Exam Thermodynamics 12 April 2018

Size: px
Start display at page:

Download "Exam Thermodynamics 12 April 2018"

Transcription

1 1 Exam Thermodynamics 12 April 2018 Please, hand in your answers to problems 1, 2, 3 and 4 on separate sheets. Put your name and student number on each sheet. The examination time is 12:30 until 15:30. There are 4 problems, with each 4 subproblems, a list of constants and a formulae sheet, 5 pages in total. All 16 subproblems have equal weight for the final grade. Problem 1 a) Give a definition and/or short description of the following concepts perfect gas isobaric process activity thermodynamic equilibrium constant electromotive force b) Indicate for each of the following quantities whether we are dealing with a state function; answer using only yes or no: the pressure P, the difference of internal energy and work U W, the product of temperature and entropy T S, the ratio of heat and temperature Q T, the product of volume, pressure and temperature V P T. c) Give the meaning of all symbols in the following formula as well as a description of its use in thermodynamic problems. q = i exp ɛ i d) Consider an isobaric process for which 2 mol of a perfect gas is heated from t 1 = 50 C to t 2 = 100 C. Use the Boltzmann definition of entropy to determine the ratio, W (t2) W (t 1), for the number of micro states of the gas. Do not forget to fill in the online survey to the course.

2 2 Problem 2 Consider a system consisting of 1 mol of lead, Pb, at standard pressure. In the table below a number of thermodynamic parameters are given. T fus fus H T vap vap H S (298 K) Pb K kj/mol 2013 K kj/mol J/mol K The heat capacity for all phases is given by (T is the temperature in K) C P (J/mol K) = A + BT + CT 2, in which the parameters A, B and C, for temperatures 10 K T 6000 K, in the three phases s(olid), l(iquid) and g(as) are given in the table below Pb A(J/molK) B(J/molK 2 ) C(J/molK 3 ) s (T > 10 K) l g (T < 6000 K) a) At very high temperature the system behaves like a perfect gas. What are the values of A, B and C in that case? b) Which of the following quantities have the same value for both phases (melt and solid) at constant pressure, at T = T fus, where the melt and the solid are in equilibrium? Answer with only yes or no. the entropy, the enthalpy, the Helmholtz free energy, the Gibbs free energy, the chemical potential. c) Calculate the entropy change vap S at the evaporation temperature T vap. d) Calculate the entropy of this system at 1000 K; you can neglect the contributions for T < 10 K. Problem 3 A Daniell cell is an electrochemical cell consisting of a half cell with a copper electrode in a copper(ii) solution and a half cell with a zinc electrode in a zinc solution. We consider a Daniell cell at P = P, with initially a M Cu(NO 3 ) 2 aqueous solution and a M Zn(NO 3 ) 2 aqueous solution. We connect an external (load) resistance, R L = 100 Ω, to this cell and keep the cell at constant temperature, T = 298 K. The cell voltage will decrease until the cell is in equilibrium. During this discharging process of the cell, the NO 3 -ions will migrate through the semipermeable membrane separating the two half cells to keep the net charge in the half cells equal to zero. The electrodes can be considered as large enough to never become depleted. The internal resistance of the cell is R int = 20.0 Ω and can be considered to represent all internal losses in the cell during discharge; R int can be considered as constant. The following data can be used E Cu 2+ /Cu = V at T = 298 K, = 0.76 V at T = 298 K. E Zn 2+ /Zn fus H(H 2 O) = kj/mol at T = K. Assume that all activities can be approximated by the molarities.

