You MUST sign the honor pledge:

Size: px
Start display at page:

Download "You MUST sign the honor pledge:"

Transcription

1 Chemistry 3411 MWF 9:00AM Spring 2009 Physical Chemistry I Final Exam, Version A (Dated: April 30, 2009 Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only if the correct answer is in marked boxes, when provided. (Do not write in the small boxes in the right margin; they are for grading purposes only. You MUST sign the honor pledge: Part Problem Max.Pts Actual Score I / II / III / IV / TOTAL: 120 On my honor, I pledge that I will not give or receive aid in examinations; I will not attempt to gain prior access to examinations; I will not represent the work of another as my own; and I will avoid any activity which will encourage others to violate their own pledge of honor. Your Signature: You may find the following information useful: Constant Symbol Value Units Speed of light in vacuum c E+10 cm sec 1 Electronic charge e E 10 esu e E 19 C (Coulombs Avogadro s number N A E+23 molecules mole 1 Gas Constant R J K 1 mole 1 R E 2 L bar K 1 mole 1 R E 2 L atm K 1 mole 1 R E+1 L Torr K 1 mole 1 Boltzmann constant k B E 23 J, K 1 Electron mass m e E 4 amu Proton mass m p amu Neutron mass m n amu Planck Constant h E 27 erg sec h E 34 J sec h E 27 erg sec Bohr radius a E-11 m Atomic mass unit amu E 24 g Electron volt ev E 19 J ev E 12 erg Debye D E 30 C m Calorie cal J Rydberg Constant R E+5 cm 1 A sheet of possibly useful formulas is provided at the end. 1

2 THIS PAGE INTENTIONALLY LEFT BLANK 2

3 Part I: Thermodynamics: First Law 1. Concept Questions. Try to be concise, and correct! (5 pts a. Provide a chemical example showing that heat is not a state function. (5 pts b. What is the principle of corresponding states, and to what extent is it relevant to ideal or nonideal gases? S: S: 3 :

4 2. Heat & Work. A mixture of 2.45g of helium and 6.35g of argon initially at C is allowed to expand reversibly and adiabatically from 543 cm 3 to 5.43 dm 3. Assume that both gases and their mixture are ideal. (5 pts a. What is the initial pressure of the sample? (5 pts b. What is the final pressure of the sample? 4

5 (5 pts c. What is the final temperature of the sample? (5 pts d. What is the work for this reversible adiabatic path? 5 :

6 THIS PAGE INTENTIONALLY LEFT BLANK 6

7 Part II: Thermodynamics: Second & Third Law 3. Concept Questions. Try to be concise, and correct! (5 pts a. What is a spontaneous process? What are the thermodynamic variable(s that govern when processes are spontaneous? And how? (5 pts b. How is the Helmholtz energy related to internal energy, and what type of experiment would Helmholtz energy be useful for? S: S: 7 :

8 4. Fugacity and Coexistence Curves (5 pts a. What is the fugacity of 89.23mg of N 2 at 485.0K in a 1.000L container if the gas is treated as perfect? (5 pts b. What is the fugacity of 89.23mg of N 2 at 485.0K in a 1.000L container if the molar Gibbs energy of the actual gas were to be.834 kj/mol less than the molar Gibbs energy of the corresponding perfect gas? 8

9 For parts c and d, an unknown one-component system exhibits the following points on the phase diagram: T = 73.40K and P = 55.21kPa at the triple point, T = K and P = kPa at the critical point, a solid-liquid coexistence point at T = K and P = kPa, and a solid-gas coexistence point at T = 11.85K and P = 1.142kPa, (5 pts c. What is the formula describing the coexistence curve between solid and gas on a P-T phase diagram? (Make sure to provide values for all coefficients. 9

10 (5 pts d. What is the formula describing the coexistence curve between liquid and gas on a P-T phase diagram? (Make sure to provide values for all coefficients. 10 :

11 Part III: The Thermodynamics of Chemical Systems 5. Concept Questions. Try to be concise, and correct! (5 pts a. Suppose that the unimolecular isomerization, A B, is exothermic. What will happen to the equilibrium concentrations of the isomer if the temperature is increased? Justify. (5 pts b. Suppose that you have a mixture with roughly equal amounts of a surfactant (such as soap, water and oil. How many phases will this mixture give rise to, and what is the approximate composition of each phase? Is your answer consistent with Gibbs phase rule? Justify! S: S: 11 :

