Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Size: px
Start display at page:

Download "Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b."

Transcription

1 Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c Suppose a is a vector in the plane. If the component of the a in the direction of 1, 1 is 2 and the component of a in the direction of 2, 1 is 7 5/5. Find a vector with length 3 that points in the opposite direction as a does. Assume a = x, y. Then, using the two components, you can write out two equations for x and y. Find x and y. the vector desired is 3a/ a. 3. Given a = 1, 1 and b = 2, 3, decompose b into two parts, such that one is parallel with a and one is perpendicular with a. b = b a a a a. b = b b = b (b a)a. a 2 4. a, b and c are three vectors in space. (1). If a, b, c are perpendicular with each other and all are unit vectors (one example is {i, j, k}), for an arbitrary vector d, find the numbers C 1, C 2, C 3 in terms of the four vectors: Dot each side with a, b and c d = C 1 a + C 2 b + C 3 c. (2). Answer the same question for general three vectors a, b, c provided det(a, b, c) = (a b) c 0. (Hint: Dot both sides with some suitable vectors.) Dot each side with a b etc. 5. v 1, 2, 3 = 5, 2, 3 and v 2, 1, 2 = 3, 0, 3. Find v. If v is perpendicular with both a and b, then v = λa b. You can plug it back to determine λ. 6. The area of the parallelogram determined by v and w is 5. Both v and w are perpendicular with 1, 2, 2. Compute v 1 v 2 v 3 det w 1 w 2 w

2 (Hint: det(a, b, c) = (a b) c = a (b c) = b (c a)) The question is simply asking (v w) 1, 1, 2. From the conditions, v w = (s)5 1,2,2 1,2,2 where s = 1 or s = 1 depending on which direction it is pointing. the answer is therefore , 2, 2 1, 1, Let A(5, 2, 3), B(6, 4, 0), C(7, 5, 1) and D(14, 14, 18). (1). Compute the area of the triangle ABC. (2). Compute the volume of the parallelepiped determined by AB, AC and AD. (3). Find the distance from D to plane ABC (You can just use the results from (1) and (2)) (1). 1 2 AB AC (2). V = ( AB AC) AD = determinant (3). d = V/ AB AC 8. Given two planes x + y + z = 5 and 3x y = 4, write a parametric equation and a symmetric equation for the line of intersection of the two planes. There are essentially 3 ways to find the intersection of line. Quiz 1. Check 9. Find the line that passes through (2, 6, 3) and parallel with both 3x 9y + 4z = 10 and 2x y + 4z = 12. The direction of the line is parallel with the cross product of the normal vectors of the planes (why?). 10. Consider the skew lines L 1 : x(t) = 3 2t, 4t 1, 3t + 2 and L 2 : x(t) = 6t + 3, 1 t, 2 2t. We have two ways to find the distance tween them: (1). Find a point on L 1 called P and point on L 2 called Q such that P Q is perpendicular with both of them. (Hint: without loss of generality, we can assume P (3 2t 1, 4t 1 1, 3t 1 +2) and Q(6t 2 +3, 1 t 2, 2 2t 2 ). Then,vector P Q should be perpendicular with both.) (2). Find any point P on L 1 and any point Q on L 2. Find a vector that is perpendicular with both lines using cross product, called n. Then, d = P Q n / n. 2

