t to be equivalent in the sense of measurement if for all functions gt () with compact support, they integrate in the same way, i.e.

Size: px
Start display at page:

Download "t to be equivalent in the sense of measurement if for all functions gt () with compact support, they integrate in the same way, i.e."

Transcription

1 Cocoure 8 Lecure #5 I oy lecure we begi o re he iuio of lier h orer ODE wih icoiuou /or oiffereible ipu The meho we ll evelop (Lplce Trform) will be pplicble o oher ype of ipu, bu i epecilly relev whe elig wih icoiuou ipu ipu efie oly by umericl The Mi Ie: Begiig wih lier h orer ODE wih iiil coiio ( iiil vlue problem), we ll rform hi io lgebric equio, olve hi equio, he rform bck i orer o prouce oluio o he iiil vlue problem We re oly cocere wih he oluio for > Big Ie #: Geerlize fucio, k fucio i oly goo how i i iegre - i priculr, el fucio ep fucio Big Ie #: We ll evie yemic wy of formlly olvig ODE wih uch ipu, he ue iegrio (covoluio) o prouce oluio o y give iiil vlue problem Suppoe h g () i fucio wih compc uppor, ie i vihe ouie ome cloe boue iervl We woul like o coier wo fucio f () f () o be equivle i he ee of meureme if for ll fucio g () wih compc uppor, hey iegre i he me wy, ie f() g() f() g() Si ifferely, [ f() f()] g() for ll fucio g () wih compc uppor I o hr o ee h for coiuou fucio hi me h ecerily f() f() for ll, bu we re relly ieree i wh hi me for icoiuou fucio fucio wih impule, ie el fucio Heviie fucio, box fucio, el fucio < The Heviie fucio [me for Oliver Heviie (85 95)] i u () For our purpoe i > relly oe mer how i i efie, becue i o relev whe iegrig hi fucio We c < lo efie rle Heviie fucio u() u ( ) Thee fucio c be cle > e o repree fucio correpoig o wichig o off For exmple, we c repree he < fucio f() 4 < < 5 4[ u() u5()] Thi i clle box fucio We c combie box fucio > 5 < ecery, eg () 4 5 g < < 4[ u() u5()] [ u5() u6()] 4 u() u5() u6() < < > 6 The Heviie fucio i co everywhere excep, becue i h jump icoiuiy here we uully ju y h i o iffereible However, we coul heuriiclly oberve h by coierig poi immeiely o he lef righ of he icoiuiy y coiuou pproximio o hi fucio woul hve o hve very lrge lope i he viciiy of We migh le ry o expre hi by yig < h u () δ (), he o-clle el fucio, bu hi oe relly mke much ee i erm of > riiol fucio We my, however, ill be ble o mke ee ou of hi if we ke he view h fucio i oly goo how i i iegre Similrly, u ( ) δ ( ), rle el fucio revie April 7, 9