12 6. For this problem, consider the following gas-phase reaction: 2A + 2B 2C + 3D (1 (8 pts a. After mixing 1.15 mol A, 1.00 mol B, and.850 mol C, the resulting equilibrium mixture contained.175 mol D at 298 K and 1.00 bar. Calculate the mole fraction of each species at equilibrium. x A : S: x B : S: x C : S: x D : S: 12

13 (4 pts b. Suppose, instead, that the system described by the chemical equation provided above is at equilibrium at 298 K and 1.00 bar when it consists of.795 mol A,.893 mol B,.578 mol C, and.435 mol D? Use this information to calculate the equilibrium constant at 298 K and 1.00 bar? (4 pts c. What is r G for the system of part b? 13

14 (4 pts d. What is mix S for the gases with respect to the equilibrium mole fractions of part b? 14 :

15 Part IV: Kinetics & Beyond 7. Concept Questions. Try to be concise, and correct! (5 pts a. What are the key assumptions of the kinetic model? (5 pts b. How does convection play a role in describing the concentration profile of a solute in a liquid? S: S: 15 :

16 8. Kinetics You may assume that the diameter of water is m (5 pts a. What is the root mean square speed of the molecules in a water vapor at 1891K and pressure of atm? (5 pts b. What is collision frequency between molecules in a water vapor at 1891K and pressure of atm? 16

17 (5 pts c. Given that the mobility of Li + in water is m 2 s 1 V 1, what is the diffusion constant of Li + in water at room temperature? (5 pts d. Calculate the hydrodynamic radius of CH 3 OH in water given that its diffusion constant is m 2 s 1 at room temperature. (Assume that water has a viscosity of kg m 1 s 1 : 17

18 THIS PAGE INTENTIONALLY LEFT BLANK 18

19 (Possibly Useful Formulas WARNING: Use at your own risk PV = nrt PV m = RTZ x a = na n T ( ( Z = 1 + BP + CP 2 + Z = 1 + B 1 + C V m P = nrt a ( n 2 1 Z = (a/rt V nb V 1 (b/v m V m 2 1 V m + U = q + w du = dq + dw H = q P U = w ad U = q V w = P ex Vf V i dv H = U + PV du = π T dv + C V dt dh = (µc P dp + C P dt C V = ( U T V P = ( U V α 1 V C P = ( H T P w = P ex V ( V T κ T 1 V S,N P ( V P T V = ( H P S,N du = PdV + TdS dh = V dp + TdS C P C V = nr C V = 3 2 nr V T 1/c = constant c = C V,m PV γ = constant γ = 1 + R R C V,m i νr i R i j νp j P j r H = j νp j f H (P j i νr i f H (R i ds = dqrev T S = T 2 T 1 C p T dt r C P,m = j νp j C P,m (P j i νr i C P,m (R i S vap = Hvap T b 85 J mol S surr = Hsys T ( ǫ w q h = 1 Tc T h A = U TS G = U + PV TS da = dw max dg = dw add,max r S m = j νp j S m(p j i νr i S m(r i r G = j νp j f G (P j i νr i f G (R i ds dq 0 ds T U,V 0 du S,V 0 ds H,P 0 dh S,P 0 da T,V 0 dg T,P 0 ( ( G ( = H P G(P T T T P 2 f P i = V P G(P f P i = NRT ln f P i G(P = G + NRT ln ( f f = φp ln φ = P Z 1 dp P 0 P dp = trss dt trsv µ = G N = G m dµ = S m dt + V m dp p = p e ( Vm P dp dt = trshm T trsv m ln ( ( P P = vaph m ( 1 1 R T T RT ( [ P = P + fus H m fus ln ( ] T V T dw = γdσ P in = P out + 2γ r h = 2γ ρgr cos θ c = γsg γ sl γ lg w ad = γ sg + γ lg γ sl Continued on NEXT Page 19