3 3 a) Give the chemical equation for the net cell reaction and determine the cell voltage at time zero, E(t = 0), the moment just before the load resistance is attached. b) Calculate the concentrations in the two half cells at the end of the discharge process. c) Calculate the efficiency of the process. d) Next, we want to use the cell during winter time. Assuming that all paramaters are independent of the temperature, estimate the lowest temperature, which allows the cell to be used without the solution of one of the half cells to solidify; Do this both for t = 0 and the final equilibrium state. Problem 4 The process of protein unfolding generally involves a strong temperature dependence of the thermodynamic parameters. We study the equilibrium between the folded, N, and unfolded, D, at P = P, of λ-repressor, a protein from λ phage that binds to DNA and regulates transcription. Some of the thermodynamic parameters for the unfolding of λ-repressor are G 17.7 kj/mol at T = 298 K, H 90.4 kj/mol at T = 298 K. In Figure 1 the fraction, f D, of D(enatured) (unfolded) protein is plotted as a function of temperature for λ-repressor. In this problem we approximate activitites by concentrations, unless mentioned otherwise and we suppress the label r by writing r G as G, etc. f D T ( o C) Figuur 1: Fraction, f D, of denatured protein vs temperature for λ-repressor. a) Show that the fraction, f D, of denatured (unfolded) protein can be written in terms of the thermodynamic equilibrium constant, K, of the equilibrium, according to f D = [D] [D] + [N] = K 1 + K. b) Estimate the so-called melting temperature, T m, of the protein, for which half of the proteins is unfolded using the thermodynamic data at T = 298 K and compare your value with the graph in Figure 1. The reason for the deviation in temperature is due to the strong temperature dependence of the thermodynamic parameters, mentioned above. In Figure 2 this temperature dependence for λ- repressor is presented.

4 4 The following values were found for these plots G max = 4.8 kcal/mol at T = 288 K, H = -88 kcal/mol at T = 233 K, H = 100 kcal/mol at T = 353 K, T S = -80 kcal/mol at T = 233 K, T S = 100 kcal/mol at T = 353 K. G (kcal/mol) ( C) T o (kcal/mol) H T S ( C) T o Figuur 2: Temperature dependence of G, and H and S for λ-repressor. c) Use the data to Figure 2 to determine the temperature dependence of the difference in heat capacity C P = C D,P C N,P between the unfolded and folded state. Assume that the relevant plot can be considered as a linear function. d) Calculate the ratio of activity coefficients γ D γn on the concentration scale in the most stable state of the folded protein. In this most stable state f D = List of constants Elementary charge e C Faraday s constant F Cmol 1 Boltzmann s constant k JK 1 Planck s constant h Js Bohr Magneton µ B JT 1 Atomic mass constant m u kg Amadeo Avogadro di Quaregna e Ceretto s constant N A mol 1 Gas constant R JK 1 mol 1 Free fall acceleration g ms 2 Unit of energy 1 cal = J Standard pressure P 1 bar = 10 5 Nm 2 = atm = 750 Torr

5 5 Formulae P V = nrt = N U = 3 2 nrt = 3 2 N U = W + Q dw = P ext. dv + dw and dw max = (dg) P,T dq P = C P dt and dq V = C V dt Q 1 Q 2 = T 1 T 2 ds = dqrev dq T T ds tot = ds + ds omg 0 du = P dv + T ds + i H = U + P V dh = V dp + T ds + i A = U T S da = P dv SdT + i G = H T S dg = V dp SdT + i r G = ( ) G = r G + RT ln Q, where Q = ξ P,T i RT ln K = r G E = E RT νf ln Q, and dw = Edq and E = IR and P = EI µ i = µ i + RT ln a i = µ i + RT ln P i P a νi i G P,T = i µ i n i n j dµ j = 0 j ( RT 2 T = trs H ) x B S = nr (x A ln x A + x B ln x B ) Π = [B]RT = n B V RT S = k ln W n i N = exp ɛi q, where q = i exp ɛ i and < X >= N < x >= N i x i n i N

Exam Thermodynamics 2 9 November 2017

Exam Thermodynamics 2 9 November 2017 1 Exam Thermodynamics 2 9 November 2017 Please, hand in your answers to problems 1, 2, 3 and 4 on separate sheets. Put your name and student number on each sheet. The examination time is 08:30 until 11:30.

