Some Selected Topics. Spectral Norm in Learning Theory:

Size: px
Start display at page:

Download "Some Selected Topics. Spectral Norm in Learning Theory:"

Transcription

1 Spectral Norm in Learning Theory Slide 1 Spectral Norm in Learning Theory: Some Selected Topics Hans U. Simon (RUB) simon@lmi.rub.de Homepage:

2 Spectral Norm in Learning Theory Slide 2 The Star of the Talk λ 1

3 Spectral Norm in Learning Theory Slide 3 Spectral Norm of a Matrix For matrix A m n, consider the singular values σ1(a) σ2(a). If A is symmetric and positive semidefinite, they coincide with the eigenvalues λ1(a) λ2(a). Definition of Spectral Norm: A := σ1(a) = λ1(a A).

4 Spectral Norm in Learning Theory Slide 4 Structure of the Talk I Statistical Query Learning and Correlation Query Learning II Ke Yang s Lower Bound on the Number of Statistical Queries III Other Bounds in Terms of the Spectral Norm IV Hidden Number Problem from the Perspective of Learning Theory

5 Spectral Norm in Learning Theory Slide 5 Part I SQ = CQ

6 Spectral Norm in Learning Theory Slide 6 Concept Learning X, a domain x X, an instance D, a probability distribution on X (x, b) X { 1, +1}, a labeled instance f : X { 1, +1}, a concept F, a class of concepts Goal: Find a good approximation (hypothesis) h : X { 1, +1} for an unknown target concept f F.

7 Spectral Norm in Learning Theory Slide 7 Statistical Query Learning (fixed distribution D) h : X { 1, +1} { 1, +1}, a query function such that ED[h (x, f (x))] = Pr[h (x, f (x)) = +1] Pr[h (x, f (x)) = 1] τ > 0, a tolerance parameter Information Gathering Mechanism: LEARNER h,τ ORACLE ORACLE d LEARNER s.t. ED[h (x, f (x))] τ d ED[h (x, f (x))] + τ After gathering enough information, the learner outputs a final hypothesis h.

8 Spectral Norm in Learning Theory Slide 8 Statistical Query Learning (continued) Efficiency of the learner measured by: q, the number of specified query functions (including the final hypothesis) τ, smallest tolerance parameter ever used during learning Success of the learner measured by: ε, probability of misclassification of the final hypothesis Kearns Result: An SQ learner can be simulated by a noise-tolerant PAC learner that has access to poly(q, 1/τ, 1/ε) random examples.

9 Spectral Norm in Learning Theory Slide 9 Evaluation and Correlation Matrix Equip X with the following inner product: h1, h2 D := x X D(x)h1(x)h2(x) = ED[h1(x)h2(x)] Associate with a concept class F, the evaluation matrix EF[x, f] := f(x) and the (positive semidefinite) correlation matrix CF[f1, f2] := f1, f2 D. Column f of matrix EF contains the function table for f.

10 Spectral Norm in Learning Theory Slide 10 Correlation Query Learning (fixed distribution D) h : X { 1, 0, +1}, a query function τ > 0, a tolerance parameter γ > 0, desired correlation between h and f correlation γ misclassification rate 1 2 γ 2 Information Gathering Mechanism: LEARNER h,τ ORACLE ORACLE c LEARNER s.t. h, f D τ c h, f D + τ After gathering enough information, the learner outputs a final hypothesis h.

11 Spectral Norm in Learning Theory Slide 11 Equivalence of the SQ and the CQ Model Proof Idea: Mutual conversion h h of query functions h : X { 1, +1} { 1, +1} and h : X { 1, 0, +1} such that queries (h, τ) and (h, τ) yield precisely the same amount of information.

12 Spectral Norm in Learning Theory Slide 12 First Conversion Given h : X {±1} {±1}, consider X0(h ) := {x X : h (x, +1) = h (x, 1)} X1(h ) := {x X : h (x, +1) h (x, 1)} and the following function h : X { 1, 0, +1}: 0 if x X0(h ) h(x) := h (x, 1) if x X1(h ) Note that: x X1(h ), b = ±1 : h (x, b) = b h (x, 1) = b h(x)

13 Spectral Norm in Learning Theory Slide 13 First Conversion (continued) ED[h (x, f (x))] = = x X0(h ) x X0(h ) D(x)h (x, f (x)) + D(x)h (x, 1) + }{{} =:k(h ) = k(h ) + h, f D x X1(h ) x X1(h ) D(x)h (x, f (x)) D(x)f (x)h(x) Reverse Direction: Exploit the same relation between ED[h (x, f (x))] and h, f D again!

