Synchronization of an optomechanical system to an external drive

Size: px
Start display at page:

Download "Synchronization of an optomechanical system to an external drive"

Transcription

1 Sycroizatio of a optomcaical systm to a xtral driv Eud Amitai, 1 Nils Lörc, 1 Adras Nukamp, Stfa Waltr, 3 ad Cristop Brudr 1 1 Dpartmt of Pysics, Uivrsity of Basl, Kliglbrgstrass 8, 4056 Basl, Switzrlad Cavdis Laboratory, Uivrsity of Cambridg, Cambridg CB3 0HE, Uitd Kigdom 3 Max Plack Istitut for t Scic of Ligt, Staudtstrass, Erlag, Grmay Optomcaical systms driv by a ffctiv blu dtud lasr ca xibit slf-sustaid oscillatios of t mcaical oscillator. Ts slf-oscillatios ar a prrquisit for t obsrvatio of sycroizatio. Hr, w study t sycroizatio of t mcaical oscillatios to a xtral rfrc driv. W study two cass of rfrc drivs: (1) A additioal lasr applid to t optical cavity; () A mcaical driv applid dirctly to t mcaical oscillator. Startig from a mastr quatio dscriptio, w driv a microscopic Adlr quatio for bot cass, valid i t classical rgim i wic t quatum sot ois of t mcaical slfoscillator dos ot play a rol. Furtrmor, w umrically sow tat, i bot cass, sycroizatio ariss also i t quatum rgim. T optomcaical systm is trfor a good cadidat for t study of quatum sycroizatio. PACS umbrs: Xt, k, Cm I. INTRODUCTION Sycroizatio is t pomo i wic a limit-cycl oscillator, i.., a oscillator wit fixd amplitud ad fr pas, dvlops a pas prfrc w wakly coupld to a driv or to otr slf-oscillatig systms 1, ]. Tis pomo is prvalt i all t atural scics, maifstig itslf i, for xampl, adjustmt of t circadia rytm i may livig systms or firflis blikig i uiso 3]. I rct yars tr as b cosidrabl itrst i t topic of quatum sycroizatio 4 1], i.., t sycroizatio of slf-oscillators opratig i t quatum rgim. Tr as b xtsiv rsarc do o t paradigmatic xampl of a va dr Pol oscillator 4 1]. Otr platforms av b usd to study quatum sycroizatio as wll, amog wic ar micromasrs 13], atomic smbls 14, 15], itractig quatum dipols 16], trappd ios 6, 17], ad optomcaical systms 18 0]. I a optomcaical systm lctromagtic cavity mods ar coupld to mcaical motio. I its most basic stup, a optomcaical systm is mad of a sigl lasr-driv cavity mod wic coupls to a sigl mcaical mod via,.g., radiatio prssur ]. T dyamics of t systm crucially dpds o t frqucy of t lasr drivig t cavity. A lasr fild tud to t rd sid of t cavity frqucy is usd for back-actio coolig as wll as for stat trasfr 3 5], wil rsoat drivig is usd,.g., for positio ssig 6]. W blu dtud, t lasr driv ca iduc t paramtric istability, ladig i tur to slf-sustaid oscillatios of t mcaical oscillator. Ts slf-sustaid oscillatios av b studid i bot t classical ad t quatum rgims 7 3]. For tat raso, t optomcaical systm may xibit sycroizatio w coupld to a xtral driv (a additioal xtral driv, i cotrast to t lasr drivig t slf-oscillatios), to aotr optomcaical systm, or as part of a array of optomcaical systms, as was tortically sow i t classical rgim 33, 34]. Sycroizatio of a optomcaical systm to a xtral driv 35], of two optomcaical systms 36] ad v of small arrays of up to sv suc systms 37] av b dmostratd xprimtally. I t quatum rgim t sycroizatio of two optomcaical systms as b studid tortically 18], as wll as t sycroizatio of a array of suc systms 19] witi a ma-fild approac was usd. I tis work, w tortically study t sycroizatio of t mcaical slf-oscillator to a xtral rfrc driv. W xami two diffrt rfrc drivs: (1) A additioal lasr applid to t optical cavity. Udr a appropriat rotatig-wav approximatio, tis may also b implmtd by modulatig t powr of t lasr iducig t mcaical slf-oscillatios, as was xprimtally do i Rf. 35]; () A mcaical driv applid dirctly oto t mcaical oscillator, wic could for istac b ralizd wit a pizolctric lmt attacd to t mcaical oscillator. For bot cass, our startig poit of t aalysis is t microscopic mastr quatio. W t us t lasr tory for optomcaical limit cycls 30] to driv a quatio of motio (EOM) for t pas distributio of t mcaical slfoscillator. W sow tat i bot cass, i a rlvat paramtr rgim, t Adlr quatio mrgs from t EOM. T Adlr quatio is a diffrtial quatio for t pas diffrc btw t slf-oscillator ad t rfrc driv, kow to dscrib sycroizatio. For t optical rfrc driv, tis is t first tim a microscopically drivd Adlr quatio is discussd. For t mcaical rfrc driv, it rproducs a rsult i Rf. 33]. W t cotiu to sow umrically, for bot cass, tat i t quatum paramtr rgim a Arold togu xists, a stadard sigatur of sycroizatio 1, ]. Tis suggsts t optomcaical systm is a good cadidat for t study of sycroizatio i t quatum rgim. Tis mauscript is orgaizd as follows: W dscrib t systm udr ivstigatio, composd of a optomcaical systm ad a additioal rfrc driv i Sc. II. Sctio III cotais t aalytical drivatio of t microscopic Adlr quatios. A major part of tis drivatio is do by applyig t lasr tory for optomcaical limit cycls 30] to tis problm. Tis is prstd i t Appdix. I Sc. IV w dmostrat umrically tat sycroizatio is xpctd also i a quatum paramtr rgim.