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

You MUST sign the honor pledge:

You MUST sign the honor pledge: CHEM 3411 MWF 9:00AM Fall 2010 Physical Chemistry I Exam #2, Version B (Dated: October 15, 2010) Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only if the correct

More information

Physical Chemistry I Exam points

Physical Chemistry I Exam points Chemistry 360 Fall 2018 Dr. Jean M. tandard October 17, 2018 Name Physical Chemistry I Exam 2 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must

More information

There are five problems on the exam. Do all of the problems. Show your work

There are five problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals of Physical Chemistry Second Hour Exam March 8, 2017 There are five problems on the exam. Do all of the problems. Show your work R = 0.08206 L atm/mole K N A = 6.022 x 10 23 R = 0.08314

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

Study Guide Thermodynamics 2, 2018/2019

Study Guide Thermodynamics 2, 2018/2019 Literature Study Guide Thermodynamics 2, 2018/2019 Hugo Meekes Solid State Chemistry HG03.625; 53200 Hugo.Meekes@science.ru.nl Book: hysical Chemistry;.W. Atkins.; edition 11, 10, 9 or 8, Oxford University

More information

You MUST sign the honor pledge:

You MUST sign the honor pledge: Chemistry 3411 MWF 9:00AM Spring 2009 Physical Chemistry I Final Exam, Version A (Dated: April 30, 2009 Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only if the

More information

Study Guide Thermodynamics (MOL017) 2017/2018

Study Guide Thermodynamics (MOL017) 2017/2018 Literature Study Guide Thermodynamics (MOL017 2017/2018 Hugo Meekes, Solid State Chemistry, HG03.625, tel. 53200, Hugo.Meekes@science.ru.nl Book: hysical Chemistry;.W. Atkins; edition 11, 10, 9 or 8, Oxford

More information

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant 1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v lnt + RlnV + cons tant (1) p, V, T change Reversible isothermal process (const. T) TdS=du-!W"!S = # "Q r = Q r T T Q r = $W = # pdv =

More information

CHAPTER 4 Physical Transformations of Pure Substances.

CHAPTER 4 Physical Transformations of Pure Substances. I. Generalities. CHAPTER 4 Physical Transformations of Pure Substances. A. Definitions: 1. A phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

You MUST sign the honor pledge:

You MUST sign the honor pledge: CHEM 3411 MWF 9:00AM Spring 2012 Physical Chemistry I Final Exam, Version A (Dated: May 4, 2012 Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only if the correct

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit) Ideal Gas Law PV = nrt where R = universal gas constant R = PV/nT R = 0.0821 atm L mol 1 K 1 R = 0.0821 atm dm 3 mol 1 K 1 R = 8.314 J mol 1 K 1 (SI unit) Standard molar volume = 22.4 L mol 1 at 0 C and

More information

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2 UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 006 CHEMISTRY CHEM30W: PHYSICAL CHEMISTRY TIME: 180 MINUTES MARKS: 100 EXAMINER: PROF S.B. JONNALAGADDA ANSWER FIVE QUESTIONS.

More information

AP Chemistry. Free-Response Questions

AP Chemistry. Free-Response Questions 2018 AP Chemistry Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online

More information

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 2017 Spring Semester MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 Byungha Shin ( 신병하 ) Dept. of MSE, KAIST Largely based on lecture notes of Prof. Hyuck-Mo Lee and Prof. WooChul

More information

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 9 Solutions 1. McQuarrie and Simon, 9-4. Paraphrase: Given expressions

More information

We can see from the gas phase form of the equilibrium constant that pressure of species depend on pressure. For the general gas phase reaction,

We can see from the gas phase form of the equilibrium constant that pressure of species depend on pressure. For the general gas phase reaction, Pressure dependence Equilibrium constant We can see from the gas phase form of the equilibrium constant that the equilibrium concentrations of species depend on pressure. This dependence is inside the

More information

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009 Print your name clearly: Signature: I agree to neither give nor receive aid during this exam Final Exam for Physics 76 Professor Greenside Wednesday, April 29, 2009 This exam is closed book and will last

More information

Introduction into thermodynamics

Introduction into thermodynamics Introduction into thermodynamics Solid-state thermodynamics, J. Majzlan Chemical thermodynamics deals with reactions between substances and species. Mechanical thermodynamics, on the other hand, works

More information

Thermodynamic Laws, Gibbs Free Energy & pe/ph

Thermodynamic Laws, Gibbs Free Energy & pe/ph Thermodynamic Laws, Gibbs Free Energy & pe/ph or how to predict chemical reactions without doing experiments OCN 623 Chemical Oceanography Definitions Extensive properties Depend on the amount of material

