An Assessment of U.S.-Based Electron-Ion Collider Science

Size: px
Start display at page:

Download "An Assessment of U.S.-Based Electron-Ion Collider Science"

Transcription

1 BOARD ON PHYSICS AND ASTRONOMY (BPA) An Assessment of U.S.-Based Electron-Ion Collider Science A study under the auspices of the U.S. National Academies of Sciences, Engineering, and Medicine Gordon Baym and Ani Aprahamian, Co-Chairs The study is supported by funding from the DOE Office of Science. (Further information can be found at:

2 The National Academies of Science, Engineering and Medicine The National Academies produce reports that shape policies, inform public opinion, and advance the pursuit of science, engineering, and medicine. The present report is carried out under the leadership of the Board on Physics and Astronomy (James Lancaster, Director). The BPA seeks to inform the government and the public about what is needed to continue the advancement of physics and astronomy and why doing so is important.

3 Committee on Assessment of U.S.-Based Electron-Ion Collider Science The National Academies of Sciences, Engineering, and Medicine was asked by the U.S. Department of Energy to assess the scientific justification for building an Electron-Ion Collider (EIC) facility. The unanimous conclusion of the Committee is that an EIC, as envisioned in this report, would be a unique facility in the world that would answer science questions that are compelling, fundamental, and timely, and help maintain U.S. scientific leadership in nuclear physics.

4 What is an Electron-Ion Collider? An advanced accelerator that collides beams of electrons with beams of protons or heavier ions (atomic nuclei). Electron-ion center of mass energy ~ GeV, upgradable to ~140 GeV. High luminosity and polarization! 1) highly polarized electrons, E ~ 4 GeV to possibly 20 GeV 2) highly polarized protons, E ~ 30 GeV to some 300 GeV, and heavier ions Brookhaven Jefferson Lab Two possible configurations: Brookhaven Nat l Lab and Jefferson Lab

5 Committee Statement of Task -- from DOE to the BPA The committee will assess the scientific justification for a U.S. domestic electron ion collider facility, taking into account current international plans and existing domestic facility infrastructure. In preparing its report, the committee will address the role that such a facility could play in the future of nuclear physics, considering the field broadly, but placing emphasis on its potential scientific impact on quantum chromodynamics. In particular, the committee will address the following questions: What is the merit and significance of the science that could be addressed by an electron ion collider facility and what is its importance in the overall context of research in nuclear physics and the physical sciences in general? What are the capabilities of other facilities, existing and planned, domestic and abroad, to address the science opportunities afforded by an electron-ion collider? What unique scientific role could be played by a domestic electron ion collider facility that is complementary to existing and planned facilities at home and elsewhere? What are the benefits to U.S. leadership in nuclear physics if a domestic electron ion collider were constructed? What are the benefits to other fields of science and to society of establishing such a facility in the United States?

6 Committee Membership Gordon Baym, Co-Chair (Illinois): theoretical many-particle physics Ani Aprahamian, Co-Chair (Notre Dame): nuclear experiment Christine Aidala (Michigan): Richard Milner (MIT): Ernst Sichtermann (LBNL): Zein-Eddine Meziani (Temple): Thomas Schaefer (NC State U): Michael Turner (Chicago): Wick Haxton (UC Berkeley): Kawtar Hafidi (Argonne): Peter Braun-Munzinger (GSI): Larry McLerran (Washington): Haiyan Gao (Duke): John Jowett (CERN): Lia Merminga (Fermilab): heavy ion experiment high energy electron experiment heavy ion experiment high energy electron experiment theoretical nuclear physics theoretical astronomy, cosmology theoretical nuclear physics high energy electron experiment heavy ion experiment theoretical nuclear physics high energy electron experiment accelerator physics accelerator physics

7 Report Process & Meeting Schedule Four meetings in 2017, plus three conference calls for entire committee, and many smaller conference calls among working groups First meeting Feb. 1-2 Washington Funding agencies, House Science and Technology Committee, NSAC, EIC collider physics, European perspective, RHIC plans Second meeting April Irvine JLab plans, EIC User Group, EIC in China, CERN, gluon and deep inelastic scattering physics Third meeting Sept Woods Hole EIC accelerator technology, EIC computing, gluon saturation Fourth and final meeting: Nov Washington

8 Committee members talking today Gordon Ani Richard Ernst John Thomas Baym Aprahamian Milner Sichtermann Jowett Schaefer Committee at the Academies, Washington D.C.