2 FIG. 1. Scmatics of a gric optomcaical systm. I a rotatig fram wit frqucy ω L, obtaid by applyig t uitary trasformatio Û = xp ( iω L ta a ), t cavity wit frqucy is driv by a tim-idpdt lasr, dpictd by t black arrow to t lft of t cavity. I t slf-oscillatory rgim of t mcaical oscillator wit atural frqucy ω m, t mcaical oscillator may sycroiz to a additioal optical driv wit frqucy ω op as dpictd i dasd box (a), or to a mcaical driv wit frqucy ω m as dpictd i dasd box (b). Not tat ω op is giv i t rotatig fram, wil t applicatio of Û lavs bot ω m ad ω m idtical i bot frams. II. THE SYSTEM T stadard Hamiltoia of a optomcaical systm i wic t positio of t mcaical oscillator paramtrically modulats t frqucy of a lctromagtic cavity is giv i a fram rotatig wit t frqucy of t lasr driv, ω L, by ] H = ω m b b a a g 0 a a ( b + b ) ia L ( a a ), (1) wr a ad a ar t cratio ad aiilatio oprators of potos i t cavity, b ad b ar t cratio ad aiilatio oprators of poos i t mcaical rsoator, ω m is t mcaical frqucy of oscillatio, = ω L ω c is t dtuig from cavity rsoac at ω c of t drivig fild wit strgt A L, g 0 is t sigl poto couplig costat, ad w av st = 1. A scmatic figur of t systm is sow i Fig. 1. T fram rotatig wit lasr driv ω L is obtaid by applyig t uitary trasformatio Û = xp ( iω L ta a ), wic grats t Hamiltoia ÛH old Û iû Û / t. T dissipatio of t two oscillators (t mcaical rsoator ad t optical cavity) ca b dscribd via t mastr quatio, wit t Lidblad oprators ad dρ dt = i H, ρ ] + L m ρ + L c ρ, () L m ρ = γ m ( t + 1)Db]ρ + γ m t Db ]ρ, (3) L c ρ = γ c Da]ρ, (4) FIG.. Wigr fuctio rprstatio of (a) slf-sustaid oscillatios i t mcaical oscillator ad of (b) tdcy towards pas-lockig of t mcaical oscillator to t pas of a sycroizig rfrc driv. T paramtrs usd for bot plots ar (g 0, γ c, γ m, A L,, t ) = (0.3, 0.3, 0.015, 0.4, 0, 0) ω m, wr t paramtrs of t xtral optical driv i (b) ar (A op, ω op ) = (0.08, 0.98) ω m. wr γ m ad γ c ar t amplitud dampig rats of t mcaical oscillator ad t lctromagtic cavity corrspodigly, t is t ma poo umbr i trmal quilibrium, ad Dx]ρ = xρx ( ρx x + x xρ ) /. I tis work w would lik to study t sycroizatio of t mcaical lmt of t optomcaical systm to a xtral driv. W cosidr two cass: Cas (1) - Optical lasr driv - W itroduc a additioal optical lasr rfrc fild, wit frqucy ω op giv i a fram rotatig wit frqucy ω L, ad strgt A op, by addig t trm ( H op = ia op iω op t a iωop t a ) (5) to t Hamiltoia apparig i Eq. (). Tis is dpictd i dasd box (a) i Fig. 1. Tis Hamiltoia ca b ralizd by a additioal optical lasr, or, if t mcaical frqucy ω m is larg oug suc tat a rotatig-wav approximatio ca b usd, by priodically modulatig t powr of t optical lasr causig t mcaical slf-oscillatios, as s i Rf. 35]. Cas () - Mcaical driv - A mcaical rfrc driv wit frqucy ω m ad strgt A m ca b applid dirctly oto t mcaical oscillator,.g., by itroducig a pizolctric compot as dpictd i dasd box (b) i Fig. 1. I aalogy to cas (1), w add t trm ( H m = ia m iω m t b iωm t b ) (6) to t Hamiltoia apparig i Eq. (). Slf-oscillatios i t optomcaical systm.- A optomcaical systm driv by a ffctiv blu-dtud lasr may giv ris to slf-sustaid oscillatios i t mcaical oscillator 7 3]. Ts slf-oscillatios ar a prrquisit for studyig sycroizatio. Ty ca b illustratd i pas-spac via t Wigr fuctio pas-spac distributio. A Wigr fuctio rprstatio for a spcific slf-sustaid oscillatio i t mcaical oscillator is sow i Fig. (a). Udr t ifluc of a rfrc driv, t mcaical slf-oscillator may dvlop a pas-prfrc as it tds towards lockig oto t pas of t driv. For a additioal