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality Entropy distinguishes between irreversible and reversible processes. irrev S > 0 rev In a spontaneous process, there should be a net increase in the entropy of the system

More information

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these Q 1. Q 2. Q 3. Q 4. Q 5. Q 6. Q 7. The incorrect option in the following table is: H S Nature of reaction (a) negative positive spontaneous at all temperatures (b) positive negative non-spontaneous regardless

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

BCIT Fall Chem Exam #2

BCIT Fall Chem Exam #2 BCIT Fall 2017 Chem 3310 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Quantities and Variables in Thermodynamics. Alexander Miles

Quantities and Variables in Thermodynamics. Alexander Miles Quantities and Variables in Thermodynamics Alexander Miles AlexanderAshtonMiles@gmail.com Written: December 8, 2008 Last edit: December 28, 2008 Thermodynamics has a very large number of variables, spanning

More information

General Chemistry Exam 3 Chem 211 Section 03, Spring 2017

General Chemistry Exam 3 Chem 211 Section 03, Spring 2017 General Chemistry Exam 3 Chem 211 Section 03, Spring 2017 Exam Information You have 50 minutes to complete this exam. Be sure to put your name on the next page. Please ask for clarification of questions

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

PHYSICS 214A Midterm Exam February 10, 2009

PHYSICS 214A Midterm Exam February 10, 2009 Clearly Print LAS NAME: FIRS NAME: SIGNAURE: I.D. # PHYSICS 2A Midterm Exam February 0, 2009. Do not open the exam until instructed to do so. 2. Write your answers in the spaces provided for each part

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Thermodynamic Variables and Relations

Thermodynamic Variables and Relations MME 231: Lecture 10 Thermodynamic Variables and Relations A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Thermodynamic relations derived from the Laws of Thermodynamics Definitions

More information

Exam 1 Solutions 100 points

Exam 1 Solutions 100 points Chemistry 360 Fall 018 Dr. Jean M. Standard September 19, 018 Name KEY Exam 1 Solutions 100 points 1.) (14 points) A chunk of gold metal weighing 100.0 g at 800 K is dropped into 100.0 g of liquid water

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality We know: Heat flows from higher temperature to lower temperature. T A V A U A + U B = constant V A, V B constant S = S A + S B T B V B Diathermic The wall insulating, impermeable

More information

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014

CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014 NAME: CHEMISTRY 443, Fall, 2014 (14F) Section Number: 10 Examination 2, November 5, 2014 Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader

More information

Phase Diagrams. NC State University

Phase Diagrams. NC State University Chemistry 433 Lecture 18 Phase Diagrams NC State University Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function of temperature

More information

The Chemical Potential

The Chemical Potential CHEM 331 Physical Chemistry Fall 2017 The Chemical Potential Here we complete our pivot towards chemical thermodynamics with the introduction of the Chemical Potential ( ). This concept was first introduced

More information

There are eight problems on the exam. Do all of the problems. Show your work

There are eight problems on the exam. Do all of the problems. Show your work CHM 3400 Fundamentals o Physical Chemistry Final Exam April 23, 2012 There are eight problems on the exam. Do all o the problems. Show your work R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

Name: First three letters of last name

Name: First three letters of last name Name: First three letters of last name Chemistry 342 Third Exam April 22, 2005 2:00 PM in C6 Lecture Center Write all work you want graded in the spaces provided. Both the logical solution to the problem

More information

Final Exam, Chemistry 481, 77 December 2016

Final Exam, Chemistry 481, 77 December 2016 1 Final Exam, Chemistry 481, 77 December 216 Show all work for full credit Useful constants: h = 6.626 1 34 J s; c (speed of light) = 2.998 1 8 m s 1 k B = 1.387 1 23 J K 1 ; R (molar gas constant) = 8.314

More information

= (-22) = +2kJ /mol

= (-22) = +2kJ /mol Lecture 8: Thermodynamics & Protein Stability Assigned reading in Campbell: Chapter 4.4-4.6 Key Terms: DG = -RT lnk eq = DH - TDS Transition Curve, Melting Curve, Tm DH calculation DS calculation van der