3 Verify that these two methods give the same answer. The problem has given enough hints. 11. (1). Consider the curve r(t) = 3t sin(t), 3t cos(t), 2t 2. Compute the arclength of this curve from t = 1 to t = 2. (2) Suppose that T (t) is the unit tangent vector of a curve. Explain why dt /ds is perpendicular with T where s is the arclength. (3). Compute the curvature of r(t) = e t cos ti + e t sin tj + e t k. (1). s = 2 1 r (t) dt (2). Use the fact that T is a constant. (3). This was shown in lecture. 12. Consider r(t) = t, t 2, t 3. Find the tangent line of this curve at (1, 1, 1) and a plane that is normal to this curve at (1, 1, 1). A vector tangent to the curve is the velocity v(t) = r (t). For the line, the line passes through (1, 1, 1) and is parallel with v(1); for the plane, it passes thorough (1, 1, 1) and is perpendicular with v(1). 13. Parametrize y = x 2 as a vector valued function r(t) and then compute the curvature at x = 0. For function y = f(x), one parametrization is r(x) = x, y = x, f(x). You can rename x to be t. 14. (1). Describe the surface y 2 = x 2 + z 2 and get a rough sketch. (Hint: This is a surface of revolution.) (2). Find the trace of the ellipsoid x 2 /a 2 + y 2 /b 2 + z 2 /c 2 = 1, which is tangent to planes P 1 : x = 2, P 2 : y = 3 and P 3 : z = 1, in the plane that passes through (0, 0, 0) and is perpendicular with (1, 1, 0). (1). This is the cone revoluted from y = ±x, z = 0 about y-axis. (2). a = 2, b = 3, c = 1. The plane is simply x y = 0. hence, the trace is x2 4 + x2 9 + z2 1 = 1, y = x. This is an ellipse. *************************************************************** 1. Sketch the level curves of f(x, y) = x 2 y 2. The level curves are x 2 y 2 = k. Discuss k > 0, k = 0, k < 0 3

4 2. Can we define a suitable value for the function f(x, y) at (0, 0) to make it continuous? If yes, compute the value; if not, explain why. (a). f(x, y) = xy x 2 +y 2 (b). f(x, y) = arctan( 1 x 2 +2y 2 ) (c). f(x, y) = x2 +y 6 y 2 +x 6 The key idea is to check if the limits exist as (x, y) (0, 0). If the limits exist, we can define the values to be the limits and then the functions become continuous. Part(a). The limit is zero as we showed in lecture. You can use polar coordinates. (b). The inside goes to positive infinity but the arctan then goes to π/2. The third one, by checking different directions y = kx. You see different limits. 3. Consider the function f(x, y) = (1). Compute f x (0, 0) and f y (0, 0). { sin(x 2 + y 2 ) x > 0, y > 0 0 otherwise (2). Is the function continuous at (0, 0)? (3). (Bonus) Is the function differentiable at (0, 0)? f(h,0) f(0,0) (1). Use the definition f x = lim h 0 h. (2). This is simply asking if f(x, y) f(0, 0) as you approach the origin. 4. Let P = ln x + y 2 and Q = 2xy + y 1 y 2. Can you find a function f(x, y) such that f x = P and f y = Q for x > 0, y < 1? If yes, find f; if not, explain why. This problem tests f xy = f yx. You should check that P y, Q x are continuous. They verify that if they are equal or not. 5. Suppose f(x, y) = ln(x 2 + y 2 ). (1). Compute the tangent plane of the graph at (1, 1, ln 2). Can you find a normal vector of this plane? (2). Compute the tangent line of the level set f(x, y) = ln(2). Can you find a normal vector of this line? (3). On the level set f(x, y) = ln(2), near the point (1, 1), y can be regarded as a function of x. Compute y (x) x=1. 4

5 (1). The tangent plane of the graph is given by z = f(1, 1) + f x (1, 1)(x 1) + f y (1, 1)(y 1). Another way is to regard it as the level set of F = f(x, y) z = 0. Use the technique for computing tangent planes of level sets to compute the tangent plane. (2). The tangent line can be computed using two understandings. The first is the linear approximation: { } f(1, 1)+f x (1, 1)(x 1)+f y (1, 1)(y 1) ln(2) = 0 f x (1, 1)(x 1)+f y (1, 1)(y 1) = 0. The second understanding is that f(1, 1) is a normal vector of the line. Then, f(1, 1) x 1, y 1 = 0 (3). This tests implicit differentiation. y (1) = fx(1,1) f y(1,1) 6. Suppose w = 2u 2 + 3v and u = s + t and v = 2s 3t. Compute w s t at s = 1, t = 2 in two ways. This tests chain rule. It s straightforward. 7. Let f(x, y, z) = ln(1 + x 2 + y 2 z 2 ). (1). Find the direction in which f(x, y, z) decreases the fastest at (1, 1, 1). (2). Compute the rate of change of f with respect to distance in the direction indicated by 2, 1, 4 at (1, 1, 1). (3). Let r(t) = t 2, t 2, 2t 2 1. Compute r(1) and r (1). Then, compute d dt f(r(t)) t=1 using what you got just now. Explain how this is related to the directional derivative in (2). (1). As we explained, f points the fastest increasing direction while f points the fastest decreasing direction. In our case, we need a unit normal vector. Hence, the unit vector has something to do with f. (2). This is just directional derivative: D u f, but you should find u first. (3). Chain rule: d dt f = f(r(1)) r (1). You only need to compute f,r(1) and r (1). This rate of change w.r.t. time is equal to the directional derivative times speed. The speed is v = r (1). If you multiply this with the directional derivative, you get the same thing. 5