9 Bottom Line The committee unanimously finds that the science that can be addressed by an EIC is compelling, fundamental, and timely. The unanimous conclusion of the Committee is that an EIC, as envisioned in this report, would be a unique facility in the world that would boost the U.S. STEM workforce and help maintain U.S. scientific leadership in nuclear physics. The project is strongly supported by the nuclear physics community. The technological benefits of meeting the accelerator challenges are enormous, both for basic science and for applied areas that use accelerators, including material science and medicine.

10 Outline of the Report Front Matter Preface Summary Ch 1: Introduction (overview) Ch 2: The scientific case for an electron-ion collider (and how an EIC would do the science) Ch 3: The role of an EIC within the context of nuclear physics in the U.S. and internationally Ch 4: Accelerator science, technology, and detectors needed for a U.S.-based EIC Ch. 5: Comparison of a U.S.-based EIC to current and future facilities Ch. 6: Impact of an EIC on other fields Ch 7: Conclusion and findings Appendixes: Statement of Task; Bios; Acronyms

11 Ch. 2: Basic science to be explored How does a nucleon acquire mass? -- almost 100 times greater than the sum of its valence quark masses. Cannot be understood via Higgs mechanism 1980s Now How does the spin (internal angular momentum) of the nucleon arise from its elementary quark and gluon constituents? Proton spin is the basis of MRI imaging. What are the emergent properties of dense systems of gluons? How are they distributed in both position and momentum in nucleons and nuclei, and how are they correlated among themselves and with the quarks and antiquarks present? What are their quantum states? Are there new forms of matter made of dense gluons?

12 Basic experiments in c.m. energy - luminosity landscape Deeply virtual Compton scattering Deeply virtual meson production

13 Basic experiments in c.m. energy - luminosity landscape Deeply virtual Compton scattering Deeply virtual meson production

14 Ch. 3: The role of an EIC within the context of nuclear physics in the U.S. and internationally Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. FRIB in construction at MSU will keep us at a leadership position in the world in understanding the behavior of hadrons inside the atomic nucleus Inside hadrons, the interactions of gluons and quarks address the fundamental questions on the origin of mass, spin, and saturation. Quantum Chromodynamics (QCD) physics U.S. Nuclear Science Context for an Electron-Ion Collider U.S. Leadership in Nuclear Science

15 Ch. 4: Accelerator science, technology, and detectors needed for a U.S.-based EIC (Choice of design/site for am EIC was not in our statement of task) Major challenges in accelerator design: o High energy, spin-polarized beams colliding with high luminosity BNL erhic and JLab JLEIC Conceptual Designs o build on existing accelerators in different ways o both require extensive R&D to fully address the science Enabling Accelerator Technologies o Interaction region design, magnet technology o Strong hadron beam cooling (innovative concepts) o Energy Recovery Linacs o Crab Cavity operation in hadron ring o Polarized e,p and 3 He Sources, preservation in accelerators o Simulations of beams in novel EIC operating modes Detector Technologies

16 Ch. 5: Comparison of a U.S.-based EIC to current and future facilities HERA at DESY... A (former) collider of electrons with protons CEBAF at JLab.Electron accelerator to 12 GeV Compass experiment at CERN muons and protons in collisions RHIC Heavy Ion and polarized proton collider LHC at CERN Large Hadron Collider: protons and heavy ions Other Future Electron-Hadron Collider Proposals LHeC FCC-he Future Circular Collider China: possible low energy EIC at HIAF (High Intensity Heavy-Ion Accelerator Facility) Opportunities for future collaborations!!

17 Ch. 6: Impact of an EIC on other fields EIC will sustain a healthy U.S. accelerator science enterprise Maintain leadership in collider accelerator technology Enable new technology essential for future particle accelerators EIC R&D targeted at developing cutting-edge capabilities Workforce Nuclear physicists essential to U.S. security, health & economic vitality About one half of U.S. PhDs in nuclear physics are in QCD Advanced scientific computing Maintaining a competitive high performance computing capability is essential to U.S. scientific leadership Lattice QCD uses the worlds most advanced computers to provide ab initio QCD calculations essential to interpret EIC data Connections to: Condensed matter and atomic-molecular physics High-energy physics Astrophysics

18 Findings The science Finding 1: An EIC can uniquely address three profound questions about nucleons neutrons and protons and how they are assembled to form the nuclei of atoms: How does the mass of the nucleon arise? How does the spin of the nucleon arise? What are the emergent properties of dense systems of gluons? Accelerator Finding 2: These three high-priority science questions can be answered by an EIC with highly polarized beams of electrons and ions, with sufficiently high luminosity and sufficient, and variable, center-of-mass energy.