3 3 optical lasr driv, as i cas (1), t Wigr rprstatio for a mcaical slf-oscillator sowig suc pas-prfrc is sow i Fig. (b)38]. III. SYNCHRONIZATION - ANALYTICAL CALCULATION I t followig sctio, it is our goal to driv a aalytical dscriptio for t sycroizatio of t mcaical slfoscillator to a rfrc driv. To do so, w apply t lasr tory for optomcaical limit cycls 30] to t currt problm, Eq. (), i wic a additioal rfrc driv, Eq. (5) or Eq. (6), is iflucig t optomcaical limit cycl. Tis approac is basd o t assumptio tat t dyamics of t cavity adiabatically follows t dyamics of t mcaical oscillator. It allows us to obtai a quatio of motio (EOM) for t pas distributio of t slf-oscillator, σ(r, φ), wr r ad φ ar t mcaical pas-spac variabls rprstig t radius ad t pas of t slf-oscillator. To kp tis mauscript cort ad focusd o sycroizatio, w sift t drivatio of t rlvat EOMs to t Appdix. Hr i t mai txt, w will us t drivd EOMs as a startig poit. Cas (1) - Optical lasr driv - As xplaid i t Appdix, t EOM for σ(r, φ) is valid w t dyamics of t cavity adiabatically follows t dyamics of t mcaical oscillator, t optomcaical couplig is small, g 0 ω m, ad t trmal- ad quatum sot-ois dos ot play a rol. I a rotatig fram wit frqucy ω m, t EOM for σ(r, φ) is of t form σ = ( r µ r + φ µ φ ) σ, (7) wr t pas-drift cofficit is giv by, µ φ = 1 r ] J J g 0 A L {A L R = +A op iφ ] J J iɛt + A op iφ J J iɛt ]}, (8) ad t xplicit xprssios for t radius-drift cofficit is giv i Eq. (A18). I t last xprssio J := J ( g 0 r/ω m ) is t Bssl fuctio of t first kid of t t ordr, ɛ ω m is t dtuig btw t frqucis of t rfrc driv ad t atural frqucy of t mcaical oscillator, ad is dfid as ω op = γ c + i(ω m ff ), (9) wr t dfiitio for t ffctiv dtuig of t cavity fild, ff, is giv i Eq. (A10). Tis EOM dscribs t dyamics of t mcaical oscillator ad, i a appropriat paramtr rgim, will trfor dscrib t sycroizatio of t mcaical oscillator oto t optical rfrc driv. T ost of sycroizatio is caractrizd by t lockig of t pas of t mcaical oscillator to t pas of t optical driv, wil t radius of oscillatio stays approximatly costat. For tat raso, w ca glct t trm dscribig t drift of t radius, µ r, wil focusig o t drift of t pas, Eq. (8). W ar trfor lft wit σ = φ µ φ σ, (10) from wic w rcogiz tat µ φ = φ. Lt us trfor focus o µ φ, Eq. (8), wic compltly dtrmis t tim volutio of φ. T first trm is t kow amplitud-dpdt optomcaical frqucy sift δω (sf. 3]), i.., w obtai µ φ = φ = δω + g 0A L A op i(φ+ɛt) J J + i(φ+ɛt) ] J J R r. (11) I t sidbad-rsolvd rgim ad wit a dtuig clos to t mcaical frqucy, i.., γ c / ff ω m, trms wit 1 i t domiator ar clos to rsoac. For tat raso, w will kp oly t trms wit = 1,. W t fid φ = δω + A op,ff si(φ + ɛt), (1) wr w av siftd φ by a costat ad dfid t ffctiv driv strgt as A op,ff = g 0 A L A op ( ) 1 + γ c 4ω m rω m (J + J 0 ) J0 + 4ω m (J γc J 0 J1 J 0 ). (13) Addig t frqucy diffrc ɛ to bot sids of Eq. (1), w obtai t Adlr quatio δφ = (ω op ω ff m ) + A op,ff si(δφ), (14) wr t ffctiv mcaical frqucy is ω ff m ω m + δω, ad w av dfid δφ φ + ɛt. Not tat δφ = (φ ω m t) + ω op t is just t diffrc of pas of t mcaical oscillator (i a fram rotatig wit ω m ) to t pas of t xtral driv. T Adlr quatio dscribs t sycroizatio of t mcaical slf-oscillator to t rfrc driv, as sow i Fig. 3, i wic w plot si δφ as a fuctio of (ω op ω ff m ) for diffrt driv strgts, wr t ovrli rfrs to timavragig. For ω op ω ff m < A op,ff, t solutio to Eq. (14) is δφ = 0. Trfor pas-lockig taks plac. For ω op ω ff m A op,ff, si(δφ) tim-avrags to zro. T optomcaical paramtrs cos i Fig. 3 ca b radily obtaid i a wid rag of xprimts, 4, 39]. I Rf. 39] a mcaical rsoator of frqucy ω m /(π) = 9.7(kHz) was studid, wil i Rf. 4] a mcaical rsoator of frqucy ω m /(π) = 3.9(GHz) was studid. I bot, t paramtrs of t optomcaical systm wr similar to tos giv i Fig. 3.

4 4 FIG. 3. Sycroizatio of t mcaical slf-oscillator to a optical rfrc driv. T aalytically calculatd tim-avrag op ff si(δφ) as a fuctio of (ωop ωm ) for diffrt valus of A, from 0.13 to T ist compars t aalytical solutio (blu) wit t umrical simulatio (rd dasd) for Aop = It sows xcllt agrmt. Colord rgio idicats t sycroizatio rgio, dδφ/dt = 0. T paramtrs of t optomcaical systm ar tak i t classical rgim, (g0, γc, γm, AL,, t ) = (0.015, 0.5, , 1.0, 1.0, 0) ωm. FIG. 4. Sycroizatio of t mcaical slf-oscillator to a mcaical rfrc driv. T aalytically calculatd tim-avrag m si(δφ) as a fuctio of (ωm ωff m ) for diffrt valus of A, from to T ist compars t aalytical solutio (blu) wit t umrical simulatio (rd dasd) for Am = It sows xcllt agrmt. Colord rgio idicats t sycroizatio rgio, dδφ/dt = 0. T paramtrs of t optomcaical systm ar tak i t classical rgim, (g0, γc, γm, AL,, t ) = (0.01, 0.3, , 1.0, 1.0, 0) ωm. W ca furtr tst tis drivd Adlr quatio by comparig it wit t umrical prdictio, wic ca b obtaid by itgratig t optomcaical quatios of motio for t cavity fild α ad t mcaical fild β 3] Tis form of t Adlr quatio agrs wit 33]. I Fig. 4 ff w plot si δφ as a fuctio of (ωop ωm ) for diffrt driv strgts, wr t ovrli rfrs to tim-avragig. W ca furtr tst tis aalytical quatio by comparig it wit t classical umrical prdictio, wic ca b obtaid by itgratig t quatios of motio α = i α + ig0 (β + β )α β = ig0 α iωm β γc iωop t α + AL + Aop, γm β. (15) (16) T rsult is sow i t ist of Fig. 3. T sycroizatio rgio is idicatd by t colord rgio. Tr is a vry good agrmt btw t prdictio of t drivd microscopic quatio ad t umrical simulatio. Cas () - Mcaical driv - Aalogously to cas (1), by applyig t lasr tory for optomcaical limit cycls w obtai a EOM for t pas distributio of t slf-oscillator, σ(r, φ). Tis EOM as t sam form as Eq. (7), but wit a pas-drift cofficit wic is giv by # " m 1 J J X m A si (ω ωm )t + φ, µφ = g0 AL R r (17) ad wit a radius-drift cofficit wic is giv i t Appdix, Eq. (A0). Now, takig idtical stps to tos sow i cas (1), o racs a Adlr quatio, ff m,ff = (ωm δφ si(δφ), ωm ) + A (18) wr t ffctiv driv strgt is Am,ff = Am. r (19) α = i α + ig0 (β + β )α β = ig0 α iωm β γc α + AL, γm iωm t. β + Am (0) (1) T compariso is s i t ist of Fig. 4. A vry good agrmt is foud btw t aalytical Adlr quatio ad t umrical simulatio. IV. QUANTUM SYNCHRONIZATION NUMERICAL DEMONSTRATION T optomcaical systm is tortically suggstd to dmostrat sycroizatio also i a quatum paramtr rgim, i wic g0 ωm dos ot old aymor. I tat paramtr rgim, t quatum sot ois plays a importat rol, ad caot b glctd as i t prvious sctio. T quatum sycroizatio of two suc systms was tortically studid i Rf. 18]. Hr w sow umrically tat t mcaical slf-oscillator is xpctd to sycroiz to a rfrc driv i t quatum paramtr rgim. Bfor discussig t umrical calculatio ad t rsults, w itroduc t sycroizatio masur usd.