2 Digreio Lier fuciol meureme Oe of he mo commo hig we o i vecor clculu i fiig he compoe or clr projecio of vecor i R i give irecio The ool ue o ccomplih hi k i he o prouc If u i ui vecor we hve h comp ( v u ) vu Thi i, i fc, lier fucio from R o R, ie v R vu R Thee re clle lier fuciol Iee, he r compoe of vecor v v, v, v i R re meure by oig h v v i, v v j, v If we le L ( v) comp ( v) vu, we ee h u v k uig he r ui vecor bi for L( c v + c v ) ( c v + c v ) u c v u+ c v u c L( v ) + c L( v ), o L i lier The Fourier coefficie re ju he meure of how much of give perioic fucio i ocie wih ech moe I relly o iffere h clculig he compoe of vecor i pecific irecio π π f () f ( )co π π π b ( )i π π π f π I hi ce, ech of he clculio of Fourier coefficie ke (perioic) fucio prouce rel π umber, eg L( f ) f ( )co π π Noe h ju w he ce wih vecor o prouc, L c lierly, ie π π π L( cf+ c f) π [ cf() + cf()]co c π f()co + c π f()co c L( f ) + c L( f ) R ( ) ( ) π π π So L i lo lier fuciol, hough i hi ce i ke fucio prouce rel umber There i, however, oe lier fuciol, rgubly he imple imgible oe, h we o uully hik of i erm of iegrio (hough mybe we houl), mely evluio Specificlly, if f() i fucio, we c, for y pecific vlue, coier L ( f) f( ) I quie imple o ee h L( cf + cf ) ( cf + cf )( ) cf ( ) + cf ( ) cl ( f) + cl ( f), o L i lier fuciol I i o efie i erm of iegrio, bu we will fi i ueful o o o oehele Geerlize fucio You c heuriiclly hik of he ep fucio u () y ice mooh fucio which i for < ε for > ε, where ε i poiive umber which i much mller h y ime cle we cre bou i he coex we re uyig he mome Similrly, he be wy for you o uer he el fucio (efie below) i o hik of i y mooh fucio which i zero excep i he immeie eighborhoo of which h iegrl A we ll ee, we c lo hik of he el fucio δ () δ ( ) he fucio you iegre gi i orer o evlue fucio repecively y Th i, f () () f () f () ( ) f ( ) How c we mke ee of hi? Mkig he mo of iegrio by pr I fir-yer Clculu we lere h for iffereible fucio u () v () he Prouc Rule pplie, ie [ uv () ()] uv () () + vu () () O y fiie iervl [ b, ] we c iegre boh ie of he Prouc Rule hi pply he Fumel b b b Though Theorem of Clculu o ge h ubvb ( ) ( ) uv ( ) ( ) [ uv () ()] uv () () + vu () () revie April 7, 9

3 we ofe hik of Iegrio by Pr efie formlly by uv uv vu, he e reul i relly wh b b b hi me, ie we c y h u () v () [ uv ] v () u () If oe of hee fucio h compc uppor, ie if i vihe ouie of ome cloe, boue iervl, he we c exe he reul o he eire rel lie implify he eme coierbly (ice he vlue of he prouc of he fucio will vih ouie ome iervl Specificlly, if g () h compc uppor if f() + + i y fucio, we c y h f () g() f () g () We c cully ue hi o efie erivive f () i geerlize wy, ie geerlize erivive I re o he oio h fucio c be ueroo by how hey re iegre o ju by how hey re evlue Thee geerlize fucio re lo kow iribuio Perhp he mo impor illurio of hi i he geerlize erivive of he Heviie fucio u () We formlly clle hi he el fucio u () δ () eve hough i i relly mke ee he poi of icoiuiy for he Heviie fucio However, we c y h if u () δ () he for y fucio g () wih compc uppor: () g() u () g() u() g () g () [ g()] g() Th i, if we iegre fucio gi he el fucio, hi i imply evluio of h fucio I i hi relly hi propery h efie he el fucio geerlize fucio Similrly, we c o he me for he rle Heviie fucio u () u ( ) o coclue h i geerlize erivive δ () δ ( ) i uch h for y fucio g () wih compc uppor: + + g() () g() ( ) g( ) You c lo ke equeil pproch o mke ee of hi i erm of limi, ie if you ucceively pproxime he el fucio by equece of coiuou fucio fk () where he uppor (omi where i ozero) ge rrower [ ε, + ε ] he vlue grow reciproclly i uch wy h ech ep he k k + + εk k ε k k (we cll uch fucio probbiliy eiie), he you c how iegrl i lwy f () f () + h lim g() fk () g() k Noe: The Fumel Theorem of Clculu well ll he uul rule of iffereiio lo pply o geerlize erivive, o we cully hve geerlize clculu for elig wih hee geerlize fucio or iribuio (hough i my ke while geig ue o i) Biclly, we exe he uul rule of iffereiio o geerlize fucio ogeher wih he fc h u ( ) δ ( ) A fucio f() i regulr or piecewie mooh if i c be broke io piece ech hvig ll higher ( erivive uch h ech brekpoi ) ( f ( ) f ) ( + ) exi A igulriy fucio i lier combiio of hife el fucio A geerlize fucio f() i um f() fr() + f() of regulr fucio igulriy fucio Ay regulr fucio f() h geerlize erivive f (), wih regulr pr f r () he regulr erivive of f() wherever i exi, igulr pr f () give by um of erm ( f( + ) f( )) δ ( ) ru over he icoiuiie of f revie April 7, 9

