6 Supplementary Materials

Size: px
Start display at page:

Download "6 Supplementary Materials"

Transcription

1 6 Supplementar Materals 61 Proof of Theorem 31 Proof Let m Xt z 1:T : l m Xt X,z 1:t Wethenhave mxt z1:t ˆm HX Xt z 1:T mxt z1:t m HX Xt z 1:T + mxt z 1:T HX We consder each of the two terms n equaton (16 Let m Xt z 1:T : m Xt z 1:T m Xt z 1:T Forthefrstterm, m Xt z 1:T Snce ξ t HX m X t z 1:T,j1 m Xt X,z 1:t j ξ t ( X, X j ξ t ( X,dP Xt+1 z 1:T ( + ξ t (, dp Xt+1 z 1:T (dp Xt+1 z 1:T ( m Xt+1 z 1:T m Xt+1 z 1:T,ξ t mxt+1 z 1:T ξ t HX <, the frst term decas wth O p (l αt+1 For the second term, we have mxt z 1:T (m Xt X,z 1:t ˆm Xt X,z 1:t m Xt X,z 1:t,j1 j ξ t ( X, X j ˆm Xt+1 z 1:T ˆm Xt+1 z 1:T, ξ t ˆmXt+1 z 1:T ξ t HX Snce ˆm Xt+1 z 1:T HX m Xt+1 z 1:T HX <, the second term decas wth O p (l βt These results lead to the statement mxt z 1:T HX O p (l αt, where α t mn{α t+1,β t } (16 6 Epermental Settng & Vdeo: Trackng a Sngle Object (Eperment 1 State Space Model Settng: The target s state at tme t s descrbed b t ( t, t, ẋ t, ẏ t wth the object s poston ( t, t and the veloct (ẋ t, ẏ t n cartesan coordnates R The dscretzed dnamcs s epressed wth

2 Yu Nshama, Amr Hossen Afsharnejad, Shunsuke Naruse Fgure 4: A supplementar vdeo Ths anmaton vsualzes the sequental update of kernel means of the nkbflter [1] and the nkb-er (Algorthm 1 for a test sequence z 1:4 n the clutter problem The upper three fgures show the sequental update of kernel means m Xt z 1:t (t 1 : 4 of the nkb-flter The lower three fgures show the estmated ng kernel means m Xt z 1:4 (t 1:4ofthenKB-er Foreach,the left fgure shows the kernel mean projected to state, the mddle fgure shows the kernel mean projected to state, and the rght fgure both Each fgure vsualzes the followng (Left four fgures The black dot vertcal lne shows the true target s state (, The magenta dot vertcal lne shows the (cluttered observaton (, ỹ The kernel mean weghts are shown wth left vertcal as The postve (negatve weght values are vsualzed wth blue (red bars, respectvel The can curve shows the estmated kernel mean (estmated RKHS functon m P ( as a functon of ( wth rght vertcal as The blue dot n the top of the mountan shows the result of the mode estmaton for the target s state (, wth the objectve functon value From the two mddle fgures, t can be that the flterng estmaton s bmodal for uncertant, but ng estmaton correctl dentfes the state b usng the future measurements z 11:4, so that the blue dot s on the black dot vertcal lne a tme-nvarant lnear equaton: t+1 A t + q t, A : 1 t 1 t 1 1 where q t s dscrete Gaussan whte process nose havng moments E[q t ], E[q t q t ] : t 3 /3 t / t 3 /3 t / t / t t / t, (17 wth q> The measurement process for the target s a mture model: p(z t t (1 ρn(z t H t,r+ρ 1 S, (18 q

3 num sample 96 (tran1, test1 flter num sample 96 (tran1, test flter flter flter 1 tme tme num sample 119 (tran, test1 flter num sample 119 (tran, test flter flter flter 1 1 tme 1 1 tme num sample 1434 (tran3, test1 flter num sample 1434 (tran3, test flter flter flter 1 1 tme 1 1 tme num sample 1673 (tran4, test1 flter num sample 1673 (tran4, test flter flter flter 1 1 tme 1 1 tme Fgure : Performance of the nkb-flter and the nkb-er n dfferent tranng and test data on the clutter problem Ths fgure shows 8 (4 epermental results The upper-left two fgures show the performance on the dmenson and when the tranng sample sze s n 96, respectvel The lower fgures show the results when the tranng sample sze s ncreased to n 96, 119, 1434, 1673 It s that the performance s ncreased The rght eght fgures show results on dfferent test data where 1 ρ and ρ are probabltes of measurements from the actual target and clutter, respectvel The measurement from the actual target s a Gaussan N(z t H t,r wth the measurement model matr H and