19 Findings Finding 3: An EIC would be a unique facility in the world, and would maintain U.S. leadership in nuclear physics. Finding 4: An EIC would maintain U.S. leadership in the accelerator science and technology of colliders, and help to maintain scientific leadership more broadly. Finding 5: Taking advantage of existing accelerator infrastructure and accelerator expertise would make development of an EIC cost effective and would potentially reduce risk. Finding 6: The current accelerator R&D program supported by the Department of Energy is crucial to addressing outstanding design challenges.

20 Findings Finding 7: To realize fully the scientific opportunities an EIC would enable, a theory program will be required to predict and interpret the experimental results within the context of QCD, and further, to glean the fundamental insights into QCD that an EIC can reveal. Finding 8: The U.S. nuclear science community has been thorough and thoughtful in its planning for the future, taking into account both science priorities and budgetary realities. Its 2015 Long Range Plan identifies the construction of a high luminosity polarized Electron Ion Collider (EIC) as the highest priority for new facility construction following the completion of the Facility for Rare Isotope Beams (FRIB) at Michigan State University. Finding 9: The broader impacts of building an EIC in the U.S. are significant in related fields of science, including in particular the accelerator science and technology of colliders and workforce development.

21 Bottom Line (again) The committee unanimously finds that the science that can be addressed by an EIC is compelling, fundamental, and timely. The unanimous conclusion of the Committee is that an EIC, as envisioned in this report, would be a unique facility in the world that would boost the U.S. STEM workforce and help maintain U.S. scientific leadership in nuclear physics. The project is strongly supported by the nuclear physics community. The technological benefits of meeting the accelerator challenges are enormous, both for basic science and for applied areas that use accelerators, including material science and medicine.

22 QUESTIONS and ANSWERS

23 Extra slides

24 The Report Process Stages: 1) Defining the study. 2) Committee selection and approval 3) Committee meetings, gather information and write the report 4) Report review via Report Review Committee ~30 members 5) Release of report to public (TODAY)

Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All

Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All Abhay Deshpande arxiv 1212.1701.v3 Eur. Phy. J. A52, 9 (2016) Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All EIC Project Overview and The Path Forward Nuclei QCD:

More information

DOE NP Perspectives on a Possible Future Electron Ion Collider. Dr. T. J. Hallman Associate Director for Nuclear Physics DOE Office of Science

DOE NP Perspectives on a Possible Future Electron Ion Collider. Dr. T. J. Hallman Associate Director for Nuclear Physics DOE Office of Science DOE NP Perspectives on a Possible Future Electron Ion Collider NAS EIC Science Assessment February 1-2, 2017 Dr. T. J. Hallman Associate Director for Nuclear Physics DOE Office of Science EIC Relevance

More information

Laboratory for Nuclear Science

Laboratory for Nuclear Science The Laboratory for Nuclear Science (LNS) provides support for research by faculty and research staff members in the fields of particle, nuclear, and theoretical plasma physics. This includes activities

More information

erhic: Science and Perspective

erhic: Science and Perspective erhic: Science and Perspective Study of the Fundamental Structure of Matter with an Electron-Ion Collider A. Deshpande, R. Milner, R. Venugopalan, W. Vogelsang hep-ph/0506148, Ann. Rev. Nucl. Part. Sci.

More information

The 2015 U.S. Nuclear Science Long Range Plan

The 2015 U.S. Nuclear Science Long Range Plan The 2015 U.S. Nuclear Science Long Range Plan Berndt Mueller BNL/Duke 7th Workshop on Hadron Physics in China DKU August 3-7, 2015 Long Range Plan Charge to NSAC 2 Charge to NSAC (ctd.) 3 Charge to NSAC

More information

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab Electron-Ion Collider for Nuclear and Particle Physics Hugh Montgomery Jefferson Lab Input to this Talk Abhay Deshpande's EICAC talk to Jefferson Lab Users http://www.jlab.org/conferences/ugm/talks/monday/deshpande.pdf

More information

Overview on the Future Electron-Ion Collider Projects

Overview on the Future Electron-Ion Collider Projects Overview on the Future Electron-Ion Collider Projects Emlyn W. Hughes W.K. Kellogg Radiation Laboratory California Institute of Technology Pasadena, CA 91125 Abstract. One of the large new projects envisioned

More information

What is new about the Electron Ion Collider (EIC) in the US?