4 Now, o ge bck o he Mi Ie, how c we olve lier iffereil equio [ pd ( )] x () q () by rformig i io lgebric equio, olvig h lgebric equio, he rformig bck o prouce oluio o iiil vlue problem? A we will oly be cocere wih forwr ime, we ll preume h q () ifie q () for < The Lplce Trform Defiiio: The Lplce rform of fucio f() i efie by L [ f()] F( ) e f() where he ew (complex) vrible i uch h i rel pr Re( ) (he iegrl woul oherwie o coverge) Noe h he lower limi of he iegrl iice h i iclue i iee o re poeil icoiuiie el fucio We will liberlly mke ue of he coveio h fucio of will be repreee by lower ce me i Lplce rform by he correpoig upper ce me, eg L [ x ( )] X( ) Lieriy Becue he Lplce rform i efie iegrl, i ey o ee h L[ f () + bg()] L[ f ()] + bl [ g()] F( ) + bg() Specificlly, L[ f () + bg()] e [ f () + bg()] e f () + b e g() L[ f ()] + bl[ g()] F() + bg() Thi will permi u o rform iffereil equio erm-by-erm ( rform bck well) Ivere rform: F () eeilly eermie f() for Thi will geerlly llow u o prouce oluio o give Iiil Vlue Problem by imply recogizig, erm by erm, oluio by ieifyig which fucio gve rie o ech erm of he rforme iffereil equio Some Clculio ) For our purpoe, ice we re oly cocere wih, he co fucio f() he Heviie < fucio u () re iiiguihble Thu > e [] [ u( )] e L L + Here we ue he fc h for >, lim e Iee, hi i ill he ce eve if we permi o be complex wih poiive rel pr, ie Re( ) > ) If f() ) If f() e, we clcule F( ) L [ ] e e [] + + L, we clcule Thi, ogeher wih lieriy, eble u o clcule he Lplce rform of y polyomil fucio 4 e F() L [ ] e + e + [] L 4) -erivive rule: L [ f( )] F ( ) We c eblih hi by oig h if he L, o [ f( )] F ( ) F () e f() e f() [ f()] From hi we ee h L[ ] L[ ] L [] ;! 4! L 4 L[ ] L[ ] L [ ] 4 5 ; o o Geerlly, + F( ) L [ f()] e f(),! L[ ] L[ ] L [ ] ; 4! L [ ] revie April 7, 9

5 5) If f() e i expoeil fucio (relly f() ue () ice we re oly cocere wih ), ( ) ( ) e L [ e ] e e e ( ), o r 6) -hif rule: L [ e f ( )] F ( r) To eblih hi, we clcule r r ( r) [ e f()] e e f() e f() F( r) L [ e ] L imply by oig he ubiuio 7) Trformig erivive: For y geerlize fucio, L [ f ( )] F( ) f ( ) where f ( ) repree he iiil vlue of f() The uuul oio i here becue we will be elig wih icoiuou geerlize fucio where we my ee o iiguih lef-h from righ-h limi We c eblih hi -erivive rule by oig h L [ f ()] e f () If we ue Iegrio by Pr wih u e v f (), we ge u e v f(), o [ ()] () () L f e f e f + e f () [] + F () F () f ( ) For eco erivive, oe h f () f (), o we c pply he bove reul o ge h L [ f( )] L[ f( )] f( ) F ( ( ) f( )) f( ) F ( ) f( ) f( ) L [ f ( )] F( ) f( ) f( ), o Coiuig, we ge h L [ f ( )] F( ) f( ) f( ) f ( ), o o Geerlly, L f F f f f ( ) ( ) [ ( )] ( ) ( ) ( ) ( ) 8) Trformig he el fucio: Oe of our mo fumel rform i L [ δ ( )] Thi i relively ey o ee oce you re comforble wih he iegrl formlim cocerig he el fucio how hey rele o evluio Specificlly, L [ ()] e () e ice hi i relly ju evluio of he fucio e 9) Trformig ie coie: L [co( )] L [i( )] + + We c erive ech of hee iepeely, bu if we ue Euler Formul lieriy we hve h: i L[ e ] L[co( ) + ii( )] L[co( )] + il [i( )], i i i [ e + ] + i L + i + i Tkig rel imgiry pr eprely we ge h L [co( )] L [i( )] + + We ll o hi li we go he ee rie Exmple: Solve he Iiil Vlue Problem x+ x + x e, x(), x () Ol Fihful Soluio: The homogeeou equio x+ x + x i ey o olve I chrceriic polyomil i p ( ) + + ( + )( + ) which yiel he wo roo Thi give he wo iepee oluio e e, ll homogeeou oluio re of he form xh () ce + ce Noe h boh of hee homogeeou oluio re rie i he ee h hey ecy expoeilly icree 5 revie April 7, 9