4 Yu Nshama, Amr Hossen Afsharnejad, Shunsuke Naruse nose covarance matr R The measurement from the clutter s unform on the area S Weusedthesame parameter settng as the RBMCDA s demo used, e, the sze of tme step t 1, q 1, ρ 1/, S [, ] [ 4, 4], and H ( 1 1 (,R nkb-er settng: We used Gaussan kernels k X ( 1, e 1 /σ X and kz (z 1, z e z1 z /σ Z for target s states and measurements, respectvel, where σx σ Z 1 We set regularzaton constants ϵ n δ n ϵ n δ n 1 Note ϵ n and δ n are new regularzaton constants ntroduced for KB-er Asupplementarvdeo:We present an anmaton whch shows results of the nkb-flter [1] and the nkber (Algorthm 1 n the clutter problem Please see a supplementar move fle (mov Fgure 4 presents a snapshot of the anmaton at tme step t 111 Supplementar results: Fgure shows other results n dfferent tranng and test data on the clutter problem 63 Margnal Kernel Mean Computaton on Tree Graphs In ths secton, we present margnal kernel mean computaton on general tree graphs b usng the nkb-flter and the nkb-er, as the etenson of state space models 631 The nkb-flter & nkb-er on N Branch Cases For ease of understandng, we begn wth the two branch case shown n Fgure 6 (left Let : ( 1:T, t+1: T be hdden varables and z : (z 1:T, z t+1: T be measurement varables The jont probablt denst functon (pdf p(, z of Fgure 6 (left s gven b 11 ( T 1 p(, z ( T p( +1 p(z T 1 p( +1 t T t+1 p( z, where p( 1 : p( 1 and t : t For ease of presentaton, we assume that the transton process {p( +1 } T 1 and {p( +1 } T 1 t follow the same condtonal pdf p( We also assume that the measurement process {p(z } T and {p( z } T t+1 follow the same condtonal pdf p(z It s not dffcult to etend ths to general nhomogenous cases, f there s a tranng sample for learnng each of them We assume that there are tranng data { X, X }l and {X,Z } n for p( andp(z, respectvel The objectve here s to compute the kernel means {m Xτ z} T τ 1 and {m X τ z} T τ t+1 of condtonal dstrbutons {p( τ z} T τ 1 and {p( τ z} T τ t+1 gven measurements z, respectvel We begn wth gvng an order to the two branches Wlog, we set ( t+1:t,z t+1:t > ( t+1: T, z t+1: T We have outputs of the nkb-flter and the nkb-er on chan ( 1:T,z 1:T as ˆm Xt z 1:t ˆm Xt z 1:T n α (t k X (,X, t 1,,T, w (t k X (, X, t 1,,T 1 11 For smplct, we omtted llustratons of observable varables z n Fgure 6

5 Flterng Smoothng 1 t 1 (1 ( (1 (9 t+11 ( (6 (7 (3 (4 t+1 T (8 T 1 1 (1 (1 T (1 (4 ( (3 ( T ( ( (6 (3 t T (3 (N+ (7 (N+1 (N (N T ( N 1 1 (17 (1 ( 11 (18 (3 ( (11 ( 9 (13 8 (7 6 6 Fgure 6: Margnal kernel mean computaton on tree graphs usng the nkb-flter and the nkb-er; (left the smple two branch case, (mddle general N branch case, and (rght a tree eample B applng the nonparametrc kernel sum rule 1 (Secton or Song et al [] to ˆm Xt z 1:T,wehave ˆm Xt+1 z 1:T Û X t+1 X t ˆm Xt z 1:T η (t+1 k X (, X, where Û X t+1 X t s the nksr operator to obtan the estmator ˆm Xt+1 z 1:T Net, we appl the KB-flter to the other chan ( t+1: T, z t+1: T wth the ntal belef ˆm Xt+1 z 1:T,sothattheoutputsare n ˆm Xτ z 1:T, z t+1:τ ᾱ (τ k X (,X, τ t +1,, T Then, we appl the nkb-er to the chan ( 1:t,z 1:t ( t+1: T, z t+1: T backward wth the ntal kernel mean m X T z,sothattheoutputsare ˆm Xτ z ˆm Xτ z w (τ k X (, X τ t +1,, T 1 w (τ k X (, X τ 1,,t The numbers wrtten n Fgure 6 (left show the order of nference of KB-flter and KB-er B nducton, the same apples to the N branch case n Fgure 6 (mddle Frst, gve an order to the N branches Then, appl KB-flter and KB-er to one branch b one branch As an eample, Fgure 6 (rght shows the order of KB-flter and KB-er n a tree graph Thus, the margnal kernel mean computaton on a general tree graph s obtaned 1 B the Markov propert, the condtonal pdf p( t+1 z 1:T hasthesumruleepresson: p( t+1 z 1:T p(, z t+1: T z 1:T δ( t+1 t+1d z t+1: T d p( t+1 tp( t z 1:T d t, where δ( t+1 t+1 sthedrac sdeltafuncton

