOURCES.

RESERVOIR MODELING & CHARACTERIZATION TOOLS: APPLYING METHODS & TOOLS FROM THE OIL AND GAS INDUSTRY TO ENHANCE GEOTHERMAL RESOURCES. RESERVOIR MODELING & CHARACTERIZATION TOOLS: APPLYING METHODS & TOOLS FROM THE OIL AND GAS INDUSTRY TO ENHANCE GEOTHERMAL RESOURCES Jacques CHOURAKI 1 NEW TOOLS & METHODS CURRENTLY, GEOSCIENTIFIC STUDIES,

More information

COPYRIGHT. Optimization During the Reservoir Life Cycle. Case Study: San Andres Reservoirs Permian Basin, USA

COPYRIGHT. Optimization During the Reservoir Life Cycle. Case Study: San Andres Reservoirs Permian Basin, USA Optimization During the Reservoir Life Cycle Case Study: San Andres Reservoirs Permian Basin, USA San Andres Reservoirs in the Permian Basin Two examples of life cycle reservoir management from fields

More information

Entropy of Gaussian Random Functions and Consequences in Geostatistics

Entropy of Gaussian Random Functions and Consequences in Geostatistics Entropy of Gaussian Random Functions and Consequences in Geostatistics Paula Larrondo (larrondo@ualberta.ca) Department of Civil & Environmental Engineering University of Alberta Abstract Sequential Gaussian

More information

The Snap lake diamond deposit - mineable resource.

The Snap lake diamond deposit - mineable resource. Title Page: Author: Designation: Affiliation: Address: Tel: Email: The Snap lake diamond deposit - mineable resource. Fanie Nel Senior Mineral Resource Analyst De Beers Consolidated Mines Mineral Resource

More information

CO 2 storage capacity and injectivity analysis through the integrated reservoir modelling

CO 2 storage capacity and injectivity analysis through the integrated reservoir modelling CO 2 storage capacity and injectivity analysis through the integrated reservoir modelling Dr. Liuqi Wang Geoscience Australia CO 2 Geological Storage and Technology Training School of CAGS Beijing, P.

More information

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization Anton Ziolkowski and Folke Engelmark Petroleum Geo-Services CSEG, Calgary, 6 May 2009 Outline Exploration, appraisal,

More information

A013 HISTORY MATCHING WITH RESPECT TO RESERVOIR STRUCTURE

A013 HISTORY MATCHING WITH RESPECT TO RESERVOIR STRUCTURE A3 HISTORY MATCHING WITH RESPECT TO RESERVOIR STRUCTURE SIGURD IVAR AANONSEN ; ODDVAR LIA ; AND OLE JAKOB ARNTZEN Centre for Integrated Research, University of Bergen, Allégt. 4, N-7 Bergen, Norway Statoil

More information

Probabilistic Inversion Technique for Seismic Data

Probabilistic Inversion Technique for Seismic Data Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Probabilistic Inversion Technique for Seismic Data A thesis submitted

More information

Formats for Expressing Acceptable Uncertainty

Formats for Expressing Acceptable Uncertainty Formats for Expressing Acceptable Uncertainty Brandon J. Wilde and Clayton V. Deutsch This short note aims to define a number of formats that could be used to express acceptable uncertainty. These formats

More information

An Update on the Use of Analogy for Oil and Gas Reserves Estimation

An Update on the Use of Analogy for Oil and Gas Reserves Estimation An Update on the Use of Analogy for Oil and Gas Reserves Estimation R.E. (Rod) Sidle to the Houston Chapter of SPEE 3 November 2010 1 Analogy - Origins Term does not appear in 1987 SEC Rule 4-10 Reference

More information

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Eighth Annual Convention & Exhibition, May 2014

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Eighth Annual Convention & Exhibition, May 2014 IPA14-G-227 PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Eighth Annual Convention & Exhibition, May 2014 A COMPARISON OF DEPTH CONVERSION METHODS IN BUNTAL GAS FIELD, BLOCK B, NATUNA SEA, INDONESIA

More information

P.1619 License Relinquishment Report

P.1619 License Relinquishment Report P.1619 License Relinquishment Report Effective Date: 14 th October 2015 1. Licence Information License Number: P.1619 License Round: 25 th License Type: Traditional Block Number(s): 21/27b Operator: MOL