6 Nex, we ee o fi priculr oluio x () h ifie he ihomogeeou iffereil equio Oe p look he righ-h-ie we ee h he Expoeil Repoe Formul (ERF) wo work here i reoce We c, however, ue he Reo Repoe Formul o ge he priculr oluio e e xp () e, o he geerl oluio i x() xh() + xp() ce + ce + e I erivive p ( ) i x x() c+ c () ce ce e + e Subiuig he (re) iiil coiio give x() c c +, hee c be olve o give c, c, o he oluio i x e e + e () Solvig irecly by Lplce rform: We clcule he followig Lplce rform: () L k ( e ) k wih regio of covergece Re( ) > k, o L ( e ) + () If he Lplce rform of x () i X(), he he Lplce rform of i erivive re L( x ( )) X ( ) x( ) L( x( )) X( ) x( ) x ( ) I he ce of re iiil coiio x( ) x ( ), hee re grely implifie, i fc L ( pdx ( )) px () () Specificlly, L ( x+ x+ ) x X() + X() + X() ( + + ) X() p() X() If we ow rform he eire iffereil equio, we ge ( + + ) X( ) + A B C We he olve for X() + + ( + )( + + ) ( + )( + ) + + ( + ) There re my goo wy o fi he ukow A, B, C For exmple, if we muliply hrough by he commo eomior o cler frcio, we ge A ( + ) + B ( + )( + ) + C ( + ) Pluggig i he pecific vlue quickly yiel h A C Pluggig i, for exmple, uig he vlue for A C he yiel B So X() ( + ) + + ( + ) Coulig our ble of commo Lplce rform, we ee h ( + ) L ( e ), o rformig bck (uig lieriy) give + L ( e ), L ( e ), + x() e e + e 6 revie April 7, 9

7 Properie of he Lplce rform Defiiio: L [ f()] F() e f() for Re( ) Lieriy: L[ f () + bg()] L[ f ()] + bl [ g()] F() + bg() Ivere rform: F () eeilly eermie f() r -hif rule: L [ e f ( )] F ( r) 4 -hif rule: L [ f ( )] e F ( ) if f() for < Thi my lo be expree L [ f( )] e F ( ) where 5 -erivive rule: L [ f( )] F ( ) 6 -erivive rule: L [ f ( )] F( ) f ( ) L [ f ( )] F( ) f ( ) f ( ) L ( ) ( ) [ f ( )] F ( ) f( ) f( ) f ( ) 7 Covoluio rule: L [ f() g ()] FG ( ) ( ), f( ) if > f ( ) u( ) f( ) if < ( f g)( ) f( ) g( ) 8 Weigh fucio: L [ w ( )] W( ), w () he ui impule repoe If q () i regre he ipu igl i pdx ( ) q (), W() p () Formul for he Lplce rform L [] L [ δ ( )] L[ δ( )] L [ δ ( )] e e L[ u ( )] L [ u ( )] L [ e ] L []! L [ ] + ( ) L [ f( )] ( ) F ( ) L [ u( ) f( )] e F( ) L[ u( ) f( )] e L [ f( + )] L [co( )] + L [i( )] + L [ co( )] ( + ) L [ i( )] ( + ) [ co( )] L e z z ( z) + z L [ e i( )] ( z) + Noe by Rober Wier 7 revie April 7, 9

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability: Oulie Sabiliy Sab Sabiliy of Digial Syem Ieral Sabiliy Exeral Sabiliy Example Roo Locu v ime Repoe Fir Orer Seco Orer Sabiliy e Jury e Rouh Crierio Example Sabiliy A very impora propery of a yamic yem