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Mathematics Intersection of Lines

Mathematics Intersection of Lines a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material Natural Images, Gaussan Mxtures and Dead Leaves Supplementary Materal Danel Zoran Interdscplnary Center for Neural Computaton Hebrew Unversty of Jerusalem Israel http://www.cs.huj.ac.l/ danez Yar Wess

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks June -5, KIEX, Geongg-Do, Korea Estmaton of on-gaussan Probablt Denst b Dnamc Baesan etwors Hun C. Cho *, Sam. Fadal **, and Kwon S. Lee *** * Electrcal Engneerng Dept./60, Unverst of evada-reno, V, 89557,

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y) Secton 1.5 Correlaton In the prevous sectons, we looked at regresson and the value r was a measurement of how much of the varaton n y can be attrbuted to the lnear relatonshp between y and x. In ths secton,

More information

Feature Selection & Dynamic Tracking F&P Textbook New: Ch 11, Old: Ch 17 Guido Gerig CS 6320, Spring 2013

Feature Selection & Dynamic Tracking F&P Textbook New: Ch 11, Old: Ch 17 Guido Gerig CS 6320, Spring 2013 Feature Selecton & Dynamc Trackng F&P Textbook New: Ch 11, Old: Ch 17 Gudo Gerg CS 6320, Sprng 2013 Credts: Materal Greg Welch & Gary Bshop, UNC Chapel Hll, some sldes modfed from J.M. Frahm/ M. Pollefeys,

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Introduction to Hidden Markov Models

Introduction to Hidden Markov Models Introducton to Hdden Markov Models Alperen Degrmenc Ths document contans dervatons and algorthms for mplementng Hdden Markov Models. The content presented here s a collecton of my notes and personal nsghts

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. . For P such independent random variables (aka degrees of freedom): 1 =

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. . For P such independent random variables (aka degrees of freedom): 1 = Fall Analss of Epermental Measurements B. Esensten/rev. S. Errede More on : The dstrbuton s the.d.f. for a (normalzed sum of squares of ndependent random varables, each one of whch s dstrbuted as N (,.

More information

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin Fnte Mxture Models and Expectaton Maxmzaton Most sldes are from: Dr. Maro Fgueredo, Dr. Anl Jan and Dr. Rong Jn Recall: The Supervsed Learnng Problem Gven a set of n samples X {(x, y )},,,n Chapter 3 of

More information

CHAPTER 4. Vector Spaces

CHAPTER 4. Vector Spaces man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

More information

Time-Varying Systems and Computations Lecture 6

Time-Varying Systems and Computations Lecture 6 Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

More information

3.1 ML and Empirical Distribution

3.1 ML and Empirical Distribution 67577 Intro. to Machne Learnng Fall semester, 2008/9 Lecture 3: Maxmum Lkelhood/ Maxmum Entropy Dualty Lecturer: Amnon Shashua Scrbe: Amnon Shashua 1 In the prevous lecture we defned the prncple of Maxmum

More information

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing CSC321 Tutoral 9: Revew of Boltzmann machnes and smulated annealng (Sldes based on Lecture 16-18 and selected readngs) Yue L Emal: yuel@cs.toronto.edu Wed 11-12 March 19 Fr 10-11 March 21 Outlne Boltzmann

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machne Learnng - Lectures Lecture 1-2: Concept Learnng (M. Pantc Lecture 3-4: Decson Trees & CC Intro (M. Pantc Lecture 5-6: Artfcal Neural Networks (S.Zaferou Lecture 7-8: Instance ased Learnng

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Differentiating Gaussian Processes

Differentiating Gaussian Processes Dfferentatng Gaussan Processes Andrew McHutchon Aprl 17, 013 1 Frst Order Dervatve of the Posteror Mean The posteror mean of a GP s gven by, f = x, X KX, X 1 y x, X α 1 Only the x, X term depends on the

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Scence robablstc Graphcal Models Appromate Inference: Markov Chan Monte Carlo 05 07 Erc Xng Lecture 7 March 9 04 X X 075 05 05 03 X 3 Erc Xng @ CMU 005-04 Recap of Monte Carlo Monte

More information

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability Introducton to Monte Carlo Method Kad Bouatouch IRISA Emal: kad@rsa.fr Wh Monte Carlo Integraton? To generate realstc lookng mages, we need to solve ntegrals of or hgher dmenson Pel flterng and lens smulaton