5 5 FIG. 5. T tim-avragd sycroizatio masur S as a fuctio of t xtral driv s frqucy, sow i blu for a optical driv wit A op /ω m = 0.08 ad i a rd dasd li for a mcaical driv wit A m /ω m = For t mcaical driv tr is oly o sycroizatio pak at ω m = ω ff m, wil t optical driv lads to multipl sycroizatio paks at ω op = { } ω ff m /3, ω ff m /, ω ff m, ω ff m. T black dottd lis ar plottd at ts frqucis. T sycroizatio paks at ω op = { } ω ff m /3, ω ff m ar ardly oticabl i t scal of t figur, ad ar trfor sow i t two ists. Optomcaical paramtrs ar t sam as i Fig.. A. T sycroizatio masur Sycroizatio of a slf-oscillator to a xtral driv is t dvlopmt of pas prfrc for t slf-oscillator as it tds towards pas-lockig to t pas of t xtral driv. As sow i Fig., tis pas prfrc is asily s i t pas-spac distributio of t mcaical oscillator. T iformatio stord i t pas-spac distributio ca b accoutd for by usig a sigl umbr 8], S = b b b, () wr t brackt... dots avragig ovr t passpac distributio. T umrator olds iformatio rgardig t sprad of t pas-spac distributio, wil t domiator is itroducd for t purpos of ormalizatio. For a compltly pas-idpdt limit cycl ctrd aroud zro, t oscillator is obviously compltly usycroizd, ad idd w will fid S = 0. As t slf-oscillator sycroizs to a xtral driv, a pas prfrc dvlops. Tis will rduc t pas variatio, rsultig i largr valus of S. For a cort stat t masur is S = 1, maig t oscillator is strogly sycroizd to t driv. Tis masur caot b usd i cass for wic t slf-oscillator dvlops multipl prfrrd pass. Not tat i t optomcaical systm, t slfoscillatios dvlopig i t mcaical oscillator ar ctrd aroud som poit i pas-spac, β c, wic is grally diffrt ta t origi. Tis is s i Fig. (a). Tis dviatio from t origi iflucs t sycroizatio masur, Eq. (). Tis ca b asily corrctd ad accoutd for. To do so, w mov to a displacd fram by usig t displacmt oprator D( β c ) = xp( β c b + β c b). For t rst of tis work, w will b workig i t appropriat displacd fram. T problm of a optomcaical systm wit a additioal rfrc driv, Eq. () wit itr Eq. (5) or Eq. (6), cotais a tim-dpdt Hamiltoia. For tat raso, a stady stat dos ot mrg. Howvr, i t lat-tim dyamics, t systm volvs ito a stat wic is priodic i tim wit priodicity τ π/ω i, wr i dots t opticalor t mcaical-rfrc driv. Tis is tru i t sycroizd stat ad outsid t sycroizd stat, ad it is t rsult of t priodic tim dpdc of t Hamiltoia. For tat raso, i t lat-tim dyamics t sycroizatio masur S is a fuctio of tim wit t sam priodicity, S (t) = S (t + τ). T variatio of S ovr t tim scal τ i t lat-tim dyamics is rlativly small, ad is of ordr S 0.01 at maximum. To covitly discuss sycroizatio, w us S, dfid as t tim-avrag of S ovr a priod τ. B. Numrical Rsults To umrically study sycroizatio of t mcaical slf-oscillator to a xtral driv, w us QuTiP 40, 41]. Cas (1) - Optical lasr driv - I Fig. 5, t tim-avragd sycroizatio masur S is plottd i blu as a fuctio of t frqucy of t rfrc driv, ω op. A mai sycroizatio pak appars about a ffctiv mcaical frqucy, ω ff m, sligtly siftd from ω m. Tis sift of t mcaical frqucy is kow 31, 3] to b t rsult of t avrag dyamics of t lctromagtic cavity. Sycroizatio paks at otr frqucis ar foud as wll: A sycroizatio pak about ω op = ω ff m / is clarly visibl, ad i t ists of Fig. 5 w zoom i o t vry small sycroizatio paks at ω op = { } ω ff m /3, ω ff m. Ts sycroizatio paks ar kow i t litratur as ig-ordr sycroizatio 1, ]. Wil i pricipl ig-ordr sycroizatio is always prst w sycroizig a slf-oscillator to a rfrc driv, it is i practic vry difficult (if ot impossibl) to dtct. T prsc of a rfrc driv wic cotais may frqucy compots i its oscillatio ca ac t sycroizatio paks ]. As sow i t Appdix, t ffctiv driv of t mcaical slf-oscillator, Eq. (A6), idd cotais multipl frqucis. For tat raso, ad i cotrast to cas (), w ca obsrv t smallr sycroizatio paks. W ca also otic a asymmtry i t sycroizatio pak wit rspct to t rfrc fild s frqucy. Tis ca b also b s i Fig. 6. Wil tr is o raso to xpct prfct symmtry, it is visibl tat t cas of a optical rfrc driv is mor asymmtric. Tis is du to t ig-ordr sycroizatio paks. ω ff I Fig. 6 (a) w focus o t sycroizatio pak for ω op = m. Tis corrspods to t maximal sycroizatio pak sow i Fig. 5. T sycroizatio masur S is plottd as a fuctio of bot A op ad ω op. Idd, t Arold togu