6 8. (1). Suppose P V nrt = 0 where n and R are two constants. Show that P V T V T P = 1 (2). Let F (x, y, z) = ln(x 2 + y 2 ) e x z. Consider the level set F = ln 2 1. This determines an implicit function. Near point (1, 1, 1), compute x y. This problem tests implicit differentiation. Let F = P V nrt. Then, we have a level set F (P, V, T ) = 0. The product is 1. P V = F V F P V T = F T F V T P = F P. F T You can verify it directly: P = nrt/v. Hence, P/ V = nrt/v 2. Similarly you can compute others. The product is 1. (2). Use the formula for implicit differentiation. 6

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

MTHE 227 Problem Set 2 Solutions

MTHE 227 Problem Set 2 Solutions MTHE 7 Problem Set Solutions 1 (Great Circles). The intersection of a sphere with a plane passing through its center is called a great circle. Let Γ be the great circle that is the intersection of the

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

MATH 2433 Homework 1

MATH 2433 Homework 1 MATH 433 Homework 1 1. The sequence (a i ) is defined recursively by a 1 = 4 a i+1 = 3a i find a closed formula for a i in terms of i.. In class we showed that the Fibonacci sequence (a i ) defined by

More information

Calculus III: Practice Final

Calculus III: Practice Final Calculus III: Practice Final Name: Circle one: Section 6 Section 7. Read the problems carefully. Show your work unless asked otherwise. Partial credit will be given for incomplete work. The exam contains

More information

Name: ID: Math 233 Exam 1. Page 1

Name: ID: Math 233 Exam 1. Page 1 Page 1 Name: ID: This exam has 20 multiple choice questions, worth 5 points each. You are allowed to use a scientific calculator and a 3 5 inch note card. 1. Which of the following pairs of vectors are

More information

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4 Topic 2-2: Derivatives of Vector Functions Textbook: Section 13.2, 13.4 Warm-Up: Parametrization of Circles Each of the following vector functions describe the position of an object traveling around the

More information

Math 251, Spring 2005: Exam #2 Preview Problems

Math 251, Spring 2005: Exam #2 Preview Problems Math 5, Spring 005: Exam # Preview Problems. Using the definition of derivative find the derivative of the following functions: a) fx) = e x e h. Use the following lim =, e x+h = e x e h.) h b) fx) = x

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

Vectors, dot product, and cross product

Vectors, dot product, and cross product MTH 201 Multivariable calculus and differential equations Practice problems Vectors, dot product, and cross product 1. Find the component form and length of vector P Q with the following initial point

More information

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE GOALS Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction. Be able to use the fact that

More information

FINAL EXAM STUDY GUIDE

FINAL EXAM STUDY GUIDE FINAL EXAM STUDY GUIDE The Final Exam takes place on Wednesday, June 13, 2018, from 10:30 AM to 12:30 PM in 1100 Donald Bren Hall (not the usual lecture room!!!) NO books/notes/calculators/cheat sheets

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

8. Find r a! r b. a) r a = [3, 2, 7], r b = [ 1, 4, 5] b) r a = [ 5, 6, 7], r b = [2, 7, 4]

8. Find r a! r b. a) r a = [3, 2, 7], r b = [ 1, 4, 5] b) r a = [ 5, 6, 7], r b = [2, 7, 4] Chapter 8 Prerequisite Skills BLM 8-1.. Linear Relations 1. Make a table of values and graph each linear function a) y = 2x b) y = x + 5 c) 2x + 6y = 12 d) x + 7y = 21 2. Find the x- and y-intercepts of