20 V j = ( V n j P,T,n µ j = ( G n j G = P,T,n i n dµ iµ B i dµ A = n A nb dg = V dp SdT + i µ idn i P A = x A PA P B = x B K B Π = ( n B V RT µ = µ + RT ln ( P (P µ P A (l = µ A (l + RT ln A µ PA A (l = µ A (l + RT ln (x A mix G = nrt(x A ln x A + x B ln x B + βx A x B mix S = nr(x A ln x A + x B ln x B + βx A x B mix G = mix G (id + nrt(x A ln γ A + x B ln γ B µ = µ + RT ln(a a A = P A PA ( b a = γx a = γ B PA B b y A = x A x B = vaph R ( r G G ξ dln(k dt ( T T 2 P,T = rh RT 2 PB +(P A P B x A ( T T 2 T = K b b x B = fush R r G = j νp j µ(p j i νr i µ(r i ln(k 2 /K 1 = rh R ( 1 T 2 1 T 1 a B = P B K B n a l( ad = n b l( db F = C P + 2 T = K f b Q P j P a j νp j P i R a i νr i ln x B = fush R ( 1 1 T T RT ln(k = r G ( solv G = z2 i e2 N A 8πǫ 0 r i 1 1 ǫ r ( µ = µ id + RT ln γ γ ± = (γ + γ 1 2 log(γ ± = Z + Z AI 1 2 A = I = 1 2 i z2 bi i b I k ( b i k(x,m + = 1 k(x,m 2+ = 3 k(x 2,M + = 3 k(x 2,M 2+ = 4 b c 2 = 1 3 v2 ( Z = σ c N rel V r G = νfe E = E RT ln Q F = N νf Ae v 2 e Mv2 /(2RT P( v = ( 3 M 2 e Mv2 /(2RT f(v = 4π ( M 2πRT 2πRT λ c Z λ = kt 2σP Z w = ( N crel V 4 ( T z P = ( 2πRT M 1/2 m A 0 t κ = 1νk 3 rmbλ cn κ effusion = Z w A 0 D = 1 3 cλ κ E = 1λ cc 3 V,M[A] η = 1Nmλτ 3 J z = κ ( T J z z = D ( ( N J = κ T z E J z z = η ( v x z η u η e Ea/(RT G = 1/R κ = (GL/A Λ m κ/c λ ion κ/c ion Λ m = ν + λ + + ν λ Λ m = Λ m κc 1 2 κ = A + BΛ M Λ m = αλ m 1 Λ m = 1 Λ M + ΛmC k a(λ m 2 K a = α2 C 1 α F E = ZeE = Ze φ/l f F = 6πηa s = (Ze/f F E u s/e = (Ze/(6πηa λ = ZuF f F = ( µ = ( C x P,T RT J = D ( C s = Df F D = urt C x P,T x P,T RT Zf F Λ m = ( ν + Z 2 +D + + ν Z 2 D F 2 RT D = kt f F C = J t x C = D 2 C t x 2 C = D 2 C ν C kc t x 2 x C(x,t = n 0 A(πDt 1/2 e x2 /(4Dt C(r,t = n 0 e r2 /(4Dt x 2 1 8(πDt 3/2 2 = (2Dt 1 2 x = st D = λ2 2τ ν(t = [A] t ν(t = 1 [A] a t = + 1 c [C] t ν(t = k[a] n ν(t = k[a] m [B] n k 2 = σ ( 1 8k B T 2 πµ k 2 = ( RT P k K [A] = [A] 0 e akt t 1/2 = ln 2 k = c rel σ K = ( k B T hν k 2 = ( ( kt RT h NA q C qa q B p 1 1 [A] [A] 0 = akt k = Ae E A/(RT e E/(RT k = κν k 2 = σ N A c 1 2e E/(RT e S/R e H/(RT 20 k 2 = kak d k a+k d k d = 4πR D

You MUST sign the honor pledge:

You MUST sign the honor pledge: CHEM 3411 MWF 9:00AM Spring 2012 Physical Chemistry I Final Exam, Version A (Dated: May 4, 2012 Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only if the correct

More information

You MUST sign the honor pledge:

You MUST sign the honor pledge: CHEM 3411 MWF 9:00AM Fall 2010 Physical Chemistry I Exam #2, Version B (Dated: October 15, 2010) Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only if the correct

More information

Chemistry 3411 MWF 9:00AM Spring Physical Chemistry I - Exam #2, Version A (Dated: February 27, 2009)

Chemistry 3411 MWF 9:00AM Spring Physical Chemistry I - Exam #2, Version A (Dated: February 27, 2009) Chemistry 3411 MWF 9:00AM Spring 2009 Physical Chemistry I - Exam #2, Version A (Dated: February 27, 2009) 1 Name: GT-ID: NOTE: Partial Credit will be awarded! However, full credit will be awarded only

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Exam Thermodynamics 2 9 November 2017

Exam Thermodynamics 2 9 November 2017 1 Exam Thermodynamics 2 9 November 2017 Please, hand in your answers to problems 1, 2, 3 and 4 on separate sheets. Put your name and student number on each sheet. The examination time is 08:30 until 11:30.