6 microscopic mastr quatio, w aalytically dvlop Adlr quatios dscribig t sycroizatio of t mcaical slf-oscillator to a rfrc driv. Tis was do for two diffrt rfrc drivs, a optical o ad a mcaical o (as was sow i Rf. 33]). W also sow umrically tat sycroizatio i a quatum paramtr rgim is xpctd, trfor suggstig t optomcaical systm as a good cadidat for t study of quatum sycroizatio. 6 ACKNOWLEDGMENTS Tis work was fiacially supportd by t Swiss SNF ad t NCCR Quatum Scic ad Tcology. A.N. olds a Uivrsity Rsarc Fllowsip from t Royal Socity ad ackowldgs support from t Wito Programm for t Pysics of Sustaiability. Appdix A: Applyig t Lasr Tory for Optomcaical Limit Cycls FIG. 6. Arold Togu: T sycroizatio masur S is plottd as a fuctio of t driv frqucy ad strgt for cas (1) (a), ad for cas () (b). S as t typical sap of a Arold togu. T black lis mark ω op = ω ff m ad ω m = ω ff m i (a) ad (b) corrspodigly. T orizotal wit lis mark t cut alog wic Fig. 5 is plottd. Optomcaical paramtrs ar t sam as i Fig.. is prst, a sigatur for sycroizatio. Cas () - Mcaical driv - T rfrc driv sycroizs t mcaical oscillator at frqucy ω m = ω ff m. Tis is sow by t rd dasd curv i Fig. 5. I cotrast to t optical cas, o ig-ordr sycroizatio is s. Idd, as t mcaical driv is actig dirctly o t mcaical slf-oscillator, its ifluc is armoic. Trfor ig-ordr sycroizatio is ot dtctd 1, ]. I Fig. 6 (b) w focus o tis sycroizatio pak. I tis figur w vary bot t xtral frqucy ω m ad t strgt of t xtral driv, A m, ad t Arold togu is clarly obsrvd. V. CONCLUSIONS I coclusio, our work fills a gap i t study of sycroizatio of a optomcaical systm. Startig from t I t followig, w apply lasr tory for optomcaical limit cycls 30] to our currt problm, Eq. (), wit a additioal rfrc driv as giv by Eq. (5) or Eq. (6). W driv a EOM for σ, t pas-spac distributio of t mcaical oscillator, for ac cas. I applyig lasr tory to our problm, t iitial stps ar idtical to ts tak w applyig lasr tory to a bar optomcaical systm (wit o rfrc driv). W trfor do ot rpat ts stps, but rfr to Rf. 30] for our startig poit, Eq. (A), wic is prstd blow. A sort summary of t stps tak i tis Appdix: Switcig to a pas-spac rprstatio for t mcaical oscillator dgr of frdom. Tis allows us to us a diffrt adiabatic rfrc stat of t lctromagtic cavity fild for ac poit i t pas-spac of t mcaical oscillator. Assumig t lctromagtic cavity dyamics follows adiabatically t dyamics of t mcaical oscillator, w solv for a approximat solutio for t cavity fild. W us t solutio for t cavity fild as a rfrc stat for t mcaical stat, wic allows us to obtai a EOM for σ. Cas (1) - Optical lasr driv - T mastr quatio dscribig our systm, Eq. () wit a optical rfrc driv, Eq. (5), ca b writt i a pas-spac pictur for t mcaical oscillator 30, 4, 43]. T systm is t dscribd by σ(β, β ), wic is a dsity oprator for t lctromagtic cavity fild ad a quasi-probability distributio for t mcaical oscillator, wit β rprstig t mcaical pas-spac variabl. Tis rsults i a dpdc of t cavity dtuig o t pas-spac variabls of t mca-

7 7 ical oscillator. If w furtr us t smipolaro trasformatio 30], σ(β, β, t) = g 0(β β )a a/ω m σ(β, β, t) g 0(β β )a a/ω m, (A1) tis dpdc is covitly trasformd ito o of t drivig fild. T trasformd mastr quatio, i a mcaical fram rotatig wit frqucy ω m, is t t σ(β, β, t) = (L m + L c + L it ) σ(β, β, t), (A) wit L m σ = γ ( m β β + β β ) σ + γ m ( t + 1/) β βσ, (A3) L c σ = i a a K(a a) i ( E(t) a E(t)a ), σ ] (A4) + γ c Da]σ, L it σ = i g ( ) 0 iω m t β iωmt β σa a + H.c. (A5) wr t Krr oliarity is K = g 0 /ω m, ad E is a gralizd drivig fild wic dpds o t mcaical stat, E(t) = ( A L + A op ) iωop t = J ( ηr) i(ω mt φ). (A6) Hr, J is t Bssl fuctio of t first kid of t t ordr, r ad φ ar t mcaical pas-spac variabls β = r iφ, ad η = g 0 /ω m. W will us t sortad otatio J := J ( ηr). W will ow assum tat t cavity dyamics, wit a domiat tim scal γc 1, is fast compard to all otr tim scals i L m ad L it. Tis mas tat w ca solv for t cavity fild α(t), wil assumig t stat of t mcaical oscillator, dscribd by t pas-spac variabls β ad β, is fixd. T solutio for α(t) will t b cosidrd as a classical rfrc amplitud. 1. Calculatig t classical rfrc amplitud Udr t assumptio tat t cavity dyamics wit caractristic tim scal γc 1 is muc fastr ta all otr dyamics i t problm, its stat is govrd by L c, wil t ffct of L it is glctd, σ = L c σ. (A7) Tis quatio dscribs a cavity wit Krr oliarity, wic is driv by two amplitud ad pas modulatd filds. A approximat solutio to Eq. (A7) ca b foud i two limits: t limit α(t) 1, i.., a cavity wic is driv by a strog driv to a stat of larg ma amplitud, ad t limit α(t) 1, for wic t cavity is driv by a wak driv ad stays clos to its groud stat. I t formr limit w glct trms up to first ordr i α, wil i t lattr w glct trms of tird ordr i α: a. α(t) 1 From Eq. (A7), o ca obtai a EOM for t classical cavity fild amplitud α(t), { γc α(t) = i + K α(t) ] } α(t) + E(r, φ, t). (A8) As a rsult of t form of t drivig fild E, Eq. (A6), w xpct t solutio to b of t form α(r, φ, t) = = α l (r, φ) iω mt + α (r, φ) i(ω m+ω op )t ], (A9) wr t amplituds α l (r, φ) ad α (r, φ) sall b dtrmid. As oticabl from Eq. (A8), t ffctiv dtuig flt by t lctromagtic cavity dpds o α(t). By placig t solutio obtaid for α(t), wil kpig oly t domiat dc compots, w obtai for t ffctiv dtuig ] ff (r, φ) = +K α l + α + α l (α ) + (α l +1 ) α, (A10) wr w av assumd ω op = ω m + ɛ, wit ɛ ω op, ω m. Tis assumptio is satisfid w studyig sycroizatio i t viciity of ω op ω m. W solv Eq. (A8) by assumig a fixd ffctiv dtuig ff. W t fid, wr w av usd ω op foud a solutio for α(t). α l = A L J ( ηr) iφ, α = Aop J ( ηr) iφ, +1 (A11) (A1) = γ c + i(ω m ff ), (A13) = ω m + ɛ agai. W av trfor b. Displacd fram for α(t) 1 I tis limit, Eq. (A7) dictats tat α(t) sould solv α(t) = i( + K) γ ] c α(t) + E(r, φ, t). (A14) As compard wit Eq. (A8), w s tat a diffrt ffctiv dtuig sould b dfid, K = + K. T, w ca procd as was do i t α(t) 1 limit. Rsults will b i complt aalogy, ad ca b obtaid by cagig ff K.. Obtaiig t EOM Aftr fidig t solutio for α(t), wic will srv as a classical rfrc amplitud for t mcaical oscillator, our xt goal is to obtai t EOM for t pas-spac distributio of t mcaical oscillator, σ(β, β ). W otic tat