What is new about the Electron Ion Collider (EIC) in the US? 1 What is new about the Electron Ion Collider (EIC) in the US? We recommend a high-energy highluminosity polarized EIC as the highest priority for new facility construction following the completion of

More information

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) GPDs and TMDs at Electron-Ion Collider Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) Electron-Ion Collider World s first polarized electron +

More information

Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All

Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All 1 Eur. Phys. J. A 52: 238 (2016) A. Accardi et al. Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All Why the EIC? To understand the role of gluons in binding quarks

More information

The Detector Design of the Jefferson Lab EIC

The Detector Design of the Jefferson Lab EIC The Detector Design of the Jefferson Lab EIC Jefferson Lab E-mail: mdiefent@jlab.org The Electron-Ion Collider (EIC) is envisioned as the next-generation U.S. facility to study quarks and gluons in strongly

More information

arxiv: v1 [nucl-ex] 3 Sep 2018

arxiv: v1 [nucl-ex] 3 Sep 2018 A Plan for Electron Ion Collider in China arxiv:89.448v [nucl-ex] 3 Sep 28 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73, China E-mail: xchen@impcas.ac.cn One of the frontier research

More information

Meson Structure and DIS

Meson Structure and DIS Meson Structure and DIS From HERA to the Electron-Ion Collider Rik Yoshida, November 6, 2017, Trento OUTLINE Introduction Measuring Meson Structure at from DIS HERA Collider and Meson Structure Publications

More information

Jefferson Lab Status. Stuart Henderson Laboratory Director. April 26, 2018

Jefferson Lab Status. Stuart Henderson Laboratory Director. April 26, 2018 Jefferson Lab Status Stuart Henderson Laboratory Director April 26, 2018 Jefferson Lab Overview One of 17 U.S. Department of Energy National Laboratories Single program focus on Nuclear Physics Created

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

Exciting opportunities at JLab GeV!

Exciting opportunities at JLab GeV! Exciting opportunities at JLab 25-75 GeV! JLab users town meeting, Newport News! March 16 2012! Kawtar Hafidi! Develop a common vision for the future! The future starts today! 40 - Today (2012), we are

More information

Next-generation nuclear physics with JLab12 and EIC

Next-generation nuclear physics with JLab12 and EIC Next-generation nuclear physics with JLab12 and EIC Topical Workshop, Florida International University, 10 13 Feb 2016 W. Brooks, R. Dupre, Ch. Hyde, M. Sargsian, C. Weiss (Organizers) Welcome! Physics

More information

JLEIC forward detector design and performance

JLEIC forward detector design and performance Jefferson Lab E-mail: ryoshida@jlab.org A major part of the physics program at the Electron-Ion Collider being planned in the US is the exploration of nucleon and nuclear structure. This program means

More information

Strong interaction physics with an Electron Ion Collider

Strong interaction physics with an Electron Ion Collider Strong interaction physics with an Electron Ion Collider C. Weiss (JLab), UNAM, Mexico City, 03 April 17 [E-mail] Internal structure of nucleon Quantum Chromodynamics Concepts and methods for structure

More information

A High Luminosity Electron-Ion Collider to Study the Structure of Matter

A High Luminosity Electron-Ion Collider to Study the Structure of Matter A High Luminosity Electron-Ion Collider to Study the Structure of Matter Introduction Scientific motivation Realization Summary Study of the Fundamental Structure of Matter with an Electron-Ion Collider

More information

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab

Electron-Ion Collider for Nuclear and Particle Physics. Hugh Montgomery Jefferson Lab Electron-Ion Collider for Nuclear and Particle Physics Hugh Montgomery Jefferson Lab Input to Talk Abhay Deshpande's EICAC talk to Jefferson Lab Users http://www.jlab.org/conferences/ugm/talks/monday/deshpande.pdf

More information

RESOLUTION DISTANCE DISTANCE

RESOLUTION DISTANCE DISTANCE Subfields of nuclear physics Nuclear structure, whose goal is to build a coherent framework for explaining all properbes of nuclei and nuclear maoer and how they interact; Nuclear astrophysics, which explores