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

Exam Thermodynamics 12 April 2018

Exam Thermodynamics 12 April 2018 1 Exam Thermodynamics 12 April 2018 Please, hand in your answers to problems 1, 2, 3 and 4 on separate sheets. Put your name and student number on each sheet. The examination time is 12:30 until 15:30.

More information

Physical Chemistry I Exam points

Physical Chemistry I Exam points Chemistry 360 Fall 2018 Dr. Jean M. tandard October 17, 2018 Name Physical Chemistry I Exam 2 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must

More information

Concentrating on the system

Concentrating on the system Concentrating on the system Entropy is the basic concept for discussing the direction of natural change, but to use it we have to analyze changes in both the system and its surroundings. We have seen that

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises 7 Simple mixtures Solutions to exercises Discussion questions E7.1(b For a component in an ideal solution, Raoult s law is: p xp. For real solutions, the activity, a, replaces the mole fraction, x, and

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

The Standard Gibbs Energy Change, G

The Standard Gibbs Energy Change, G The Standard Gibbs Energy Change, G S univ = S surr + S sys S univ = H sys + S sys T S univ = H sys TS sys G sys = H sys TS sys Spontaneous reaction: S univ >0 G sys < 0 More observations on G and Gº I.

More information

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit) Ideal Gas Law PV = nrt where R = universal gas constant R = PV/nT R = 0.0821 atm L mol 1 K 1 R = 0.0821 atm dm 3 mol 1 K 1 R = 8.314 J mol 1 K 1 (SI unit) Standard molar volume = 22.4 L mol 1 at 0 C and

More information

Phase Diagrams. NC State University

Phase Diagrams. NC State University Chemistry 433 Lecture 18 Phase Diagrams NC State University Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function of temperature

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 9 Solutions 1. McQuarrie and Simon, 9-4. Paraphrase: Given expressions

More information

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant 1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v lnt + RlnV + cons tant (1) p, V, T change Reversible isothermal process (const. T) TdS=du-!W"!S = # "Q r = Q r T T Q r = $W = # pdv =

More information

CHAPTER 4 Physical Transformations of Pure Substances.

CHAPTER 4 Physical Transformations of Pure Substances. I. Generalities. CHAPTER 4 Physical Transformations of Pure Substances. A. Definitions: 1. A phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 2017 Spring Semester MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 Byungha Shin ( 신병하 ) Dept. of MSE, KAIST Largely based on lecture notes of Prof. Hyuck-Mo Lee and Prof. WooChul

More information

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2.

Equations: q trans = 2 mkt h 2. , Q = q N, Q = qn N! , < P > = kt P = , C v = < E > V 2. e 1 e h /kt vib = h k = h k, rot = h2. Constants: R = 8.314 J mol -1 K -1 = 0.08206 L atm mol -1 K -1 k B = 0.697 cm -1 /K = 1.38 x 10-23 J/K 1 a.m.u. = 1.672 x 10-27 kg 1 atm = 1.0133 x 10 5 Nm -2 = 760 Torr h = 6.626 x 10-34 Js For H 2 O

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

The underlying prerequisite to the application of thermodynamic principles to natural systems is that the system under consideration should be at equilibrium. http://eps.mcgill.ca/~courses/c220/ Reversible

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Lecture 3 Clausius Inequality

Lecture 3 Clausius Inequality Lecture 3 Clausius Inequality Rudolf Julius Emanuel Clausius 2 January 1822 24 August 1888 Defined Entropy Greek, en+tropein content transformative or transformation content The energy of the universe

More information

Solutions to Problem Set 9

Solutions to Problem Set 9 Solutions to Problem Set 9 1. When possible, we want to write an equation with the quantity on the ordinate in terms of the quantity on the abscissa for each pf the labeled curves. A B C p CHCl3 = K H

More information

CHEM 108 (Spring-2008) Exam. 3 (105 pts)

CHEM 108 (Spring-2008) Exam. 3 (105 pts) CHEM 08 (Spring-008) Exam. (05 pts) Name: --------------------------------------------------------------------------, CLID # -------------------------------- LAST NAME, First (Circle the alphabet segment

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be

Name (Print) Section # or TA. 1. You may use a crib sheet which you prepared in your own handwriting. This may be Name (Print) Section # or TA 1. You may use a crib sheet which you prepared in your own handwriting. This may be one 8-1/2 by 11 inch sheet of paper with handwriting only on one side. 2. You may use a

More information

Homework: 13, 14, 18, 20, 24 (p )

Homework: 13, 14, 18, 20, 24 (p ) Homework: 13, 14, 18, 0, 4 (p. 531-53) 13. A sample of an ideal gas is taken through the cyclic process abca shown in the figure below; at point a, T=00 K. (a) How many moles of gas are in the sample?