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003 SOLUTIONS TO SECOND PRACTICE EXAM Math a, Spring 3 Problem ) ( points) Circle for each of the questions the correct letter. No justifications are needed. Your score will be C W where C is the number of

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Math 103, Review Problems for the First Midterm

Math 103, Review Problems for the First Midterm Math 0, Review Problems for the First Mierm Ivan Matić. Draw the curve r (t) = cost, sin t, sint and find the tangent line to the curve at t = 0. Find the normal vector to the curve at t = 0.. Find the

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. Multiple Choice.(6 pts) Find smmetric equations of the line L passing through the point (, 5, ) and perpendicular to the plane x + 3 z = 9. (a) x = + 5 3 = z (c) (x ) + 3( 3) (z ) = 9 (d) (e) x = 3 5 =

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH SOME SOLUTIONS TO EXAM 1 Fall 018 Version A refers to the regular exam and Version B to the make-up 1. Version A. Find the center

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

********************************************************** 1. Evaluate the double or iterated integrals:

********************************************************** 1. Evaluate the double or iterated integrals: Practice problems 1. (a). Let f = 3x 2 + 4y 2 + z 2 and g = 2x + 3y + z = 1. Use Lagrange multiplier to find the extrema of f on g = 1. Is this a max or a min? No max, but there is min. Hence, among the

More information

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π. Math 234 What you should know on day one August 28, 2001 1 You should be able to use general principles like Length = ds, Area = da, Volume = dv For example the length of the semi circle x = cos t, y =

More information

MATH 12 CLASS 5 NOTES, SEP

MATH 12 CLASS 5 NOTES, SEP MATH 12 CLASS 5 NOTES, SEP 30 2011 Contents 1. Vector-valued functions 1 2. Differentiating and integrating vector-valued functions 3 3. Velocity and Acceleration 4 Over the past two weeks we have developed

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Study guide for Exam 1. by William H. Meeks III October 26, 2012

Study guide for Exam 1. by William H. Meeks III October 26, 2012 Study guide for Exam 1. by William H. Meeks III October 2, 2012 1 Basics. First we cover the basic definitions and then we go over related problems. Note that the material for the actual midterm may include

More information

Calculus with Analytic Geometry 3 Fall 2018

Calculus with Analytic Geometry 3 Fall 2018 alculus with Analytic Geometry 3 Fall 218 Practice Exercises for the Final Exam I present here a number of exercises that could serve as practice for the final exam. Some are easy and straightforward;

More information

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter. Solutions Review for Eam #1 Math 1260 1. Consider the points P = (2, 5, 1) and Q = (4, 1, 1). (a) Find the distance from P to Q. Solution. dist(p, Q) = (4 2) 2 + (1 + 5) 2 + (1 + 1) 2 = 4 + 36 + 4 = 44

More information

Exam 3 Solutions. Multiple Choice Questions

Exam 3 Solutions. Multiple Choice Questions MA 4 Exam 3 Solutions Fall 26 Exam 3 Solutions Multiple Choice Questions. The average value of the function f (x) = x + sin(x) on the interval [, 2π] is: A. 2π 2 2π B. π 2π 2 + 2π 4π 2 2π 4π 2 + 2π 2.

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Math 210, Exam 1, Practice Fall 2009 Problem 1 Solution

Math 210, Exam 1, Practice Fall 2009 Problem 1 Solution Math 20, Exam, Practice Fall 2009 Problem Solution. Let A = (,,2), B = (0,,), C = (2,,). (a) Find the vector equation of the plane through A, B, C. (b) Find the area of the triangle with these three vertices.