14 Spectral Norm in Learning Theory Slide 14 Part II Ke Yang s Lower Bound

15 Spectral Norm in Learning Theory Slide 15 Yang s Bound Theorem (Ke Yang, COLT 2002, JCSS2005): The smallest possible number q(f) of statistical queries is lower-bounded as follows: q(f) i=1 λi(cf) F min{γ 2, τ 2 } Corollary: Because of CF = λ1(cf): q(f) F CF min{γ2, τ 2 } Because F is not easier to learn than F F: ( F ) q(f) sup min{γ 2, τ 2 } F F CF

16 Spectral Norm in Learning Theory Slide 16 Sketch of Proof (Adversary Argument) CQ-oracle returns answer 0 as long as possible. Say (h1, τ1),..., (hq 1, τq 1) are answered 0. Let hq be the next query function (final hypothesis if q = q(f)). Let Q := h1,..., hq. Let f Q denote the projection of f onto subspace Q. With these notations: q(f) i=1 λi(cf) q i=1 λi(cf) f F f Q 2 F min{γ 2, τ 2 }

17 Spectral Norm in Learning Theory Slide 17 Characterization of Weak SQ-Learnability The following statements are equivalent: 1. (Fn)n 1 admits a weak polynomial learner in the SQ model. 2. The statistical query dimension of (Fn)n 1 is polynomially bounded. 3. sup F n Fn F n C F n is polynomially bounded : Blum, Furst, Jackson. Kearns, Mansour, Rudich (STOC 1994) 2. 3.: Statistical query dimension polynomially related to sup F F F n C F n

18 Spectral Norm in Learning Theory Slide 18 Part III The many faces of λ1

19 Spectral Norm in Learning Theory Slide 19 Spectral Norm and Half-space Embeddings A half-space embedding for a matrix A { 1, +1} m n : H i d dimensional space H + i P j H i margin The case A = +1 i,j d(a) := smallest possible dimension := smallest rank of a sign-equivalent matrix µ(a) := largest possible guaranteed margin

20 Spectral Norm in Learning Theory Slide 20 Results by Forster (CCC 2001, JCSS 2002) For every A { 1, +1} m n : d(a) mn A µ(a) A mn In particular for the Hadamard matrix Hn { 1, +1} 2n 2 n : d(hn) 2 n/2 ( probabilistic communication complexity n/2) µ(hn) 2 n/2

21 Spectral Norm in Learning Theory Slide 21 Application: Threshold Circuits of Exponential Size From Forster s Theorem: rank of H must be at least 2 By sub additivity of rank: only possible when there are exponentially many hidden units n/2 unbounded weights.... H(x,y) matrix of rank 2 H = sign H H (x,y) is the matrix before thresholding n hidden units computing matrices of small rank bounded weights (bound W) x x y y 1 n 1 n Boolean input units Result by Forster, Krause, Lokam, Mubarakzjanov, Schmitt, H.U.S.: 2 there must be at least n/2 nw +1 units in the hidden layer (FSTTCS 2001).

22 Spectral Norm in Learning Theory Slide 22 Sufficient Conditions for Weak SQ Learnability d(efn) is poly(n)-bounded. µ(efn) 1 is poly(n)-bounded. The probabilistic communication complexity for EFn in the unbounded error model is O(log(n))-bounded. Functions from Fn can be evaluated by a depth-2 threshold circuit (unbounded weights at top unit, poly(n)-bounded weights at hidden units) of poly(n) size.

23 Spectral Norm in Learning Theory Slide 23 Part IV Can we learn hidden numbers??

24 Spectral Norm in Learning Theory Slide 24 Prerequisites for the Hidden Number Problem p, an n-bit prime p = {0,..., p 1}, smallest residuals modulo p ( p, +, ), the corresponding prime field p = {1,..., p 1} ( p, ), the cyclic group of prime residuals modulo p g, a generator of p B : p { 1, +1}, a binary predicate for prime residuals --- All arithmetic is understood modulo p ---

25 Spectral Norm in Learning Theory Slide 25 The Hidden Number Problem (HNP[B]) Goal: Infer a hidden number u p from observations. Information-gathering Mechanism: z u B(u z) Elements z p independently drawn at random (uniform distribution)

26 Spectral Norm in Learning Theory Slide 26 Motivation: Bit Security Diffie-Hellman Function: DH(g a, g b ) = g ab. Central Relation: (Boneh, Venkatesan 1996; Vasco, Shparlinski 2000) g (b+r)a g (b+r)x = g ab+ar+xb+xr = g (a+x)(b+r) = DH(g a+x, g b+r ) Known: n, p, g, g a, g b, r, x Unknown: g ab, g (b+r)a Hidden Number: g (b+r)a Random Instance: g (b+r)x Note: g b+r should be a generator!!

27 Spectral Norm in Learning Theory Slide 27 Cast HNP[B] as Learning Problem Put problem in the concept learning framework: View u as target concept. View z as random instance. View B(u z) as the correct classification label. Note: The correlation between u1, u2 can be expressed as Pr[B(u1 z) = B(u2 z)] Pr[B(u1 z) B(u2 z)]. Assumption: Predicate B must distinguish different hidden numbers: Pr[B(u1 z) = B(u2 z)] Pr[B(u1 z) B(u2 z)] 1 1 poly(n)

28 Spectral Norm in Learning Theory Slide 28 Example for a distinguishing predicate Consider the unbiased most significant bit: +1 if p+1 2 z p 1 MSB(z) := 1 otherwise Kiltz, H.U.S. (unpublished manuscript): The unbiased most significant bit distinguishes hidden numbers in the following strong sense: Pr[MSB(u1 z) = MSB(u2 z)] Pr[MSB(u1 z) MSB(u2 z)] 2 3

29 Spectral Norm in Learning Theory Slide 29 Proper PAC Learners imply Bit Security Theorem: If HNP[B] is properly and polynomially PAC-learnable under the uniform distribution, then bit B of the Diffie-Hellman function is secure. The proof translates similar proofs by (Nguyen and Stern, 2001 ; Vasco and Shparlinski, 2000) into a learning-theoretic framework. Conjecture: Such PAC-learners do not exist.