8 8 t dyamics of tis pas-spac distributio ar govrd by Eq. (A3) ad Eq. (A5). By placig t solutio for α(t) ito Eq. (A5), o obtais a EOM for t pas-spac distributio of t mcaical oscillator, σ = ig 0 β α l (α l ) + α l (α ) iɛt + α (α l ) iɛt] σ + H.c., (A15) wr w av glctd trms proportioal to (A op ), kpt oly dc trms, ad av usd ω op = ω m + ɛ, wr ω op, ω m ɛ. Tis allowd us to sd +1, wil kpig t xpotials dpdig o ɛ, as ty will b dd latr to dscrib sycroizatio. I dscribig limit cycls ad sycroizatio, it is mor atural to work i polar coordiats. W trfor trasform Eq. (A15) to a polar coordiat systm. A mor dtaild dscriptio of tis trasformatio ca b foud i Rf. 30]. T trasformd EOM is t, σ = r µ r φ µ φ ] σ, wr t drift cofficits ar giv by (A16) µ φ = 1 ] J J g 0 A L {A L R r +A op iφ ] J J iɛt + A op iφ ]} J J iɛt, (A17) µ r = γ ] m r + J J g 0 A L {A L Im +A op iφ ] J J Im iɛt + A op iφ ]} J J Im iɛt, (A18) wr w av glctd trms 1/r i t quatio for µ r ad trms 1/r i t quatio for µ φ, ad av icludd t ffct du to Eq. (A3). I t limit of A op 0, o rtrivs t kow xprssio from 30]. Cas () - Mcaical driv - I applyig t lasr tory for optomcaical limit cycls for tis cas, w tak stps compltly aalogous to tos tak i t prvious cas. As t mcaical rfrc driv acts dirctly o t mcaical slf-oscillator, it dos ot appar i t solutio for α(t) or i t limiatio of t lctromagtic cavity. Tis fact maks calculatios mor straigtforward i t prst cas, ad w do ot xplicitly prst tm r. T EOM obtaid as t sam form as Eq. (A16), wit drift cofficits wic ar giv by µ φ = 1 ] g r 0 A L R J J A m si (ω m ω m )t + φ ], (A19) µ r = γ ] m r + g 0 A L Im J J + A m cos (ω m ω m )t + φ ]. (A0) As i t prvious cas, w av glctd trms 1/r i t quatio for µ r ad trms 1/r i t quatio for µ φ. I t limit of A m 0, o rtrivs t kow xprssios from 30]. Appdix B: Fokkr-Plack Equatio for t Mcaical Slf-Oscillator Usig lasr tory for optomcaical systms allows o to obtai a Fokkr-Plack quatio (FPE) dscribig t dyamics of t mcaical slf-oscillator. Tis FPE is of t form Ẇ = r µ r φ µ φ + rrd rr + rφd rφ + φφd φφ ] W, (B1) wr W(r, φ) is cos to b t Wigr pas-spac distributio, µ r ad µ φ ar t drift cofficits of t pas-spac variabls r ad φ corrspodigly, ad D rr, D rφ ad D φφ ar t diffusio cofficits. I App. A w aimd to obtai oly t drift cofficits, as ty ar sufficit to dscrib sycroizatio i a paramtr rgim i wic t diffusio dos ot play a sigificat rol. For compltio ad for tos itrstd, w giv i tis appdix t xprssios for t diffusio cofficits. Cas (1) - Optical lasr driv - T drift cofficits of t FPE quatio ar giv i Eqs. (A17)-(A18), wil t diffusio cofficits ar giv by