More information

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook

EIC Science. Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook EIC Science Rik Yoshida, EIC-Center at Jefferson Lab Abhay Deshpande, Center for Frontiers in Nuclear Physics, BNL and Stony Brook Introduction Invited to give a talk EIC Science and JLEIC Status I will

More information

The 2015 NSAC Long Range Plan. Donald Geesaman Chair, NSAC

The 2015 NSAC Long Range Plan. Donald Geesaman Chair, NSAC The 2015 NSAC Long Range Plan Donald Geesaman Chair, NSAC Charge to NSAC to Develop a New Long Range Plan 2 Charge to NSAC to Develop a New Long Range Plan 3 Charge to NSAC to Develop a New Long Range

More information

Jefferson Lab 12 GeV Science Program

Jefferson Lab 12 GeV Science Program QCD Evolution Workshop 2014 International Journal of Modern Physics: Conference Series Vol. 37 (2015) 1560019 (8 pages) c The Author DOI: 10.1142/S2010194515600198 Jefferson Lab 12 GeV Science Program

More information

Probing the Atomic Nucleus at Jefferson Lab

Probing the Atomic Nucleus at Jefferson Lab Probing the Atomic Nucleus at Jefferson Lab (a glimpse ) Fatiha Benmokhtar Duquesne University. *Thanks to R. Ent for some of the material 1 Building Blocks of Matter Electrons Atom Nucleus -Most of the

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

Update from BNL. Robert Tribble 2018 EIC Users Meeting July 30, 2018

Update from BNL. Robert Tribble 2018 EIC Users Meeting July 30, 2018 Update from BNL Robert Tribble 2018 EIC Users Meeting July 30, 2018 Outline Some Recent Updates to EIC Science Community Activities erhic Design erhic Machine and Detector R&D Thanks to many contributors

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All

Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All 1 Electron Ion Collider: The next QCD frontier Understanding the Glue that Binds Us All Why the EIC? To understand the role of gluons in binding quarks & gluons into Nucleons and Nuclei Nuclei Abhay Deshpande

More information

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 1 e e x, 0000000 1111111 D pol. Q 2 X p, n Electron-Ion Collider overview Design specifications

More information

The JLAB12 Collaboration

The JLAB12 Collaboration The JLAB12 Collaboration M.Battaglieri on behalf of the JLAB12 Collaboration INFN -GE, Italy 1 The CEBAF parameters Primary Beam: Electrons Beam Energy: 4 GeV (original) 6 GeV now 10 > λ > 0.1 fm 12 GeV

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

An Electron Ion Collider in China

An Electron Ion Collider in China An Electron Ion Collider in China Xurong Chen The Institute of Modern Physics CAS, Lanzhou, China The Sixth Workshop on Hadron Physics in China and Opportunities in US July 21~24, 2014 at Lanzhou 1 EIC@China

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility Overview of Nuclear Physics at Jefferson Lab Thomas Jefferson National Accelerator Facility E-mail: bmck@jlab.org The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment

More information

Studying QCD matter in the weak coupling, high density, highly nonlinear. Illuminating the entrance channel for RHIC and LHC A+A collisions

Studying QCD matter in the weak coupling, high density, highly nonlinear. Illuminating the entrance channel for RHIC and LHC A+A collisions e+a Science @ EIC & the erhic Solution Steve Vigdor POETIC 2012 Bloomington, August 20, 2012 Studying QCD matter in the weak coupling, high density, highly nonlinear regime Illuminating the entrance channel

More information

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei High-energy nuclear physics with spectator tagging A. Deshpande, D. Higinbotham, Ch. Hyde, S. Kuhn, M. Sargsian, C. Weiss Topical Workshop, Old Dominion U., 9 11 March 015 High-energy ea scattering e e

More information

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013 Experimental results on nucleon structure Lecture I Barbara Badelek University of Warsaw National Nuclear Physics Summer School 2013 Stony Brook University, July 15 26, 2013 Barbara Badelek (Univ. of Warsaw

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

The Electron-Ion Collider: Exploring the science of Nuclear Femtography

The Electron-Ion Collider: Exploring the science of Nuclear Femtography The Nature of Hadron Mass and Quark-Gluon Confinement from JLab Experiments in the 12-GeV Era The Electron-Ion Collider: Exploring the science of Nuclear Femtography Jianwei Qiu Theory Center, Jefferson

More information

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY B. SURROW Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA E-mail: surrow@mit.edu