30 Spectral Norm in Learning Theory Slide 30 Hidden Number Problem and SQ Learning Let M denote the multiplication table for p. Then MSB M is the evaluation matrix for HNP[MSB]. Lemma (Kiltz, H.U.S., JCSS 2005): MSB M = p 1/2+o(1). Because of the general relations (assuming uniform distribution D) CF = 1 X E F EF and CF = 1 X E F 2, and because of Ke Yang s lower bound: Corollary: 1. q(hnp[msb]) (p 1)2 p 1+o(1) = p 1 o(1). 2. HNP[MSB] is not weakly learnable in the SQ model.

31 Spectral Norm in Learning Theory Slide 31 Conclusions We have put the framework of SQ Learning into a broader context, relating it to various (seemingly different) problems in learning theory, complexity theory, and cryptography. The key notion has been the spectral norm.

32 Spectral Norm in Learning Theory Slide The End ---

On the power and the limits of evolvability. Vitaly Feldman Almaden Research Center

On the power and the limits of evolvability. Vitaly Feldman Almaden Research Center On the power and the limits of evolvability Vitaly Feldman Almaden Research Center Learning from examples vs evolvability Learnable from examples Evolvable Parity functions The core model: PAC [Valiant

More information

Computational Lower Bounds for Statistical Estimation Problems

Computational Lower Bounds for Statistical Estimation Problems Computational Lower Bounds for Statistical Estimation Problems Ilias Diakonikolas (USC) (joint with Daniel Kane (UCSD) and Alistair Stewart (USC)) Workshop on Local Algorithms, MIT, June 2018 THIS TALK

More information

Lecture 29: Computational Learning Theory

Lecture 29: Computational Learning Theory CS 710: Complexity Theory 5/4/2010 Lecture 29: Computational Learning Theory Instructor: Dieter van Melkebeek Scribe: Dmitri Svetlov and Jake Rosin Today we will provide a brief introduction to computational

More information

TTIC An Introduction to the Theory of Machine Learning. Learning from noisy data, intro to SQ model

TTIC An Introduction to the Theory of Machine Learning. Learning from noisy data, intro to SQ model TTIC 325 An Introduction to the Theory of Machine Learning Learning from noisy data, intro to SQ model Avrim Blum 4/25/8 Learning when there is no perfect predictor Hoeffding/Chernoff bounds: minimizing

More information

Polynomial time Prediction Strategy with almost Optimal Mistake Probability

Polynomial time Prediction Strategy with almost Optimal Mistake Probability Polynomial time Prediction Strategy with almost Optimal Mistake Probability Nader H. Bshouty Department of Computer Science Technion, 32000 Haifa, Israel bshouty@cs.technion.ac.il Abstract We give the

More information

6.842 Randomness and Computation April 2, Lecture 14

6.842 Randomness and Computation April 2, Lecture 14 6.84 Randomness and Computation April, 0 Lecture 4 Lecturer: Ronitt Rubinfeld Scribe: Aaron Sidford Review In the last class we saw an algorithm to learn a function where very little of the Fourier coeffecient

More information

Separating Models of Learning with Faulty Teachers

Separating Models of Learning with Faulty Teachers Separating Models of Learning with Faulty Teachers Vitaly Feldman a,,1 Shrenik Shah b a IBM Almaden Research Center, San Jose, CA 95120, USA b Harvard University, Cambridge, MA 02138, USA Abstract We study

More information

Yale University Department of Computer Science

Yale University Department of Computer Science Yale University Department of Computer Science Lower Bounds on Learning Random Structures with Statistical Queries Dana Angluin David Eisenstat Leonid (Aryeh) Kontorovich Lev Reyzin YALEU/DCS/TR-42 December

More information

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity;

Lecture Learning infinite hypothesis class via VC-dimension and Rademacher complexity; CSCI699: Topics in Learning and Game Theory Lecture 2 Lecturer: Ilias Diakonikolas Scribes: Li Han Today we will cover the following 2 topics: 1. Learning infinite hypothesis class via VC-dimension and

More information

Learning Functions of Halfspaces Using Prefix Covers

Learning Functions of Halfspaces Using Prefix Covers JMLR: Workshop and Conference Proceedings vol (2010) 15.1 15.10 25th Annual Conference on Learning Theory Learning Functions of Halfspaces Using Prefix Covers Parikshit Gopalan MSR Silicon Valley, Mountain