More information

Reinforcement Learning

Reinforcement Learning Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

More information

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

S.E. Sem. III [EXTC] Applied Mathematics - III

S.E. Sem. III [EXTC] Applied Mathematics - III S.E. Sem. III [EXTC] Applied Mhemic - III Time : 3 Hr.] Prelim Pper Soluio [Mrk : 8 Q.() Fid Lplce rform of e 3 co. [5] A.: L{co }, L{ co } d ( ) d () L{ co } y F.S.T. 3 ( 3) Le co 3 Q.() Prove h : f (

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA MARK WILDON. Beroulli umbers.. Defiiio. We defie he Beroulli umbers B m for m by m ( m + ( B r [m ] r r Beroulli umbers re med fer Joh Beroulli

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

can be viewed as a generalized product, and one for which the product of f and g. That is, does

can be viewed as a generalized product, and one for which the product of f and g. That is, does Boyce/DiPrim 9 h e, Ch 6.6: The Convoluion Inegrl Elemenry Differenil Equion n Bounry Vlue Problem, 9 h eiion, by Willim E. Boyce n Richr C. DiPrim, 9 by John Wiley & Son, Inc. Someime i i poible o wrie

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook): MAT 3 CALCULUS I 5.. Dokuz Eylül Uiversiy Fculy of Sciece Deprme of Mhemics Isrucors: Egi Mermu d Cell Cem Srıoğlu HOMEWORK 6 - INTEGRATION web: hp://kisi.deu.edu.r/egi.mermu/ Tebook: Uiversiy Clculus,

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Integration and Differentiation

Integration and Differentiation ome Clculus bckgroud ou should be fmilir wih, or review, for Mh 404 I will be, for he mos pr, ssumed ou hve our figerips he bsics of (mulivrible) fucios, clculus, d elemer differeil equios If here hs bee

More information

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark]

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis. [GATE EE 1991 IIT-Madras : 2 Mark] CONTROL SYSTEMS Chper 3 : Time Repoe lyi GTE Objecive & Numericl Type Soluio Queio 4 [GTE EC 99 IIT-Mdr : Mrk] uiy feedbck corol yem h he ope loop rfer fucio. 4( ) G () ( ) If he ipu o he yem i ui rmp,

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION U.P.B. ci. Bull. eries A Vol. 69 No. 7 IN 3-77 DETERMINATION OF PARTIULAR OLUTION OF NONHOMOGENEOU LINEAR DIFFERENTIAL EQUATION BY DIRETE DEONVOLUTION M. I. ÎRNU e preziă o ouă meoă e eermiare a soluţiilor

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved. Specil Fucios Leo M. Hll Professor of Mhemics Uiversiy of Missouri-Roll Copyrigh c 995 y Leo M. Hll. All righs reserved. Chper 5. Orhogol Fucios 5.. Geerig Fucios Cosider fucio f of wo vriles, ( x,), d

More information

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis CONTROL SYSTEMS Chper 3 : Time Repoe Alyi GATE Objecive & Numericl Type Soluio Queio 4 [Prcice Book] [GATE EC 99 IIT-Mdr : Mrk] A uiy feedbck corol yem h he ope loop rfer fucio. 4( ) G () ( ) If he ipu

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION N.S. BARNETT, S.S. DRAGOMIR, AND G. HANNA Absrc. I his pper we poi ou pproximio for he Fourier rsform for fucios

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform. Theoreical Phyic Prof. Ruiz, UNC Aheville, docorphy o YouTue Chaper Q Noe. Laplace Traform Q1. The Laplace Traform. Pierre-Simo Laplace (1749-187) Courey School of Mhemic ad Siic Uiveriy of S. Adrew, Scolad

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re

More information

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum LOCUS Defiie egrio CONCEPT NOTES. Bsic Properies. More Properies. egrio s Limi of Sum LOCUS Defiie egrio As eplied i he chper iled egrio Bsics, he fudmel heorem of clculus ells us h o evlue he re uder