More information

Exam 3, Chemistry 481, 8 December 2017

Exam 3, Chemistry 481, 8 December 2017 1 Exam 3, Chemistry 481, 8 December 2017 Show all work for full credit Useful constants: k B = 1.3807 10 23 J K 1 ; R (molar gas constant) = 8.314 J K 1 mol 1 Helmholz free energy: A = U S, so that da

More information

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A

5.4 Liquid Mixtures. G i. + n B. = n A. )+ n B. + RT ln x A. + RT ln x B. G = nrt ( x A. ln x A. Δ mix. + x B S = nr( x A 5.4 Liquid Mixtures Key points 1. The Gibbs energy of mixing of two liquids to form an ideal solution is calculated in the same way as for two perfect gases 2. A regular solution is one in which the entropy

More information

UNIVERSITY OF MANITOBA, DEPARTMENT OF CHEMISTRY Chemistry 2290, Winter 2011, Dr. H. Georg Schreckenbach. Final Examination April 12, 2011 (3 hours)

UNIVERSITY OF MANITOBA, DEPARTMENT OF CHEMISTRY Chemistry 2290, Winter 2011, Dr. H. Georg Schreckenbach. Final Examination April 12, 2011 (3 hours) Comments 2012: - This exam turned out to be too short almost all of the class had left after 2 ½ hours or so. For this year, then, expect a somewhat longer exam (with a few more questions and/or somewhat

More information

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points Chemistry 360 pring 2017 Dr. Jean M. tandard April 19, 2017 Name Exam 3 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must turn in your equation

More information

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Lecture Synopsis 1. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions.

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions. Chemical Thermodynamics S.Y.BSc. Concept of Gibb s free energy and Helmholtz free energy a) Gibb s free energy: 1) It was introduced by J.Willard Gibb s to account for the work of expansion due to volume

More information

Lecture 3 Evaluation of Entropy

Lecture 3 Evaluation of Entropy Lecture 3 Evaluation of Entropy If we wish to designate S by a proper name we can say of it that it is the transformation content of the body, in the same way that we say of the quantity U that it is the

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

FIRST PUBLIC EXAMINATION SUBJECT 3: PHYSICAL CHEMISTRY

FIRST PUBLIC EXAMINATION SUBJECT 3: PHYSICAL CHEMISTRY CCHE 4273 FIRST PUBLIC EXAMINATION Trinity Term 2005 Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY Wednesday June 8 th 2005, 9:30am Time allowed: 2 ½ hours Candidates should answer

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

Stuff. ---Tonight: Lecture 3 July Assignment 1 has been posted. ---Presentation Assignment on Friday.

Stuff. ---Tonight: Lecture 3 July Assignment 1 has been posted. ---Presentation Assignment on Friday. Stuff ---Tonight: Lecture 3 July 0 ---Assignment 1 has been posted. Work from gravitational forces: h F gravity dx = h 0 0 mgh mg dx Where m (kg) and g is gravitational constant 9.8 m/s ---Presentation

More information

The Third Law. NC State University

The Third Law. NC State University Chemistry 433 Lecture 12 The Third Law NC State University The Third Law of Thermodynamics The third law of thermodynamics states that every substance has a positive entropy, but at zero Kelvin the entropy

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Transition Theory Abbreviated Derivation [ A - B - C] # E o. Reaction Coordinate. [ ] # æ Æ

Transition Theory Abbreviated Derivation [ A - B - C] # E o. Reaction Coordinate. [ ] # æ Æ Transition Theory Abbreviated Derivation A + BC æ Æ AB + C [ A - B - C] # E A BC D E o AB, C Reaction Coordinate A + BC æ æ Æ æ A - B - C [ ] # æ Æ æ A - B + C The rate of reaction is the frequency of

More information

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1 Version 001 HW 15 Thermodynamics C&J sizemore 21301jtsizemore 1 This print-out should have 38 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