More information

An Approximation Algorithm for Approximation Rank

An Approximation Algorithm for Approximation Rank An Approximation Algorithm for Approximation Rank Troy Lee Columbia University Adi Shraibman Weizmann Institute Conventions Identify a communication function f : X Y { 1, +1} with the associated X-by-Y

More information

New lower bounds for statistical query learning

New lower bounds for statistical query learning Journal of Computer and System Sciences 70 (2005 485 509 www.elsevier.com/locate/jcss New lower bounds for statistical query learning Ke Yang,1 Computer Science Department, Carnegie Mellon University,

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 12: Weak Learnability and the l 1 margin Converse to Scale-Sensitive Learning Stability Convex-Lipschitz-Bounded Problems

More information

On Noise-Tolerant Learning of Sparse Parities and Related Problems

On Noise-Tolerant Learning of Sparse Parities and Related Problems On Noise-Tolerant Learning of Sparse Parities and Related Problems Elena Grigorescu, Lev Reyzin, and Santosh Vempala School of Computer Science Georgia Institute of Technology 266 Ferst Drive, Atlanta

More information

On the Bit Security of Elliptic Curve Diffie Hellman

On the Bit Security of Elliptic Curve Diffie Hellman On the Bit Security of Elliptic Curve Diffie Hellman Barak Shani Department of Mathematics, University of Auckland, New Zealand Abstract This paper gives the first bit security result for the elliptic

More information

Direct product theorem for discrepancy

Direct product theorem for discrepancy Direct product theorem for discrepancy Troy Lee Rutgers University Joint work with: Robert Špalek Direct product theorems Knowing how to compute f, how can you compute f f f? Obvious upper bounds: If can

More information

Discriminative Learning can Succeed where Generative Learning Fails

Discriminative Learning can Succeed where Generative Learning Fails Discriminative Learning can Succeed where Generative Learning Fails Philip M. Long, a Rocco A. Servedio, b,,1 Hans Ulrich Simon c a Google, Mountain View, CA, USA b Columbia University, New York, New York,

More information

Lecture 7: Passive Learning

Lecture 7: Passive Learning CS 880: Advanced Complexity Theory 2/8/2008 Lecture 7: Passive Learning Instructor: Dieter van Melkebeek Scribe: Tom Watson In the previous lectures, we studied harmonic analysis as a tool for analyzing

More information

Agnostic Learning of Disjunctions on Symmetric Distributions

Agnostic Learning of Disjunctions on Symmetric Distributions Agnostic Learning of Disjunctions on Symmetric Distributions Vitaly Feldman vitaly@post.harvard.edu Pravesh Kothari kothari@cs.utexas.edu May 26, 2014 Abstract We consider the problem of approximating

More information

EQUIVALENCES AND SEPARATIONS BETWEEN QUANTUM AND CLASSICAL LEARNABILITY

EQUIVALENCES AND SEPARATIONS BETWEEN QUANTUM AND CLASSICAL LEARNABILITY EQUIVALENCES AND SEPARATIONS BETWEEN QUANTUM AND CLASSICAL LEARNABILITY ROCCO A. SERVEDIO AND STEVEN J. GORTLER Abstract. We consider quantum versions of two well-studied models of learning Boolean functions:

More information

1 Differential Privacy and Statistical Query Learning

1 Differential Privacy and Statistical Query Learning 10-806 Foundations of Machine Learning and Data Science Lecturer: Maria-Florina Balcan Lecture 5: December 07, 015 1 Differential Privacy and Statistical Query Learning 1.1 Differential Privacy Suppose

More information

Uniform-Distribution Attribute Noise Learnability

Uniform-Distribution Attribute Noise Learnability Uniform-Distribution Attribute Noise Learnability Nader H. Bshouty Dept. Computer Science Technion Haifa 32000, Israel bshouty@cs.technion.ac.il Jeffrey C. Jackson Math. & Comp. Science Dept. Duquesne

More information

The Shortest Vector Problem (Lattice Reduction Algorithms)

The Shortest Vector Problem (Lattice Reduction Algorithms) The Shortest Vector Problem (Lattice Reduction Algorithms) Approximation Algorithms by V. Vazirani, Chapter 27 - Problem statement, general discussion - Lattices: brief introduction - The Gauss algorithm

More information

On the Sample Complexity of Noise-Tolerant Learning

On the Sample Complexity of Noise-Tolerant Learning On the Sample Complexity of Noise-Tolerant Learning Javed A. Aslam Department of Computer Science Dartmouth College Hanover, NH 03755 Scott E. Decatur Laboratory for Computer Science Massachusetts Institute

More information

On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical Queries

On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical Queries Annals of Mathematics and Artificial Intelligence 0 (2001)?? 1 On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical Queries Jeffrey Jackson Math. & Comp. Science Dept., Duquesne

More information

Sample and Computationally Efficient Active Learning. Maria-Florina Balcan Carnegie Mellon University

Sample and Computationally Efficient Active Learning. Maria-Florina Balcan Carnegie Mellon University Sample and Computationally Efficient Active Learning Maria-Florina Balcan Carnegie Mellon University Machine Learning is Shaping the World Highly successful discipline with lots of applications. Computational