9 9 D φφ = 1 r γ m ( t + 1/) 4 D rφ = 1 r γ c g 0 A L +1 D rr = γ m( t + 1/) γ c g 0 A L r 8 +1 A J L + A J ] + L + + A J+ J L R + A op J + (J +1 + J ) cos(φ + ɛt) +A op iφ ] J + J iɛt + A op 3iφ ]} J J +1 + iɛt, + { ] J+ J A L Im + A op iφ ] J + J Im + iɛt + A op 3iφ J J +1 Im (B) iɛt ]}, (B3) γ c g 0 A L 8 +1 A J L + A J ] + L + A J+ J L R + Aop J (J J ) cos(ɛ + δt) A op iφ ] J + J iɛt A op 3iφ J J iɛt ]}. (B4) Cas () - Mcaical driv - T drift cofficits of t FPE quatio ar giv i Eqs. (A19)-(A0), wil t rfrc fild A m dos ot tr t xprssios for t diffusio. T diffusio cofficits ar trfor giv i Eqs. (B)-(B4), wit A op = 0. 1] A. Pikovsky, M. Rosblum, ad J. Kurts, Sycroizatio: A Uivrsal Cocpt i Noliar Scics (Cambridg Uivrsity Prss, 003). ] A. Balaov, N. Jaso, D. Postov, ad O. Sosovtsva, Sycroizatio: From Simpl to Complx (Sprigr, Nw York, 008). 3] S. H. Strogatz, Noliar Dyamics ad Caos: Wit Applicatios to Pysics, Biology, Cmistry, ad Egirig (Wstviw Prss, 001), d d. 4] S. Waltr, A. Nukamp, ad C. Brudr, Pys. Rv. Ltt. 11, (014). 5] S. Waltr, A. Nukamp, ad C. Brudr, A. Pys. 57, 131 (015). 6] T. E. L ad H. R. Sadgpour, Pys. Rv. Ltt. 111, (013). 7] T. E. L, C.-K. Ca, ad S. Wag, Pys. Rv. E 89, 0913 (014). 8] N. Lörc, E. Amitai, A. Nukamp, ad C. Brudr, Pys. Rv. Ltt. 117, (016). 9] T. Wiss, S. Waltr, ad F. Marquardt, Pys. Rv. A 95, (017). 10] V. M. Bastidas, I. Omlcko, A. Zakarova, E. Scöll, ad T. Brads, Pys. Rv. E 9, 0694 (015). 11] V. Amri, M. Egbali-Arai, A. Mari, A. Farac, F. Kiradis, V. Giovatti, ad R. Fazio, Pys. Rv. A 91, (015). 1] N. Lörc, S. E. Nigg, A. Nukamp, R. P. Tiwari, ad C. Brudr, -prit arxiv: (017). 13] C. Davis-Tilly ad A. D. Armour, Pys. Rv. A 94, (016). 14] M. Xu, D. A. Tiri, E. C. Fi, J. K. Tompso, ad M. J. Hollad, Pys. Rv. Ltt. 113, (014). 15] A. Rot ad K. Hammrr, Pys. Rv. A 94, (016). 16] B. Zu, J. Scacmayr, M. Xu, F. Hrrra, J. G. Rstrpo, M. J. Hollad, ad A. M. Ry, Nw. J. Pys. 17, (015). 17] M. R. Hus, W. Li, S. Gway, I. Lsaovsky, ad A. D. Armour, Pys. Rv. A 91, (015). 18] T. Wiss, A. Krowald, ad F. Marquardt, Nw. J. Pys. 18, (016). 19] M. Ludwig ad F. Marquardt, Pys. Rv. Ltt. 111, (013). 0] X.-F. Yi, W.-Z. Zag, ad L. Zou, J. Mod. Opt. 64, 578 (017). 1] G. L. Giorgi, F. Galv, G. Mazao, P. Colt, ad R. Zambrii, Pys. Rv. A 85, (01). ] M. Asplmyr, T. J. Kippbrg, ad F. Marquardt, Rv. Mod. Pys. 86, 1391 (014). 3] J. D. Tufl, T. Dor, D. Li, J. W. Harlow, M. S. Allma, K. Cicak, A. J. Sirois, J. D. Wittakr, K. W. Lrt, ad R. W. Simmods, Natur 475, 359 (011). 4] J. Ca, T. P. M. Algr, A. H. Safavi-Naii, J. T. Hill, A. Kraus, S. Groblacr, M. Asplmyr, ad O. Paitr, Natur 478, 89 (011). 5] T. A. Palomaki, J. W. Harlow, J. D. Tufl, R. W. Simmods, ad K. W. Lrt, Natur 495, 10 (013). 6] T. P. Purdy, R. W. Ptrso, ad C. A. Rgal, Scic 339, 801 (013). 7] F. Marquardt, J. G. E. Harris, ad S. M. Girvi, Pys. Rv. Ltt. 96, (006). 8] C. Mtzgr, M. Ludwig, C. Nua, A. Ortlib, I. Favro, K. Karrai, ad F. Marquardt, Pys. Rv. Ltt. 101, (008). 9] J. Qia, A. A. Clrk, K. Hammrr, ad F. Marquardt, Pys. Rv. Ltt. 109, (01). 30] N. Lörc, J. Qia, A. Clrk, F. Marquardt, ad K. Hammrr, Pys. Rv. X 4, (014). 31] D. A. Rodrigus ad A. D. Armour, Pys. Rv. Ltt. 104, (010). 3] A. D. Armour ad D. A. Rodrigus, C. R. Pys. 13, 440 (01). 33] G. Hiric, M. Ludwig, J. Qia, B. Kubala, ad F. Marquardt, Pys. Rv. Ltt. 107, (011). 34] C. A. Holms, C. P. May, ad G. J. Milbur, Pys. Rv. E 85, (01). 35] K. Slomi, D. Yuvaraj, I. Baski, O. Sucoi, R. Wiik, ad

10 10 E. Buks, Pys. Rv. E 91, (015). 36] M. Zag, G. S. Widrckr, S. Maipatrui, A. Barard, P. McEu, ad M. Lipso, Pys. Rv. Ltt. 109, (01). 37] M. Zag, S. Sa, J. Cardas, ad M. Lipso, Pys. Rv. Ltt. 115, (015). 38] Not1, t ifluc of t rfrc driv, idally, sould ot cag t amplitud of t slf-oscillator. I practic owvr, tr is som ifluc. I tis work w mak sur tat t rfrc driv dos ot cag t amplitud of t usycroizd limit cycl by mor ta 10%. 39] D. Klckr, B. Pppr, E. Jffry, P. Soi, S. M. To, ad D. Bouwmstr, Opt. Exprss 19, (011). 40] J. Joasso, P. Natio, ad F. Nori, Comput. Pys. Commu. 183, 1760 (01). 41] J. Joasso, P. Natio, ad F. Nori, Comput. Pys. Commu. 184, 134 (013). 4] F. Haak ad M. Lwsti, Pys. Rv. A 7, 1013 (1983). 43] C. Gardir ad P. Zollr, Quatum Nois (Sprigr-Vrlag Brli Hidlbrg, 004).

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE Ya-Fi Gao ad A. F. Bowr Divisio of Egirig, Brow Uivrsity, Providc, RI 9, USA Appdix A: Approximat xprssios for

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

The Quantum Efficiency and Thermal Emittance of Metal Cathodes

The Quantum Efficiency and Thermal Emittance of Metal Cathodes T Quantum fficincy and Trmal mittanc of Mtal Catods David H. Dowll Tory Sminar Jun, 6 I. Introduction II. Q and Trmal mittanc Tory III. Ral World Issus Surfac Rougnss Masurmnts Diamond Turning vs. Polising

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Chp6. pn Junction Diode: I-V Characteristics I

Chp6. pn Junction Diode: I-V Characteristics I 147 C6. uctio Diod: I-V Caractristics I 6.1. THE IDEAL DIODE EQUATION 6.1.1. Qualitativ Drivatio 148 Figur rfrc: Smicoductor Dvic Fudamtals Robrt F. Pirrt, Addiso-Wsly Publicig Comay 149 Figur 6.1 juctio

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Terahertz band-gap in InAs/GaSb type II superlattices

Terahertz band-gap in InAs/GaSb type II superlattices Trart Scic ad Tcology, ISSN 1941-7411 Vol.1, No 4, Dcmbr 008 Trart bad-gap i IAs/GaSb typ II suprlattics L.L. Li 1, W. Xu 1, 3, Z. Zg 1, ad Y.L. Si 1 Ky Laboratory of Matrials Pysics, Istitut of Solid

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at   Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Availabl oli at www.scicdirct.com Ergy Procdia 4 (01 170 177 Ergy Procdia 00 (010) 000 000 Ergy Procdia www.lsvir.com/locat/procdia www.lsvir.com/locat/xxx GHGT-10 Exprimtal Studis of CO ad CH 4 Diffusio

More information

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting Mixd Mod Oscillatios as a Mchaism for Psudo-Platau Burstig Richard Brtram Dpartmt of Mathmatics Florida Stat Uivrsity Tallahass, FL Collaborators ad Support Thodor Vo Marti Wchslbrgr Joël Tabak Uivrsity