Lecture 6 Free Energy

Lecture 6 Free Energy Lecture 6 Free Energy James Chou BCMP21 Spring 28 A quick review of the last lecture I. Principle of Maximum Entropy Equilibrium = A system reaching a state of maximum entropy. Equilibrium = All microstates

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM B March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed lease show

More information

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the Module 7 : Theories of Reaction Rates Lecture 33 : Transition State Theory Objectives After studying this Lecture you will be able to do the following. Distinguish between collision theory and transition

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name:

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name: Page 1 of 7 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may answer all 5 questions if

More information

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics Dr. D. E. Manolopoulos First Year (0 Lectures) Michaelmas Term Lecture Synopsis. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these CHM 3410 Problem Set 5 Due date: Wednesday, October 7 th Do all of the following problems. Show your work. "Entropy never sleeps." - Anonymous 1) Starting with the relationship dg = V dp - S dt (1.1) derive

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

N h (6.02x10 )(6.63x10 )

N h (6.02x10 )(6.63x10 ) CHEM 5200 - Final Exam - December 13, 2018 INFORMATION PAGES (Use for reference and for scratch paper) Constants and Conversion Factors: R = 8.31 J/mol-K = 8.31 kpa-l/mol-k = 0.00831 kj/mol-k 1 L-atm =

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit. To Hand in

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit. To Hand in Problem Set #10 Assigned November 8, 013 Due Friday, November 15, 013 Please show all work or credit To Hand in 1. 1 . A least squares it o ln P versus 1/T gives the result 3. Hvaporization = 5.8 kj mol

More information

Preliminary Examination - Day 2 August 15, 2014

Preliminary Examination - Day 2 August 15, 2014 UNL - Department of Physics and Astronomy Preliminary Examination - Day 2 August 15, 2014 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Mechanics (Topic 2). Each

More information

Graduate Written Examination Fall 2014 Part I

Graduate Written Examination Fall 2014 Part I Graduate Written Examination Fall 2014 Part I University of Minnesota School of Physics and Astronomy Aug. 19, 2014 Examination Instructions Part 1 of this exam consists of 10 problems of equal weight.

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S UNIERSIY OF ORONO Please mark X to indicate your tutorial section. Failure to do so will result in a deduction of 3 marks. U 0 U 0 FACULY OF APPLIED SCIENCE AND ENGINEERING ERM ES 7 MARCH 05 U 03 U 04

More information

Learning Objectives and Fundamental Questions

Learning Objectives and Fundamental Questions Learning Objectives and Fundamental Questions What is thermodynamics and how are its concepts used in geochemistry? How can heat and mass flux be predicted or interpreted using thermodynamic models? How

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

CYL Classical Thermodynamics Sample Problems

CYL Classical Thermodynamics Sample Problems CYL110 2012-2013 Classical Thermodynamics Sample Problems 1. Dieterici s equation of state for a gas is P (V b) exp(a/rv T ) = RT, where a, b, and R are constants. Determine ( V/ T ), ( T/ P ), and ( P/

More information

Solutions to Problem Set 9

Solutions to Problem Set 9 Solutions to Problem Set 9 1. When possible, we want to write an equation with the quantity on the ordinate in terms of the quantity on the abscissa for each pf the labeled curves. A B C p CHCl3 = K H

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

UC Berkeley. Chem 130A. Spring nd Exam. March 10, 2004 Instructor: John Kuriyan

UC Berkeley. Chem 130A. Spring nd Exam. March 10, 2004 Instructor: John Kuriyan UC Berkeley. Chem 130A. Spring 2004 2nd Exam. March 10, 2004 Instructor: John Kuriyan (kuriyan@uclink.berkeley.edu) Enter your name & student ID number above the line, in ink. Sign your name above the

More information

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Thermodynamics of solids 5. Unary systems Kwangheon ark Kyung Hee University Department of Nuclear Engineering 5.1. Unary heterogeneous system definition Unary system: one component system. Unary heterogeneous

More information

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2, Chemistry 360 Dr. Jean M. Standard Fall 016 Name KEY 1.) (14 points) Determine # H & % ( $ ' Exam Solutions for a gas obeying the equation of state Z = V m R = 1 + B + C, where B and C are constants. Since

More information