More information

Katherine Stange. ECC 2007, Dublin, Ireland

Katherine Stange. ECC 2007, Dublin, Ireland in in Department of Brown University http://www.math.brown.edu/~stange/ in ECC Computation of ECC 2007, Dublin, Ireland Outline in in ECC Computation of in ECC Computation of in Definition A integer sequence

More information

Computational Learning Theory: Probably Approximately Correct (PAC) Learning. Machine Learning. Spring The slides are mainly from Vivek Srikumar

Computational Learning Theory: Probably Approximately Correct (PAC) Learning. Machine Learning. Spring The slides are mainly from Vivek Srikumar Computational Learning Theory: Probably Approximately Correct (PAC) Learning Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 This lecture: Computational Learning Theory The Theory

More information

Evidence that the Diffie-Hellman Problem is as Hard as Computing Discrete Logs

Evidence that the Diffie-Hellman Problem is as Hard as Computing Discrete Logs Evidence that the Diffie-Hellman Problem is as Hard as Computing Discrete Logs Jonah Brown-Cohen 1 Introduction The Diffie-Hellman protocol was one of the first methods discovered for two people, say Alice

More information

From Batch to Transductive Online Learning

From Batch to Transductive Online Learning From Batch to Transductive Online Learning Sham Kakade Toyota Technological Institute Chicago, IL 60637 sham@tti-c.org Adam Tauman Kalai Toyota Technological Institute Chicago, IL 60637 kalai@tti-c.org

More information

Introduction to Modern Cryptography Recitation 3. Orit Moskovich Tel Aviv University November 16, 2016

Introduction to Modern Cryptography Recitation 3. Orit Moskovich Tel Aviv University November 16, 2016 Introduction to Modern Cryptography Recitation 3 Orit Moskovich Tel Aviv University November 16, 2016 The group: Z N Let N 2 be an integer The set Z N = a 1,, N 1 gcd a, N = 1 with respect to multiplication

More information

Computational Learning Theory. CS534 - Machine Learning

Computational Learning Theory. CS534 - Machine Learning Computational Learning Theory CS534 Machine Learning Introduction Computational learning theory Provides a theoretical analysis of learning Shows when a learning algorithm can be expected to succeed Shows

More information

Lecture 2: Program Obfuscation - II April 1, 2009

Lecture 2: Program Obfuscation - II April 1, 2009 Advanced Topics in Cryptography Lecture 2: Program Obfuscation - II April 1, 2009 Lecturer: S. Goldwasser, M. Naor Scribe by: R. Marianer, R. Rothblum Updated: May 3, 2009 1 Introduction Barak et-al[1]

More information

Boosting and Hard-Core Sets

Boosting and Hard-Core Sets Boosting and Hard-Core Sets Adam R. Klivans Department of Mathematics MIT Cambridge, MA 02139 klivans@math.mit.edu Rocco A. Servedio Ý Division of Engineering and Applied Sciences Harvard University Cambridge,

More information

Separating Models of Learning from Correlated and Uncorrelated Data

Separating Models of Learning from Correlated and Uncorrelated Data Separating Models of Learning from Correlated and Uncorrelated Data Ariel Elbaz, Homin K. Lee, Rocco A. Servedio, and Andrew Wan Department of Computer Science Columbia University {arielbaz,homin,rocco,atw12}@cs.columbia.edu

More information

Advanced Topics in Cryptography

Advanced Topics in Cryptography Advanced Topics in Cryptography Lecture 6: El Gamal. Chosen-ciphertext security, the Cramer-Shoup cryptosystem. Benny Pinkas based on slides of Moni Naor page 1 1 Related papers Lecture notes of Moni Naor,

More information

1 Last time and today

1 Last time and today COMS 6253: Advanced Computational Learning Spring 2012 Theory Lecture 12: April 12, 2012 Lecturer: Rocco Servedio 1 Last time and today Scribe: Dean Alderucci Previously: Started the BKW algorithm for

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 Vasant Honavar Artificial Intelligence Research Laboratory Department of Computer Science

More information

Constructing Hard Functions from Learning Algorithms

Constructing Hard Functions from Learning Algorithms Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 129 (2013) Constructing Hard Functions from Learning Algorithms Adam Klivans klivans@cs.utexas.edu Pravesh Kothari kothari@cs.utexas.edu

More information

COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE. Nigel Higson. Unpublished Note, 1999

COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE. Nigel Higson. Unpublished Note, 1999 COUNTEREXAMPLES TO THE COARSE BAUM-CONNES CONJECTURE Nigel Higson Unpublished Note, 1999 1. Introduction Let X be a discrete, bounded geometry metric space. 1 Associated to X is a C -algebra C (X) which

More information

Notes for Lecture 15

Notes for Lecture 15 U.C. Berkeley CS278: Computational Complexity Handout N15 Professor Luca Trevisan 10/27/2004 Notes for Lecture 15 Notes written 12/07/04 Learning Decision Trees In these notes it will be convenient to