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider An electron attoscope Berndt Mueller BNL & Duke University KMI, Nagoya 6 October 2015 Standard Model particles 3-jet events @ TASSO Gluons are gauge bosons like photons [massless

More information

Scientific Community Perspectives Physics

Scientific Community Perspectives Physics Scientific Community Perspectives Physics Barry C Barish Committee on Science, Engineering and Public Policy Board on Physics and Astronomy Committee on Setting Priorities for NSF s Large Research Facility

More information

RHIC Run 14: Brookhaven's atom smasher produced more gold collisions than all previous runs combined 8 August 2014

RHIC Run 14: Brookhaven's atom smasher produced more gold collisions than all previous runs combined 8 August 2014 RHIC Run 14: Brookhaven's atom smasher produced more gold collisions than all previous runs combined 8 August 2014 The sharp increase this year in integrated luminosity a measure of machine performance

More information

THE US-BASED ELECTRON- ION COLLIDER AND PROSPECTS FOR NUCLEON IMAGING STUDIES. Rolf Ent Jefferson Lab

THE US-BASED ELECTRON- ION COLLIDER AND PROSPECTS FOR NUCLEON IMAGING STUDIES. Rolf Ent Jefferson Lab THE US-BASED ELECTRON- ION COLLIDER AND PROSPECTS FOR NUCLEON IMAGING STUDIES Rolf Ent Jefferson Lab INT-17-3, Spatial and Momentum Tomography of Hadrons and Nuclei, Seattle, Washington, September 26,

More information

A proposed very high energy electron proton collider, VHEeP

A proposed very high energy electron proton collider, VHEeP A proposed very high energy electron proton collider, VHEeP UCL, London, UK E-mail: m.wing@ucl.ac.uk A. Caldwell Max Planck Institute for Physics, Munich, Germany E-mail: caldwell@mpp.mpg.de The possibility

More information

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of Accelerators Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of e - : Always ultra-relativistic, therefore constant speed

More information

MEIC polarized deuteron R&D

MEIC polarized deuteron R&D MEIC polarized deuteron R&D C. Weiss, JLab Theory! FY14/15 LDRD Project Physics potential of polarized light ions with EIC@JLab 1 Overview Physics potential of polarized light ions with EIC@JLab! FY14/15

More information

Presentation to the Board on Physics and Astronomy. Office of Nuclear Physics. Office of Science. Department of Energy April 27, 2007

Presentation to the Board on Physics and Astronomy. Office of Nuclear Physics. Office of Science. Department of Energy April 27, 2007 U.S. Department of Energy Office of Science Presentation to the Board on Physics and Astronomy Office of Nuclear Physics Office of Science Department of Energy April 27, 2007 Dennis Kovar Associate Director

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider Daria Sokhan UK Nuclear Physics Community Meeting, University of Warwick, 5th January 2017 Electron-Ion Collider World s first polarized electron-proton/light ion and electron-nucleus

More information

An Electron Ion Collider in China Xurong Chen

An Electron Ion Collider in China Xurong Chen An Electron Ion Collider in China Xurong Chen The Institute of Modern Physics CAS, Lanzhou, China 1 EIC@China Project IMP Introduction and HIAF Project EIC@HIAF Project 3 GeV (pol. e) X 12 GeV (pol. p),

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

Project. 1 Introduction. EPJ Web of Conferences 66, (2014)

Project. 1 Introduction. EPJ Web of Conferences 66, (2014) EPJ Web of Conferences 66, 6 (4) DOI:.5/ epjconf/ 4666 C Owned by the authors, published by EDP Sciences, 4 Probing Sea Quarks and Gluons: Project The Electron-Ion Collider Tanja Horn,a Catholic University

More information

Gluons at high x in Nuclei at EIC

Gluons at high x in Nuclei at EIC Gluons at high x in Nuclei at EIC in collaboration with: E. Chudakov, D. Higinbotham, C. Hyde, C. Weiss Jefferson Lab DNP 2015 Fall meeting, Santa Fe, NM Outline Motivation HERA and ZEUS experience EIC

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

DOE Office of High Energy Physics Perspective on DUSEL

DOE Office of High Energy Physics Perspective on DUSEL OFFICE OF SCIENCE DOE Office of High Energy Physics Perspective on DUSEL NRC Committee to Assess the DUSEL December 14, 2010 Dennis Kovar Office of High Energy Physics Office of Science, U.S. Department

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Electron-Ion Collider Taking us to the next QCD Frontier