More information

A E. SEG/San Antonio 2007 Annual Meeting. exp. a V. a V. Summary

A E. SEG/San Antonio 2007 Annual Meeting. exp. a V. a V. Summary Time-lapse simulator-to-seismic study - Forties field, North Sea. Christophe Ribeiro *, Cyrille Reiser, Philippe Doyen, CGGeritas, London, UK August Lau, Apache Corp., Houston, US, Steve Adiletta, Apache

More information

B-31 Combining 4D seismic and reservoir

B-31 Combining 4D seismic and reservoir B-31 Combining 4D seismic and reservoir simulation: key to effective reservoir management ANDREY BAKULIN 1, NICK DRINKWATER 1, CLAUDE SIGNER 1, SARAH RYAN 2 & ANDY O DONOVAN 3 1 Schlumberger Cambridge

More information

Reservoir Petrophysical Modeling from Seismic Impedance Volumes

Reservoir Petrophysical Modeling from Seismic Impedance Volumes Reservoir Petrophysical Modeling from Seismic Impedance Volumes Wesley Emery, Director of Innovative Reservoir Petrophysical Modeling and Resource Technology Network Table of Contents 1. Background 2.

More information

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION G. MARIETHOZ, PH. RENARD, R. FROIDEVAUX 2. CHYN, University of Neuchâtel, rue Emile Argand, CH - 2009 Neuchâtel, Switzerland 2 FSS Consultants, 9,

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

Probabilistic seismic inversion using pseudo-wells

Probabilistic seismic inversion using pseudo-wells Seismic Rock Physics Seminar Probabilistic seismic inversion using pseudo-wells Patrick Connolly*, PCA Ltd Patrick Connolly Associates Ltd. geophysics for integration Outline ODiSI: probabilistic inversion

More information

Multiple realizations: Model variance and data uncertainty

Multiple realizations: Model variance and data uncertainty Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? Multiple realizations: Model variance and data uncertainty Robert G. Clapp 1 ABSTRACT Geophysicists typically produce a single model,

More information

Article 11 Monte Carlo Simulation/Risk Assessment (cont.)

Article 11 Monte Carlo Simulation/Risk Assessment (cont.) RESE SERVOIR ENG NGINE INEERING FOR GEOLO OLOGIS ISTS Article 11 Monte Carlo Simulation/Risk Assessment (cont.) by Ray Mireault, P. Eng. and Lisa Dean, P. Geol., Fekete Associates Inc. The second article

More information

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study*

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study* Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study* J.N. Sahu 1, C.H.V. Satya Sai 1, V. Chintamani 1 and C. Vishnu Vardhan 1 Search and Discovery Article #20182 (2012)*

More information

FRACMAN Reservoir Edition FRED. Success in Fractured Reservoirs FRACMAN TECHNOLOGY GROUP

FRACMAN Reservoir Edition FRED. Success in Fractured Reservoirs FRACMAN TECHNOLOGY GROUP FRACMAN Reservoir Edition FRED Success in Fractured Reservoirs FRACMAN TECHNOLOGY GROUP Managing fractured oil and gas reservoirs can be problematic, as conventional modeling approaches that treat rock

More information

Geological Modeling and Material Balance Study of Multilayer Heavy-Oil Reservoirs in Dalimo Field

Geological Modeling and Material Balance Study of Multilayer Heavy-Oil Reservoirs in Dalimo Field Geological Modeling and Material Balance Study of Multilayer Heavy-Oil Reservoirs in Dalimo Field EDO PRATAMA* and MOHD SUHAILI ISMAIL** *Postgraduate student of Geosciences Department, Universiti Teknologi

More information

SEISMIC PROFILE CGG SEISMIC INVERSIONS. by Lucia Levato, CGG. three offshore case studies show how one size does not fi t all. 18 seismic profile

SEISMIC PROFILE CGG SEISMIC INVERSIONS. by Lucia Levato, CGG. three offshore case studies show how one size does not fi t all. 18 seismic profile 4D SEISMIC INVERSIONS by Lucia Levato, CGG three offshore case studies show how one size does not fi t all 18 seismic profile The following three cases of offshore 4D seismic inversions illustrate how

More information

Quantifying uncertainty of geological 3D layer models, constructed with a-priori

Quantifying uncertainty of geological 3D layer models, constructed with a-priori Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise Jan Gunnink, Denise Maljers 2 and Jan Hummelman 2, TNO Built Environment and Geosciences Geological