More information

Majority is incompressible by AC 0 [p] circuits

Majority is incompressible by AC 0 [p] circuits Majority is incompressible by AC 0 [p] circuits Igor Carboni Oliveira Columbia University Joint work with Rahul Santhanam (Univ. Edinburgh) 1 Part 1 Background, Examples, and Motivation 2 Basic Definitions

More information

CS 6375: Machine Learning Computational Learning Theory

CS 6375: Machine Learning Computational Learning Theory CS 6375: Machine Learning Computational Learning Theory Vibhav Gogate The University of Texas at Dallas Many slides borrowed from Ray Mooney 1 Learning Theory Theoretical characterizations of Difficulty

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 236756 Prof. Nir Ailon Lecture 4: Computational Complexity of Learning & Surrogate Losses Efficient PAC Learning Until now we were mostly worried about sample complexity

More information

Unconditional Lower Bounds for Learning Intersections of Halfspaces

Unconditional Lower Bounds for Learning Intersections of Halfspaces Unconditional Lower Bounds for Learning Intersections of Halfspaces Adam R. Klivans Alexander A. Sherstov The University of Texas at Austin Department of Computer Sciences Austin, TX 78712 USA {klivans,sherstov}@cs.utexas.edu

More information

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT

Quantum algorithms (CO 781, Winter 2008) Prof. Andrew Childs, University of Waterloo LECTURE 1: Quantum circuits and the abelian QFT Quantum algorithms (CO 78, Winter 008) Prof. Andrew Childs, University of Waterloo LECTURE : Quantum circuits and the abelian QFT This is a course on quantum algorithms. It is intended for graduate students

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

What Can We Learn Privately?

What Can We Learn Privately? What Can We Learn Privately? Sofya Raskhodnikova Penn State University Joint work with Shiva Kasiviswanathan Homin Lee Kobbi Nissim Adam Smith Los Alamos UT Austin Ben Gurion Penn State To appear in SICOMP

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Computational Learning Theory

Computational Learning Theory CS 446 Machine Learning Fall 2016 OCT 11, 2016 Computational Learning Theory Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes 1 PAC Learning We want to develop a theory to relate the probability of successful

More information

Vapnik-Chervonenkis Dimension of Neural Nets

Vapnik-Chervonenkis Dimension of Neural Nets P. L. Bartlett and W. Maass: Vapnik-Chervonenkis Dimension of Neural Nets 1 Vapnik-Chervonenkis Dimension of Neural Nets Peter L. Bartlett BIOwulf Technologies and University of California at Berkeley

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields

Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields Nelly Fazio 1,2, Rosario Gennaro 1,2, Irippuge Milinda Perera 2, and William E. Skeith III 1,2 1 The City College of CUNY {fazio,rosario,wes}@cs.ccny.cuny.edu

More information

ICML '97 and AAAI '97 Tutorials

ICML '97 and AAAI '97 Tutorials A Short Course in Computational Learning Theory: ICML '97 and AAAI '97 Tutorials Michael Kearns AT&T Laboratories Outline Sample Complexity/Learning Curves: nite classes, Occam's VC dimension Razor, Best

More information

The PAC Learning Framework -II

The PAC Learning Framework -II The PAC Learning Framework -II Prof. Dan A. Simovici UMB 1 / 1 Outline 1 Finite Hypothesis Space - The Inconsistent Case 2 Deterministic versus stochastic scenario 3 Bayes Error and Noise 2 / 1 Outline

More information

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI

An Introduction to Statistical Theory of Learning. Nakul Verma Janelia, HHMI An Introduction to Statistical Theory of Learning Nakul Verma Janelia, HHMI Towards formalizing learning What does it mean to learn a concept? Gain knowledge or experience of the concept. The basic process

More information

Learning a Random DFA from Uniform Strings and State Information

Learning a Random DFA from Uniform Strings and State Information Learning a Random DFA from Uniform Strings and State Information Dana Angluin and Dongqu Chen Department of Computer Science Yale University New Haven, CT 65 Abstract. Deterministic finite automata (DFA)

More information

Distributed Machine Learning. Maria-Florina Balcan, Georgia Tech

Distributed Machine Learning. Maria-Florina Balcan, Georgia Tech Distributed Machine Learning Maria-Florina Balcan, Georgia Tech Model for reasoning about key issues in supervised learning [Balcan-Blum-Fine-Mansour, COLT 12] Supervised Learning Example: which emails

More information

Distinct distances between points and lines in F 2 q

Distinct distances between points and lines in F 2 q Distinct distances between points and lines in F 2 q Thang Pham Nguyen Duy Phuong Nguyen Minh Sang Claudiu Valculescu Le Anh Vinh Abstract In this paper we give a result on the number of distinct distances

More information

1 The Probably Approximately Correct (PAC) Model

1 The Probably Approximately Correct (PAC) Model COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #3 Scribe: Yuhui Luo February 11, 2008 1 The Probably Approximately Correct (PAC) Model A target concept class C is PAC-learnable by

More information

Approximation norms and duality for communication complexity lower bounds

Approximation norms and duality for communication complexity lower bounds Approximation norms and duality for communication complexity lower bounds Troy Lee Columbia University Adi Shraibman Weizmann Institute From min to max The cost of a best algorithm is naturally phrased