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

INSTABILITY DYNAMICS WITH ELECTRON CLOUD BUILDUP IN LONG BUNCHES

INSTABILITY DYNAMICS WITH ELECTRON CLOUD BUILDUP IN LONG BUNCHES J C NSTABLTY YNAMCS WTH ELECTRON CLOU BULUP N LONG BUNCHES M. Blaskiwicz, BNL 9B, Upto, NY 97-, USA Abstract For log buchs, trailig dg multi-pactig causs th lctro cloud dsity at th trailig dg of th buch

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Analysis of a Finite Quantum Well

Analysis of a Finite Quantum Well alysis of a Fiit Quatu Wll Ira Ka Dpt. of lctrical ad lctroic girig Jssor Scic & Tcology Uivrsity (JSTU) Jssor-748, Baglads ika94@uottawa.ca Or ikr_c@yaoo.co Joural of lctrical girig T Istitutio of girs,

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

to the SCHRODINGER EQUATION The case of an electron propagating in a crystal lattice

to the SCHRODINGER EQUATION The case of an electron propagating in a crystal lattice Lctur Nots PH 411/511 ECE 598 A. La Rosa INTRODUCTION TO QUANTUM MECHANICS CHAPTER-9 From th HAMILTONIAN EQUATIONS to th SCHRODINGER EQUATION Th cas of a lctro propagatig i a crystal lattic 9.1 Hamiltoia

More information

SOLUTIONS TO CHAPTER 2 PROBLEMS

SOLUTIONS TO CHAPTER 2 PROBLEMS SOLUTIONS TO CHAPTER PROBLEMS Problm.1 Th pully of Fig..33 is composd of fiv portios: thr cylidrs (of which two ar idtical) ad two idtical co frustum sgmts. Th mass momt of irtia of a cylidr dfid by a

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14 Univrsity of Wasinton Dpartmnt of Cmistry Cmistry 453 Wintr Quartr 04 Lctur 0: Transition Stat Tory. ERD: 5.4. Transition Stat Tory Transition Stat Tory (TST) or ctivatd Complx Tory (CT) is a raction mcanism

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Lecture 25 (Dec. 6, 2017)

Lecture 25 (Dec. 6, 2017) Lecture 5 8.31 Quatum Theory I, Fall 017 106 Lecture 5 (Dec. 6, 017) 5.1 Degeerate Perturbatio Theory Previously, whe discussig perturbatio theory, we restricted ourselves to the case where the uperturbed

More information

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design)

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design) Extrm valu statistics Problms of xtrapolatig to valus w hav o data about uusually larg or small t i ~00 yars (data h( t i { h( }? max t i wids v( t i ~500 yars (dsig Qustio: Ca this b do at all? How log

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN WITH APPLICABILITY OF QUASI THEORY

ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN WITH APPLICABILITY OF QUASI THEORY It. J. Mch. Eg. & Rob. Rs. 013 Tjpratap Sigh t al., 013 Rsarch Papr ISSN 78 0149 www.ijmrr.com Vol., No. 1, Jauary 013 013 IJMERR. All Rights Rsrvd ANALYSIS OF UNSTEADY HEAT CONDUCTION THROUGH SHORT FIN

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Fusion of Retrieval Models at CLEF 2008 Ad-Hoc Persian Track

Fusion of Retrieval Models at CLEF 2008 Ad-Hoc Persian Track Fusio of Rtrival Modls at CLEF 008 Ad-Hoc Prsia rack Zahra Aghazad*, Nazai Dhghai* Lili Farzivash* Razih Rahimi* Abolfazl AlAhmad* Hadi Amiri Farhad Oroumchia** * Dpartmt of ECE, Uivrsity of hra {z.aghazadh,.dhghay,

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

7 Finite element methods for the Timoshenko beam problem

7 Finite element methods for the Timoshenko beam problem 7 Fiit lmt mtods for t Timosko bam problm Rak-54.3 Numrical Mtods i Structural Egirig Cotts. Modllig pricipls ad boudary valu problms i girig scics. Ergy mtods ad basic D fiit lmt mtods - bars/rods bams

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

Electronic Supplementary Information

Electronic Supplementary Information Elctroic Supplmtary Matrial (ESI) for Joural of Matrials Chmistry A. This joural is Th Royal Socity of Chmistry 2016 Elctroic Supplmtary Iformatio Photolctrochmical Watr Oxidatio usig a Bi 2 MoO 6 / MoO

More information

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES oural of atatical Scics: Advacs ad Alicatios Volu 6 Nubr 00 Pas -6 DOPHANNE APPROAON WH FOUR SQUARES AND ONE -H POWER OF PRES Dartt of atatics ad foratio Scic Ha Uivrsit of Ecooics ad Law Zzou 000 P. R.

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

S- AND P-POLARIZED REFLECTIVITIES OF EXPLOSIVELY DRIVEN STRONGLY NON-IDEAL XENON PLASMA

S- AND P-POLARIZED REFLECTIVITIES OF EXPLOSIVELY DRIVEN STRONGLY NON-IDEAL XENON PLASMA S- AND P-POLARIZED REFLECTIVITIES OF EXPLOSIVELY DRIVEN STRONGLY NON-IDEAL XENON PLASMA Zaporozhts Yu.B.*, Mitsv V.B., Gryazov V.K., Riholz H., Röpk G. 3, Fortov V.E. 4 Istitut of Problms of Chmical Physics

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Vorticity Waves in Shear Flows

Vorticity Waves in Shear Flows Vorticity Wavs i Shar Flows Horia DUMITRESCU 1, Vladimir CARDOS*,1 *Corrspodig author *,1 Ghorgh Mihoc Caius Iacob Istitut of Mathmatical Statistics ad Applid Mathmatics of th Romaia Acadmy Cala 13 Sptmbri

More information

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA Itratioal Joural of Computr Scic, Egirig ad Applicatios (IJCSEA Vol., No.4, August DETECTION OF RELIABLE SOFTWARE USING SRT ON TIME DOMAIN DATA G.Krisha Moha ad Dr. Satya rasad Ravi Radr, Dpt. of Computr

More information

Electromagnetic radiation and steady states of hydrogen atom

Electromagnetic radiation and steady states of hydrogen atom Elctromagtic radiatio ad stady stats of hydrog atom Jiaomig Luo Egirig Rsarch Ctr i Biomatrials, Sichua Uivrsity, 9# Wagjiag Road, Chgdu, Chia, 610064 Abstract. Elctromagtic phoma i hydrog atom ar cotrolld

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information