More information

Section 14.1 Vector Functions and Space Curves

Section 14.1 Vector Functions and Space Curves Section 14.1 Vector Functions and Space Curves Functions whose range does not consists of numbers A bulk of elementary mathematics involves the study of functions - rules that assign to a given input a

More information

Math 11 Fall 2018 Midterm 1

Math 11 Fall 2018 Midterm 1 Math 11 Fall 2018 Midterm 1 October 3, 2018 NAME: SECTION (check one box): Section 1 (I. Petkova 10:10) Section 2 (M. Kobayashi 11:30) Section 3 (W. Lord 12:50) Section 4 (M. Kobayashi 1:10) Instructions:

More information

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point

More information

MTH 234 Solutions to Exam 1 Feb. 22nd 2016

MTH 234 Solutions to Exam 1 Feb. 22nd 2016 MTH 34 Solutions to Exam 1 Feb. nd 016 Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

The Calculus of Vec- tors

The Calculus of Vec- tors Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 3 1 The Calculus of Vec- Summary: tors 1. Calculus of Vectors: Limits and Derivatives 2. Parametric representation of Curves r(t) = [x(t), y(t),

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 214 (R1) Winter 2008 Intermediate Calculus I Solutions to Problem Set #8 Completion Date: Friday March 14, 2008 Department of Mathematical and Statistical Sciences University of Alberta Question 1.

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

Brief answers to assigned even numbered problems that were not to be turned in

Brief answers to assigned even numbered problems that were not to be turned in Brief answers to assigned even numbered problems that were not to be turned in Section 2.2 2. At point (x 0, x 2 0) on the curve the slope is 2x 0. The point-slope equation of the tangent line to the curve

More information

VANDERBILT UNIVERSITY. MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions

VANDERBILT UNIVERSITY. MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions VANDERBILT UNIVERSITY MATH 2300 MULTIVARIABLE CALCULUS Practice Test 1 Solutions Directions. This practice test should be used as a study guide, illustrating the concepts that will be emphasized in the

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

0, otherwise. Find each of the following limits, or explain that the limit does not exist.

0, otherwise. Find each of the following limits, or explain that the limit does not exist. Midterm Solutions 1, y x 4 1. Let f(x, y) = 1, y 0 0, otherwise. Find each of the following limits, or explain that the limit does not exist. (a) (b) (c) lim f(x, y) (x,y) (0,1) lim f(x, y) (x,y) (2,3)

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics GROUPS Trinity Term 06 MA3: Advanced Calculus SAMPLE EXAM, Solutions DAY PLACE TIME Prof. Larry Rolen Instructions to Candidates: Attempt

More information

Study Guide/Practice Exam 2 Solution. This study guide/practice exam is longer and harder than the actual exam. Problem A: Power Series. x 2i /i!

Study Guide/Practice Exam 2 Solution. This study guide/practice exam is longer and harder than the actual exam. Problem A: Power Series. x 2i /i! Study Guide/Practice Exam 2 Solution This study guide/practice exam is longer and harder than the actual exam Problem A: Power Series (1) Find a series representation of f(x) = e x2 Explain why the series

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter.

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. Math c Solutions: Exam 1 Fall 16 1. Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. x tan t x tan t y sec t y sec t t π 4 To eliminate the parameter,

More information

Lecture 4: Partial and Directional derivatives, Differentiability

Lecture 4: Partial and Directional derivatives, Differentiability Lecture 4: Partial and Directional derivatives, Differentiability Rafikul Alam Department of Mathematics IIT Guwahati Differential Calculus Task: Extend differential calculus to the functions: Case I:

More information

1 Vectors and 3-Dimensional Geometry

1 Vectors and 3-Dimensional Geometry Calculus III (part ): Vectors and 3-Dimensional Geometry (by Evan Dummit, 07, v..55) Contents Vectors and 3-Dimensional Geometry. Functions of Several Variables and 3-Space..................................

More information

Practice problems. 1. Evaluate the double or iterated integrals: First: change the order of integration; Second: polar.

Practice problems. 1. Evaluate the double or iterated integrals: First: change the order of integration; Second: polar. Practice problems 1. Evaluate the double or iterated integrals: x 3 + 1dA where = {(x, y) : 0 y 1, y x 1}. 1/ 1 y 0 3y sin(x + y )dxdy First: change the order of integration; Second: polar.. Consider the

More information

Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5

Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Calculus III June, 06 Name: Exam There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work!