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

Nonlinear Programming Algorithms Handout

Nonlinear Programming Algorithms Handout Nonlinear Programming Algorithms Handout Michael C. Ferris Computer Sciences Department University of Wisconsin Madison, Wisconsin 5376 September 9 1 Eigenvalues The eigenvalues of a matrix A C n n are

More information

Learning Restricted Models of Arithmetic Circuits

Learning Restricted Models of Arithmetic Circuits Learning Restricted Models of Arithmetic Circuits Adam R. Klivans Department of Computer Science University of Texas at Austin Austin, TX 78712-1188 klivans@cs.utexas.edu Amir Shpilka Faculty of Computer

More information

Secret Sharing CPT, Version 3

Secret Sharing CPT, Version 3 Secret Sharing CPT, 2006 Version 3 1 Introduction In all secure systems that use cryptography in practice, keys have to be protected by encryption under other keys when they are stored in a physically

More information

Bootstrapping Obfuscators via Fast Pseudorandom Functions

Bootstrapping Obfuscators via Fast Pseudorandom Functions Bootstrapping Obfuscators via Fast Pseudorandom Functions Benny Applebaum October 26, 2013 Abstract We show that it is possible to upgrade an obfuscator for a weak complexity class WEAK into an obfuscator

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Efficient Noise-Tolerant Learning from Statistical Queries

Efficient Noise-Tolerant Learning from Statistical Queries Efficient Noise-Tolerant Learning from Statistical Queries MICHAEL KEARNS AT&T Laboratories Research, Florham Park, New Jersey Abstract. In this paper, we study the problem of learning in the presence

More information

New Results for Random Walk Learning

New Results for Random Walk Learning Journal of Machine Learning Research 15 (2014) 3815-3846 Submitted 1/13; Revised 5/14; Published 11/14 New Results for Random Walk Learning Jeffrey C. Jackson Karl Wimmer Duquesne University 600 Forbes

More information

Uniform-Distribution Attribute Noise Learnability

Uniform-Distribution Attribute Noise Learnability Uniform-Distribution Attribute Noise Learnability Nader H. Bshouty Technion Haifa 32000, Israel bshouty@cs.technion.ac.il Christino Tamon Clarkson University Potsdam, NY 13699-5815, U.S.A. tino@clarkson.edu

More information

Being Taught can be Faster than Asking Questions

Being Taught can be Faster than Asking Questions Being Taught can be Faster than Asking Questions Ronald L. Rivest Yiqun Lisa Yin Abstract We explore the power of teaching by studying two on-line learning models: teacher-directed learning and self-directed

More information

Adaptive Security of Compositions

Adaptive Security of Compositions emester Thesis in Cryptography Adaptive ecurity of Compositions Patrick Pletscher ETH Zurich June 30, 2005 upervised by: Krzysztof Pietrzak, Prof. Ueli Maurer Email: pat@student.ethz.ch In a recent paper

More information

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004 CMSC 858K Advanced Topics in Cryptography February 5, 2004 Lecturer: Jonathan Katz Lecture 4 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Summary The focus of this lecture is efficient public-key

More information

More Efficient PAC-learning of DNF with Membership Queries. Under the Uniform Distribution

More Efficient PAC-learning of DNF with Membership Queries. Under the Uniform Distribution More Efficient PAC-learning of DNF with Membership Queries Under the Uniform Distribution Nader H. Bshouty Technion Jeffrey C. Jackson Duquesne University Christino Tamon Clarkson University Corresponding

More information

Background: Lattices and the Learning-with-Errors problem

Background: Lattices and the Learning-with-Errors problem Background: Lattices and the Learning-with-Errors problem China Summer School on Lattices and Cryptography, June 2014 Starting Point: Linear Equations Easy to solve a linear system of equations A s = b

More information

Online Learning, Mistake Bounds, Perceptron Algorithm

Online Learning, Mistake Bounds, Perceptron Algorithm Online Learning, Mistake Bounds, Perceptron Algorithm 1 Online Learning So far the focus of the course has been on batch learning, where algorithms are presented with a sample of training data, from which

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016 Machine Learning 10-701, Fall 2016 Computational Learning Theory Eric Xing Lecture 9, October 5, 2016 Reading: Chap. 7 T.M book Eric Xing @ CMU, 2006-2016 1 Generalizability of Learning In machine learning

More information

Rank minimization via the γ 2 norm

Rank minimization via the γ 2 norm Rank minimization via the γ 2 norm Troy Lee Columbia University Adi Shraibman Weizmann Institute Rank Minimization Problem Consider the following problem min X rank(x) A i, X b i for i = 1,..., k Arises

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 7: Computational Complexity of Learning Agnostic Learning Hardness of Learning via Crypto Assumption: No poly-time algorithm

More information

Bits Security of the CDH Problems over Finite Fields

Bits Security of the CDH Problems over Finite Fields Bits Security of the CDH Problems over Finite Fields Mingqiang Wang 1, Tao Zhan 1, and Haibin Zhang 2 1 School of Mathematics, Shandong University wangmingqiang@sdu.edu.cn,zhantao@moe.edu.cn 2 Department