Electron-Ion Collider Taking us to the next QCD Frontier QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) Electron-Ion Collider Taking us to the next QCD Frontier Jianwei Qiu Brookhaven National Laboratory Acknowledgement: Much of the physics presented

More information

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS

Overview of Jefferson Lab Physics Program. David Richards 1 st June, 2008 HUGS Overview of Jefferson Lab Physics Program David Richards 1 st June, 2008 HUGS Why are we here? Describe how the fundamental building blocks of the nucleus, the protons and neutrons, are built from the

More information

Detecting. Particles

Detecting. Particles Detecting Experimental Elementary Particle Physics Group at the University of Arizona + Searching for Quark Compositeness at the LHC Particles Michael Shupe Department of Physics M. Shupe - ATLAS Collaboration

More information

Jefferson Lab Program and MEIC. R. D. McKeown Jefferson Lab College of William and Mary

Jefferson Lab Program and MEIC. R. D. McKeown Jefferson Lab College of William and Mary Jefferson Lab Program and MEIC R. D. McKeown Jefferson Lab College of William and Mary Hadron Workshop, Lanzhou July 21, 2014 Outline Recent Highlights 12 GeV Science Overview 12 GeV Project Status EIC

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Hadronization with JLab 6/12 GeV

Hadronization with JLab 6/12 GeV Hadronization with JLab 6/12 GeV Next generation nuclear physics with JLab12 and EIC Florida International University February 10-13th, 2016 Lamiaa El Fassi (On behalf of EG2 and CLAS Collaborations) Outline

More information

arxiv: v1 [physics.acc-ph] 1 Sep 2015

arxiv: v1 [physics.acc-ph] 1 Sep 2015 based on proton-driven plasma wakefield acceleration arxiv:1509.00235v1 [physics.acc-ph] 1 Sep 2015 A. Caldwell Max Planck Institute for Physics, Munich, Germany E-mail: caldwell@mpp.mpg.de UCL, London,

More information

Particle Physics Columbia Science Honors Program

Particle Physics Columbia Science Honors Program Particle Physics Columbia Science Honors Program Week 10: LHC and Experiments April 8th, 2017 Inês Ochoa, Nevis Labs, Columbia University 1 Course Policies Attendance: Up to four excused absences (two

More information

EIC Electron Beam Polarimetry Workshop Summary

EIC Electron Beam Polarimetry Workshop Summary EIC Electron Beam Polarimetry Workshop Summary W. Lorenzon Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA Abstract. A summary of the Precision Electron Beam

More information

The Gamma Factory proposal for CERN

The Gamma Factory proposal for CERN The Gamma Factory proposal for CERN Photon-2017 Conference, May 2017 Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne 1 The Gamma Factory in a nutshell Accelerate and store high energy

More information

EIC Electron Beam Polarimetry Workshop Summary

EIC Electron Beam Polarimetry Workshop Summary EIC Electron Beam Polarimetry Workshop Summary W. Lorenzon Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA Abstract. A summary of the Precision Electron Beam

More information

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Drell-Yan experiments at Fermilab/RHIC/J-PARC QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Outline Fermilab Drell-Yan experiments Unpolarized program Flavor asymmetry of sea-quark

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units The European Strategy for Particle Physics Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units Purpose of this meeting q To inform CERN s employees (staff, fellows) about the goals

More information

Unit 8.1 Nuclear Chemistry - Nuclear Reactions. Review. Radioactivity. State College Area School District Teacher: Van Der Sluys

Unit 8.1 Nuclear Chemistry - Nuclear Reactions. Review. Radioactivity. State College Area School District Teacher: Van Der Sluys Unit 8. Nuclear Chemistry - Nuclear Reactions State College Area School District Teacher: Van Der Sluys Review Atoms consist of electrons, protons and neutrons Atoms of elements are distinguished by the

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

Accelerator Design of High Luminosity Electron-Hadron Collider erhic

Accelerator Design of High Luminosity Electron-Hadron Collider erhic Accelerator Design of High Luminosity Electron-Hadron Collider erhic V. PTITSYN ON BEHALF OF ERHIC DESIGN TEAM: E. ASCHENAUER, M. BAI, J. BEEBE-WANG, S. BELOMESTNYKH, I. BEN-ZVI, M. BLASKIEWICZ, R. CALAGA,

More information

Exploring the Nature of Matter Jefferson Lab and its plans. Hugh Montgomery. September 2009