More information

problem score possible Total 60

problem score possible Total 60 Math 32 A: Midterm 1, Oct. 24, 2008 Name: ID Number: Section: problem score possible 1. 10 2. 10 3. 10 4. 10 5. 10 6. 10 Total 60 1 1. Determine whether the following points are coplanar: a. P = (8, 14,

More information

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2 MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

More information

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22 MATH 3A: MIDTERM 1 REVIEW JOE HUGHES 1. Let v = 3,, 3. a. Find e v. Solution: v = 9 + 4 + 9 =, so 1. Vectors e v = 1 v v = 1 3,, 3 b. Find the vectors parallel to v which lie on the sphere of radius two

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Page Problem Score Max Score a 8 12b a b 10 14c 6 6 Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

More information

11.4 Dot Product Contemporary Calculus 1

11.4 Dot Product Contemporary Calculus 1 11.4 Dot Product Contemporary Calculus 1 11.4 DOT PRODUCT In the previous sections we looked at the meaning of vectors in two and three dimensions, but the only operations we used were addition and subtraction

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

12.1. Cartesian Space

12.1. Cartesian Space 12.1. Cartesian Space In most of your previous math classes, we worked with functions on the xy-plane only meaning we were working only in 2D. Now we will be working in space, or rather 3D. Now we will

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

, find the value(s) of a and b which make f differentiable at bx 2 + x if x 2 x = 2 or explain why no such values exist.

, find the value(s) of a and b which make f differentiable at bx 2 + x if x 2 x = 2 or explain why no such values exist. Math 171 Exam II Summary Sheet and Sample Stuff (NOTE: The questions posed here are not necessarily a guarantee of the type of questions which will be on Exam II. This is a sampling of questions I have

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

Math 8 Winter 2010 Midterm 2 Review Problems Solutions - 1. xcos 6xdx = 4. = x2 4

Math 8 Winter 2010 Midterm 2 Review Problems Solutions - 1. xcos 6xdx = 4. = x2 4 Math 8 Winter 21 Midterm 2 Review Problems Solutions - 1 1 Evaluate xcos 2 3x Solution: First rewrite cos 2 3x using the half-angle formula: ( ) 1 + cos 6x xcos 2 3x = x = 1 x + 1 xcos 6x. 2 2 2 Now use

More information

Math 233 Calculus 3 - Fall 2016

Math 233 Calculus 3 - Fall 2016 Math 233 Calculus 3 - Fall 2016 2 12.1 - Three-Dimensional Coordinate Systems 12.1 - THREE-DIMENSIONAL COORDINATE SYSTEMS Definition. R 3 means By convention, we graph points in R 3 using a right-handed

More information

7.3 Singular points and the method of Frobenius

7.3 Singular points and the method of Frobenius 284 CHAPTER 7. POWER SERIES METHODS 7.3 Singular points and the method of Frobenius Note: or.5 lectures, 8.4 and 8.5 in [EP], 5.4 5.7 in [BD] While behaviour of ODEs at singular points is more complicated,

More information

Parametric Curves. Calculus 2 Lia Vas

Parametric Curves. Calculus 2 Lia Vas Calculus Lia Vas Parametric Curves In the past, we mostly worked with curves in the form y = f(x). However, this format does not encompass all the curves one encounters in applications. For example, consider

More information

Practice Problems for the Final Exam

Practice Problems for the Final Exam Math 114 Spring 2017 Practice Problems for the Final Exam 1. The planes 3x + 2y + z = 6 and x + y = 2 intersect in a line l. Find the distance from the origin to l. (Answer: 24 3 ) 2. Find the area of

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

Lecture for Week 6 (Secs ) Derivative Miscellany I

Lecture for Week 6 (Secs ) Derivative Miscellany I Lecture for Week 6 (Secs. 3.6 9) Derivative Miscellany I 1 Implicit differentiation We want to answer questions like this: 1. What is the derivative of tan 1 x? 2. What is dy dx if x 3 + y 3 + xy 2 + x

More information

MAT 132 Midterm 1 Spring 2017

MAT 132 Midterm 1 Spring 2017 MAT Midterm Spring 7 Name: ID: Problem 5 6 7 8 Total ( pts) ( pts) ( pts) ( pts) ( pts) ( pts) (5 pts) (5 pts) ( pts) Score Instructions: () Fill in your name and Stony Brook ID number at the top of this

More information

1. (a) The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: [Yes! It s a piece of cake.]