More information

Baum s Algorithm Learns Intersections of Halfspaces with respect to Log-Concave Distributions

Baum s Algorithm Learns Intersections of Halfspaces with respect to Log-Concave Distributions Baum s Algorithm Learns Intersections of Halfspaces with respect to Log-Concave Distributions Adam R Klivans UT-Austin klivans@csutexasedu Philip M Long Google plong@googlecom April 10, 2009 Alex K Tang

More information

Noise-tolerant learning, the parity problem, and the Statistical Query model

Noise-tolerant learning, the parity problem, and the Statistical Query model Noise-tolerant learning, the parity problem, and the Statistical Query model Avrim Blum Carnegie Mellon University avrim+ @ cs.cmu.edu Adam Kalai t Carnegie Mellon University akalai+@cs.cmu.edu Hal Wasserman

More information

A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits

A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits A Lower Bound for the Size of Syntactically Multilinear Arithmetic Circuits Ran Raz Amir Shpilka Amir Yehudayoff Abstract We construct an explicit polynomial f(x 1,..., x n ), with coefficients in {0,

More information

Provable security. Michel Abdalla

Provable security. Michel Abdalla Lecture 1: Provable security Michel Abdalla École normale supérieure & CNRS Cryptography Main goal: Enable secure communication in the presence of adversaries Adversary Sender 10110 10110 Receiver Only

More information

Secure Bilinear Diffie-Hellman Bits

Secure Bilinear Diffie-Hellman Bits Secure Bilinear Diffie-Hellman Bits Steven D. Galbraith 1, Herbie J. Hopkins 1, and Igor E. Shparlinski 2 1 Mathematics Department, Royal Holloway University of London Egham, Surrey, TW20 0EX, UK Steven.Galbraith@rhul.ac.uk,

More information

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell CS340 Machine learning Lecture 4 Learning theory Some slides are borrowed from Sebastian Thrun and Stuart Russell Announcement What: Workshop on applying for NSERC scholarships and for entry to graduate

More information

Distributed Machine Learning. Maria-Florina Balcan Carnegie Mellon University

Distributed Machine Learning. Maria-Florina Balcan Carnegie Mellon University Distributed Machine Learning Maria-Florina Balcan Carnegie Mellon University Distributed Machine Learning Modern applications: massive amounts of data distributed across multiple locations. Distributed

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

2MA105 Algebraic Structures I

2MA105 Algebraic Structures I 2MA105 Algebraic Structures I Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/2ma105.html Lecture 7 Cosets once again Factor Groups Some Properties of Factor Groups Homomorphisms November 28, 2011

More information

Introduction to Machine Learning (67577) Lecture 3

Introduction to Machine Learning (67577) Lecture 3 Introduction to Machine Learning (67577) Lecture 3 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem General Learning Model and Bias-Complexity tradeoff Shai Shalev-Shwartz

More information

CS259C, Final Paper: Discrete Log, CDH, and DDH

CS259C, Final Paper: Discrete Log, CDH, and DDH CS259C, Final Paper: Discrete Log, CDH, and DDH Deyan Simeonov 12/10/11 1 Introduction and Motivation In this paper we will present an overview of the relations between the Discrete Logarithm (DL), Computational

More information

Generalization, Overfitting, and Model Selection

Generalization, Overfitting, and Model Selection Generalization, Overfitting, and Model Selection Sample Complexity Results for Supervised Classification Maria-Florina (Nina) Balcan 10/03/2016 Two Core Aspects of Machine Learning Algorithm Design. How

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

A Review of Linear Algebra

A Review of Linear Algebra A Review of Linear Algebra Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab: Implementations

More information

Polynomial regression under arbitrary product distributions

Polynomial regression under arbitrary product distributions Polynomial regression under arbitrary product distributions Eric Blais and Ryan O Donnell and Karl Wimmer Carnegie Mellon University Abstract In recent work, Kalai, Klivans, Mansour, and Servedio [KKMS05]

More information

The sample complexity of agnostic learning with deterministic labels

The sample complexity of agnostic learning with deterministic labels The sample complexity of agnostic learning with deterministic labels Shai Ben-David Cheriton School of Computer Science University of Waterloo Waterloo, ON, N2L 3G CANADA shai@uwaterloo.ca Ruth Urner College

More information

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm Part I: Quantum Gates and Simon s Algorithm Martin Rötteler NEC Laboratories America, Inc. 4 Independence Way, Suite 00 Princeton, NJ 08540, U.S.A. International Summer School on Quantum Information, Max-Planck-Institut

More information

Lecture 4: LMN Learning (Part 2)

Lecture 4: LMN Learning (Part 2) CS 294-114 Fine-Grained Compleity and Algorithms Sept 8, 2015 Lecture 4: LMN Learning (Part 2) Instructor: Russell Impagliazzo Scribe: Preetum Nakkiran 1 Overview Continuing from last lecture, we will

More information