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

Hidden Markov Model Cheat Sheet

Hidden Markov Model Cheat Sheet Hdden Markov Model Cheat Sheet (GIT ID: dc2f391536d67ed5847290d5250d4baae103487e) Ths document s a cheat sheet on Hdden Markov Models (HMMs). It resembles lecture notes, excet that t cuts to the chase

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

MARKOV CHAIN AND HIDDEN MARKOV MODEL

MARKOV CHAIN AND HIDDEN MARKOV MODEL MARKOV CHAIN AND HIDDEN MARKOV MODEL JIAN ZHANG JIANZHAN@STAT.PURDUE.EDU Markov chan and hdden Markov mode are probaby the smpest modes whch can be used to mode sequenta data,.e. data sampes whch are not

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Probability Density Function Estimation by different Methods

Probability Density Function Estimation by different Methods EEE 739Q SPRIG 00 COURSE ASSIGMET REPORT Probablty Densty Functon Estmaton by dfferent Methods Vas Chandraant Rayar Abstract The am of the assgnment was to estmate the probablty densty functon (PDF of

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Generative and Discriminative Models. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

Generative and Discriminative Models. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 Generatve and Dscrmnatve Models Je Tang Department o Computer Scence & Technolog Tsnghua Unverst 202 ML as Searchng Hpotheses Space ML Methodologes are ncreasngl statstcal Rule-based epert sstems beng

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Classification learning II

Classification learning II Lecture 8 Classfcaton learnng II Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Logstc regresson model Defnes a lnear decson boundar Dscrmnant functons: g g g g here g z / e z f, g g - s a logstc functon

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Application to Plane (rigid) frame structure

Application to Plane (rigid) frame structure Advanced Computatonal echancs 18 Chapter 4 Applcaton to Plane rgd frame structure 1. Dscusson on degrees of freedom In case of truss structures, t was enough that the element force equaton provdes onl

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Machine Learning for Signal Processing Linear Gaussian Models

Machine Learning for Signal Processing Linear Gaussian Models Machne Learnng for Sgnal rocessng Lnear Gaussan Models lass 2. 2 Nov 203 Instructor: Bhsha Raj 2 Nov 203 755/8797 HW3 s up. Admnstrva rojects please send us an update 2 Nov 203 755/8797 2 Recap: MA stmators

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant

Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant Tutoral 2 COMP434 ometrcs uthentcaton Jun Xu, Teachng sstant csjunxu@comp.polyu.edu.hk February 9, 207 Table of Contents Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 005 5. The random varable X has probablt functon k, = 1,, 3, P( X = ) = k ( + 1), = 4, 5, where k s a constant. (a) Fnd the value of k. (b) Fnd the eact

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Chapter 20 Duration Analysis

Chapter 20 Duration Analysis Chapter 20 Duraton Analyss Duraton: tme elapsed untl a certan event occurs (weeks unemployed, months spent on welfare). Survval analyss: duraton of nterest s survval tme of a subject, begn n an ntal state

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Revsed: v3 Ordnar Least Squares (OLS): Smple Lnear Regresson (SLR) Analtcs The SLR Setup Sample Statstcs Ordnar Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals)

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Image Processing for Bubble Detection in Microfluidics

Image Processing for Bubble Detection in Microfluidics Image Processng for Bubble Detecton n Mcrofludcs Introducton Chen Fang Mechancal Engneerng Department Stanford Unverst Startng from recentl ears, mcrofludcs devces have been wdel used to buld the bomedcal

More information

DS-GA 1002 Lecture notes 5 Fall Random processes

DS-GA 1002 Lecture notes 5 Fall Random processes DS-GA Lecture notes 5 Fall 6 Introducton Random processes Random processes, also known as stochastc processes, allow us to model quanttes that evolve n tme (or space n an uncertan way: the trajectory of

More information

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data Condtonal Random Felds: Probablstc Models for Segmentng and Labelng Sequence Data Paper by John Lafferty, Andrew McCallum, and Fernando Perera ICML 2001 Presentaton by Joe Drsh May 9, 2002 Man Goals Present

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF 10-708: Probablstc Graphcal Models 10-708, Sprng 2014 8 : Learnng n Fully Observed Markov Networks Lecturer: Erc P. Xng Scrbes: Meng Song, L Zhou 1 Why We Need to Learn Undrected Graphcal Models In the

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

The Basic Idea of EM

The Basic Idea of EM The Basc Idea of EM Janxn Wu LAMDA Group Natonal Key Lab for Novel Software Technology Nanjng Unversty, Chna wujx2001@gmal.com June 7, 2017 Contents 1 Introducton 1 2 GMM: A workng example 2 2.1 Gaussan

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information