1. (a) The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: [Yes! It s a piece of cake.] 1. (a The volume of a piece of cake, with radius r, height h and angle θ, is given by the formula: / 3 V (r,h,θ = 1 r θh. Calculate V r, V h and V θ. [Yes! It s a piece of cake.] V r = 1 r θh = rθh V h

More information

Section Vector Functions and Space Curves

Section Vector Functions and Space Curves Section 13.1 Section 13.1 Goals: Graph certain plane curves. Compute limits and verify the continuity of vector functions. Multivariable Calculus 1 / 32 Section 13.1 Equation of a Line The equation of

More information

Math 53: Worksheet 9 Solutions

Math 53: Worksheet 9 Solutions Math 5: Worksheet 9 Solutions November 1 1 Find the work done by the force F xy, x + y along (a) the curve y x from ( 1, 1) to (, 9) We first parametrize the given curve by r(t) t, t with 1 t Also note

More information

SCORE. Exam 3. MA 114 Exam 3 Fall 2016

SCORE. Exam 3. MA 114 Exam 3 Fall 2016 Exam 3 Name: Section and/or TA: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used. You may use a graphing

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Math 302 Test 1 Review

Math 302 Test 1 Review Math Test Review. Given two points in R, x, y, z and x, y, z, show the point x + x, y + y, z + z is on the line between these two points and is the same distance from each of them. The line is rt x, y,

More information

Figure 10: Tangent vectors approximating a path.

Figure 10: Tangent vectors approximating a path. 3 Curvature 3.1 Curvature Now that we re parametrizing curves, it makes sense to wonder how we might measure the extent to which a curve actually curves. That is, how much does our path deviate from being

More information

Math 106 Exam 2 Topics. du dx

Math 106 Exam 2 Topics. du dx The Chain Rule Math 106 Exam 2 Topics Composition (g f)(x 0 ) = g(f(x 0 )) ; (note: we on t know what g(x 0 ) is.) (g f) ought to have something to o with g (x) an f (x) in particular, (g f) (x 0 ) shoul

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

IYGB. Special Paper U. Time: 3 hours 30 minutes. Created by T. Madas. Created by T. Madas

IYGB. Special Paper U. Time: 3 hours 30 minutes. Created by T. Madas. Created by T. Madas IYGB Special Paper U Time: 3 hours 30 minutes Candidates may NOT use any calculator Information for Candidates This practice paper follows the Advanced Level Mathematics Core Syllabus Booklets of Mathematical

More information

Derivatives and Integrals

Derivatives and Integrals Derivatives and Integrals Definition 1: Derivative Formulas d dx (c) = 0 d dx (f ± g) = f ± g d dx (kx) = k d dx (xn ) = nx n 1 (f g) = f g + fg ( ) f = f g fg g g 2 (f(g(x))) = f (g(x)) g (x) d dx (ax

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

Dr. Sophie Marques. MAM1020S Tutorial 8 August Divide. 1. 6x 2 + x 15 by 3x + 5. Solution: Do a long division show your work.

Dr. Sophie Marques. MAM1020S Tutorial 8 August Divide. 1. 6x 2 + x 15 by 3x + 5. Solution: Do a long division show your work. Dr. Sophie Marques MAM100S Tutorial 8 August 017 1. Divide 1. 6x + x 15 by 3x + 5. 6x + x 15 = (x 3)(3x + 5) + 0. 1a 4 17a 3 + 9a + 7a 6 by 3a 1a 4 17a 3 + 9a + 7a 6 = (4a 3 3a + a + 3)(3a ) + 0 3. 1a

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Honors Calculus Homework 1, due 9/8/5

Honors Calculus Homework 1, due 9/8/5 Honors Calculus Homework 1, due 9/8/5 Question 1 Calculate the derivatives of the following functions: p(x) = x 4 3x 3 + 5 x 4x 1 3 + 23 q(x) = (1 + x)(1 + x 2 )(1 + x 3 )(1 + x 4 ). r(t) = (1 + t)(1 +

More information

Final Review Worksheet

Final Review Worksheet Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information