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION

COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION COLLOCATED CO-SIMULATION USING PROBABILITY AGGREGATION G. MARIETHOZ, PH. RENARD, R. FROIDEVAUX 2. CHYN, University of Neuchâtel, rue Emile Argand, CH - 2009 Neuchâtel, Switzerland 2 FSS Consultants, 9,

More information

PECIKO GEOLOGICAL MODELING: POSSIBLE AND RELEVANT SCALES FOR MODELING A COMPLEX GIANT GAS FIELD IN A MUDSTONE DOMINATED DELTAIC ENVIRONMENT

PECIKO GEOLOGICAL MODELING: POSSIBLE AND RELEVANT SCALES FOR MODELING A COMPLEX GIANT GAS FIELD IN A MUDSTONE DOMINATED DELTAIC ENVIRONMENT IATMI 2005-29 PROSIDING, Simposium Nasional Ikatan Ahli Teknik Perminyakan Indonesia (IATMI) 2005 Institut Teknologi Bandung (ITB), Bandung, 16-18 November 2005. PECIKO GEOLOGICAL MODELING: POSSIBLE AND

More information

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware

HampsonRussell. A comprehensive suite of reservoir characterization tools. cgg.com/geosoftware HampsonRussell A comprehensive suite of reservoir characterization tools cgg.com/geosoftware HampsonRussell Software World-class geophysical interpretation HampsonRussell Software is a comprehensive suite

More information

Effect of velocity uncertainty on amplitude information

Effect of velocity uncertainty on amplitude information Stanford Exploration Project, Report 111, June 9, 2002, pages 253 267 Short Note Effect of velocity uncertainty on amplitude information Robert G. Clapp 1 INTRODUCTION Risk assessment is a key component

More information

Optimisation of Well Trajectory and Hydraulic Fracture Design in a Poor Formation Quality Gas-Condensate Reservoir

Optimisation of Well Trajectory and Hydraulic Fracture Design in a Poor Formation Quality Gas-Condensate Reservoir Optimisation of Well Trajectory and Hydraulic Fracture Design in a Poor Formation Quality Gas-Condensate Reservoir Tipping, André Carlo Torres de Carvalho at8865@my.bristol.ac.uk Masters in Petroleum Engineering,

More information

Fractures and fluid flow in petroleum reservoirs

Fractures and fluid flow in petroleum reservoirs Fractures and fluid flow in petroleum reservoirs Quentin Fisher Centre for Integrated Petroleum Engineering and Geoscience School of Earth and Environment University of Leeds E-mail: quentin@rdr.leeds.ac.uk

More information

Reliability of Seismic Data for Hydrocarbon Reservoir Characterization

Reliability of Seismic Data for Hydrocarbon Reservoir Characterization Reliability of Seismic Data for Hydrocarbon Reservoir Characterization Geetartha Dutta (gdutta@stanford.edu) December 10, 2015 Abstract Seismic data helps in better characterization of hydrocarbon reservoirs.

More information

Geostatistics for Seismic Data Integration in Earth Models

Geostatistics for Seismic Data Integration in Earth Models 2003 Distinguished Instructor Short Course Distinguished Instructor Series, No. 6 sponsored by the Society of Exploration Geophysicists European Association of Geoscientists & Engineers SUB Gottingen 7

More information

J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU)

J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU) U008 Seismic Imaging Below "Dirty" Salt J.A. Haugen* (StatoilHydro ASA), J. Mispel (StatoilHydro ASA) & B. Arntsen (NTNU) SUMMARY Base and sub salt seismic imaging is still an unresolved issue. To solve

More information

Available online at ScienceDirect. Energy Procedia 59 (2014 )

Available online at   ScienceDirect. Energy Procedia 59 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 59 (2014 ) 366 373 European Geosciences Union General Assembly 2014, EGU 2014 Laboratory measurements of fluid transport properties

More information

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Amit Suman and Tapan Mukerji Department of Energy Resources Engineering Stanford University

More information

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/02/18 to Redistribution subject to SEG license or copyright; see Terms of Use at Multi-scenario, multi-realization seismic inversion for probabilistic seismic reservoir characterization Kester Waters* and Michael Kemper, Ikon Science Ltd. Summary We propose a two tiered inversion strategy

More information