Exploring the Nature of Matter Jefferson Lab and its plans. Hugh Montgomery. September 2009 Exploring the Nature of Matter Jefferson Lab and its plans Hugh Montgomery September 2009 Acknowledgements This talk was compiled from the work of many others. In particular I have liberally used several

More information

The Electron-Ion Collider (EIC)

The Electron-Ion Collider (EIC) The Electron-Ion Collider (EIC) A. Accardi, R. Ent, V. Guzey, T. Horn, C. Hyde, P. Nadel-Turonski, A. Prokudin, C. Weiss,... + CASA / accelerator team + lots of JLab of users! JLab Users' Town Hall Meeting,

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Worldwide Direction on Nuclear Science and Application

Worldwide Direction on Nuclear Science and Application Worldwide Direction on Nuclear Science and Application Thomas Glasmacher Michigan State University LINAC 16 28 th Linear Accelerator Conference East Lansing, MI, USA 25-30 September 2016 21 st Century

More information

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon Introduction The year 2002, marked the 75th anniversary of Dennison s discovery that the proton, just like the electron, carries spin. The electron

More information

FROM HERA TO FUTURE ELECTRON-ION COLLIDERS*

FROM HERA TO FUTURE ELECTRON-ION COLLIDERS* FROM HERA TO FUTURE ELECTRON-ION COLLIDERS* V. Ptitsyn, BNL, Upton, NY 11980, USA. Abstract An overview of the proposals of new electron-ion colliders - e-rhic at BNL, EIC at JLab and LHeC at CERN - in

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-2 January 28, 2013 Al Goshaw 1 HEP 101-2 plan Jan. 14: Introduction to CERN and ATLAS DONE Today: 1. Comments on grant opportunities 2. Overview

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider C. Tschalaer 1. Introduction In the past year, the idea of a polarized electron-proton (e-p) or electron-ion (e-a) collider of high luminosity (10 33 cm -2 s -1 or more) and c.m.

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

Summer Students 2003

Summer Students 2003 Welcome to Where are you? What do we do? What will you do? DORIS/PETRA HERA TESLA/FEL Summer Students 2003 1 DESY - Overview Mission: Development, construction and running of accelerators Exploit the accelerators

More information

The Electron-Ion Collider at BNL: Capabilities and Physics Highlights

The Electron-Ion Collider at BNL: Capabilities and Physics Highlights Hadron 2011 Munich 1 The Electron-Ion Collider at BNL: Capabilities and Physics Highlights D. Leinweber J.H. Lee Brookhaven National Laboratory Outline Why do we need electron-ion collider What can we

More information

A Tour of the Standard Model of Elementary Particles and Fields

A Tour of the Standard Model of Elementary Particles and Fields A Tour of the Standard Model of Elementary Particles and Fields What Do We Know About the Fundamental Structure of Nature and How Do We Know It? Dr. Michael G. Strauss The University of Oklahoma Elementary

More information

Renee H. Fatemi. Contact Information. Education. Academic Positions. Professional Activities. Awarded Research Grants and Fellowships

Renee H. Fatemi. Contact Information. Education. Academic Positions. Professional Activities. Awarded Research Grants and Fellowships Renee H. Fatemi Contact Information University of Kentucky 177 Chem.-Phys. Building Lexington, KY 40506-0055 859.257.2664 renee.fatemi@uky.edu Education Ph.D., Nuclear Physics, 2002; Univeristy of Virginia,

More information

E , E , E

E , E , E JLab Experiments E12-09-017, E12-09-011, E12-09-002 First-Year of Hall C experiments towards a complete commissioning of the SHMS for precision experiments Spokespersons: P. Bosted, D. Dutta, R. Ent, D.

More information

Paul Newman Birmingham University Lepton-hadron collider based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa

Paul Newman Birmingham University Lepton-hadron collider based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa Paul Newman Birmingham University Lepton-hadron collider based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? 1 [CERN Courier, June 2014] Lepton-hadron

More information

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy Ions at the LHC: Selected Predictions Georg Wolschin Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy-ion collisions at relativistic energy have been investigated for many

More information

Nucleon Spin. Tyler Corbett

Nucleon Spin. Tyler Corbett Nucleon Spin Tyler Corbett Abstract: In 1988 the European Muon Collaboration showed that the quark contribution to spin only accounts for 20-30 percent of the nucleon spin; The "naive quark parton model

More information