More information

ENGI 2422 Appendix A Formulæ Page A-01

ENGI 2422 Appendix A Formulæ Page A-01 ENGI 4 Appei A Formlæ Pge A- ENGI 4 Egieerig Mhemi Poiiliie for or Forml Shee Yo m ele iem from hi ome for pleme o or forml hee. However eigig or ow forml hee e vlle reviio eerie i ielf.. Fmel Eqio of

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

Supplement: Gauss-Jordan Reduction

Supplement: Gauss-Jordan Reduction Suppleme: Guss-Jord Reducio. Coefficie mri d ugmeed mri: The coefficie mri derived from sysem of lier equios m m m m is m m m A O d he ugmeed mri derived from he ove sysem of lier equios is [ ] m m m m

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu Caper : Time-Domai Represeaios of Liear Time-Ivaria Sysems Ci-Wei Liu Oulie Iroucio Te Covoluio Sum Covoluio Sum Evaluaio Proceure Te Covoluio Iegral Covoluio Iegral Evaluaio Proceure Iercoecios of LTI

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Derivation of the Metal-Semiconductor Junction Current

Derivation of the Metal-Semiconductor Junction Current .4.4. Derivio of e Mel-Seiouor uio Curre.4.4.1.Derivio of e iffuio urre We r fro e epreio for e ol urre e iegre i over e wi of e epleio regio: q( µ + D (.4.11 wi be rewrie b uig -/ uliplig bo ie of e equio

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback Lecure 5 Oulie: LTI Sye: Caualiy, Sabiliy, Feebac oucee: Reaig: 6: Lalace Trafor. 37-49.5, 53-63.5, 73; 7: 7: Feebac. -4.5, 8-7. W 8 oe, ue oay. Free -ay eeio W 9 will be oe oay, ue e Friay (o lae W) Fial

More information

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as. Lplce Trfor The Lplce Trfor oe of he hecl ool for olvg ordry ler dfferel equo. - The hoogeeou equo d he prculr Iegrl re olved oe opero. - The Lplce rfor cover he ODE o lgerc eq. σ j ple do. I he pole o

More information

Laplace Examples, Inverse, Rational Form

Laplace Examples, Inverse, Rational Form Lecure 3 Ouline: Lplce Exple, Invere, Rionl For Announceen: Rein: 6: Lplce Trnfor pp. 3-33, 55.5-56.5, 7 HW 8 poe, ue nex We. Free -y exenion OcenOne Roo Tour will e fer cl y 7 (:3-:) Lunch provie ferwr.

More information

Math 2414 Homework Set 7 Solutions 10 Points

Math 2414 Homework Set 7 Solutions 10 Points Mah Homework Se 7 Soluios 0 Pois #. ( ps) Firs verify ha we ca use he iegral es. The erms are clearly posiive (he epoeial is always posiive ad + is posiive if >, which i is i his case). For decreasig we

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Experiment 6: Fourier Series

Experiment 6: Fourier Series Fourier Series Experime 6: Fourier Series Theory A Fourier series is ifiie sum of hrmoic fucios (sies d cosies) wih every erm i he series hvig frequecy which is iegrl muliple of some pricipl frequecy d

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

Chapter 9 - The Laplace Transform

Chapter 9 - The Laplace Transform Chaper 9 - The Laplace Tranform Selece Soluion. Skech he pole-zero plo an region of convergence (if i exi) for hee ignal. ω [] () 8 (a) x e u = 8 ROC σ ( ) 3 (b) x e co π u ω [] ( ) () (c) x e u e u ROC

More information

PHYSICS Solving Equations

PHYSICS Solving Equations Sepember 20, 2013 PHYSIS Solving Equaion Sepember 2013 www.njcl.org Solving for a Variable Our goal i o be able o olve any equaion for any variable ha appear in i. Le' look a a imple equaion fir. The variable

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

Suggested Solutions to Assignment 1 (REQUIRED)

Suggested Solutions to Assignment 1 (REQUIRED) EC 45 dvaced Macroecoomic Irucor: Sharif F ha Deparme of Ecoomic Wilfrid Laurier Uiveri Wier 28 Suggeed Soluio o igme (REQUIRED Toal Mar: 5 Par True/ Fale/ Ucerai Queio [2 mar] Explai wh he followig aeme

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Mixed Upland Lowland Aspen, Spruce/Fir High Density Mixed Northern Maple, Beech,

Mixed Upland Lowland Aspen, Spruce/Fir High Density Mixed Northern Maple, Beech, Rge Commes: Pge 1 of 4 1 4319 - Mixe Upl Fores 11.5 113 Mixe s wih vrible species. 4 6117 - Lowl 8.8 1 5 4134 - Aspe, Spruce/Fir 1.4 15 Cu i 1993 o Ol Hericks Birch II. Mos of he s is i comp 166 s 3. 6

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

Solution of Laplace s Differential Equation and Fractional Differential Equation of That Type

Solution of Laplace s Differential Equation and Fractional Differential Equation of That Type Applie Mheics 3 4 6-36 Pulishe Olie oveer 3 (hp://wwwscirporg/jourl/) hp://oiorg/436/34a5 Soluio of Lplce s iffereil Equio Frciol iffereil Equio of Th Type Tohru Mori Ke-ichi So Tohou Uiversiy Sei Jp College

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

An arithmetic interpretation of generalized Li s criterion

An arithmetic interpretation of generalized Li s criterion A riheic ierpreio o geerlized Li crierio Sergey K. Sekkii Lboroire de Phyique de l Mière Vive IPSB Ecole Polyechique Fédérle de Lue BSP H 5 Lue Swizerld E-il : Serguei.Sekki@epl.ch Recely we hve eblihed

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

5. Solving recurrences

5. Solving recurrences 5. Solvig recurreces Time Complexity Alysis of Merge Sort T( ) 0 if 1 2T ( / 2) otherwise sortig oth hlves mergig Q. How to prove tht the ru-time of merge sort is O( )? A. 2 Time Complexity Alysis of Merge

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Sysems ideificio Lecures 7 8 Predicio error mehods Se spce models Coiuous ime lier se spce spce model: x ( = Ax( + Bu( + w( y( = Cx( + υ( A:, B: m, C: Discree ime lier se spce model: x( + = A(

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

First-Passage Time moment Approximation For The Birth Death Diffusion Process To A General moving Barrier

First-Passage Time moment Approximation For The Birth Death Diffusion Process To A General moving Barrier Ieriol Jourl of emics Sisics Iveio IJSI E-ISSN: 3 4767 P-ISSN: 3-4759 Volume 5 Issue 9 Jury 8 PP-4-8 Firs-Pssge Time mome pproimio For Te Bir De Diffusio Process To Geerl movig Brrier Bsel. l-eie KuwiUiversiy

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Physics 232 Exam I Feb. 13, 2006

Physics 232 Exam I Feb. 13, 2006 Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

More information

Linear Time Invariant Systems

Linear Time Invariant Systems 1 Liear Time Ivaria Sysems Oulie We will show ha he oupu equals he covoluio bewee he ipu ad he ui impulse respose: sysem for a discree-ime, for a coiuous-ime sysdem, y x h y x h 2 Discree Time LTI Sysems

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Analysis of Dynamic Systems

Analysis of Dynamic Systems ME 43 Syem Dyamic & Corol Chaper 8: Time Domai Aalyi of Dyamic Syem Syem Chaper 8 Time-Domai Aalyi of Dyamic Syem 8. INTRODUCTION Pole a Zero of a Trafer Fucio A. Bazoue Pole: The pole of a rafer fucio

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

[Nachlass] of the Theory of the Arithmetic-Geometric Mean and the Modulus Function.

[Nachlass] of the Theory of the Arithmetic-Geometric Mean and the Modulus Function. [Nchlss] of he Theory of he Arihmeic-Geomeric Me d he Modulus Fucio Defiiio d Covergece of he Algorihm [III 6] Le d e wo posiive rel mgiudes d le From hem we form he wo sequeces: i such wy h y wo correspodig

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Review for the Midterm Exam.

Review for the Midterm Exam. Review for he iderm Exm Rememer! Gross re e re Vriles suh s,, /, p / p, r, d R re gross res 2 You should kow he disiio ewee he fesile se d he udge se, d kow how o derive hem The Fesile Se Wihou goverme

More information