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

Chem 6 Sample exam 1 (150 points total) NAME:

Chem 6 Sample exam 1 (150 points total) NAME: Chem 6 Sample exam 1 (150 points total) @ This is a closed book exam to which the Honor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Chem340 Physical Chemistry for Biochemists Exam Mar 16, 011 Your Name _ I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade

More information

Chapter 14 Kinetic Theory

Chapter 14 Kinetic Theory Chapter 14 Kinetic Theory Kinetic Theory of Gases A remarkable triumph of molecular theory was showing that the macroscopic properties of an ideal gas are related to the molecular properties. This is the

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality Entropy distinguishes between irreversible and reversible processes. irrev S > 0 rev In a spontaneous process, there should be a net increase in the entropy of the system

More information

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Physics 404: Final Exam Name (print): I pledge on my honor that I have not given or received any unauthorized assistance on this examination. Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination." May 20, 2008 Sign Honor Pledge: Don't get bogged down on

More information

Enthalpy and Adiabatic Changes

Enthalpy and Adiabatic Changes Enthalpy and Adiabatic Changes Chapter 2 of Atkins: The First Law: Concepts Sections 2.5-2.6 of Atkins (7th & 8th editions) Enthalpy Definition of Enthalpy Measurement of Enthalpy Variation of Enthalpy

More information

Chapter 3 - First Law of Thermodynamics

Chapter 3 - First Law of Thermodynamics Chapter 3 - dynamics The ideal gas law is a combination of three intuitive relationships between pressure, volume, temp and moles. David J. Starling Penn State Hazleton Fall 2013 When a gas expands, it

More information

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1

MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, :30PM 8:30PM VERSION NUMBER: 1 MCGILL UNIVERSITY FACULTY OF SCIENCE MIDTERM EXAMINATION CHEM 120 MONDAY MARCH 16, 2009 6:30PM 8:30PM VERSION NUMBER: 1 Instructions: BEFORE YOU BEGIN: Enter your student number and name on the computer

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

Practice Questions Placement Exam for Entry into Chemistry 120

Practice Questions Placement Exam for Entry into Chemistry 120 Practice Questions Placement Exam for Entry into Chemistry 120 Potentially Useful Information Avogadro's number = 6.0221420 10 23 h = 6.6260688 10 34 J s c = 2.9979246 10 8 m/s 1amu = 1.6605387 10 27 kg

More information

6 Physical transformations of pure substances

6 Physical transformations of pure substances 6 Physical transformations of pure substances E6.b E6.2b E6.3b E6.4b Solutions to exercises Discussion questions Refer to Fig. 6.8. The white lines represent the regions of superheating and supercooling.

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

Lecture 6 Molecular motion and Transport p roperties properties

Lecture 6 Molecular motion and Transport p roperties properties Lecture 6 Molecular motion and Transport properties Molecular motion The Aim: Describe the migration of properties through the matter using simple random motion picture Within this lecture: Transport properties

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these

dg = V dp - S dt (1.1) 2) There are two T ds equations that are useful in the analysis of thermodynamic systems. The first of these CHM 3410 Problem Set 5 Due date: Wednesday, October 7 th Do all of the following problems. Show your work. "Entropy never sleeps." - Anonymous 1) Starting with the relationship dg = V dp - S dt (1.1) derive

More information

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2

UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 2006 CHEMISTRY CHEM230W: PHYSICAL CHEMISTRY 2 UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS DEGREE/DIPLOMA EXAMINATIONS: NOVEMBER 006 CHEMISTRY CHEM30W: PHYSICAL CHEMISTRY TIME: 180 MINUTES MARKS: 100 EXAMINER: PROF S.B. JONNALAGADDA ANSWER FIVE QUESTIONS.

More information

Chemistry 112, Fall 2006, Section 1 (Garman and Heuck) Final Exam A (100 points) 19 Dec 2006

Chemistry 112, Fall 2006, Section 1 (Garman and Heuck) Final Exam A (100 points) 19 Dec 2006 Chemistry 112, Fall 2006, Section 1 (Garman and Heuck) (100 points) 19 Dec 2006 Name: YOU MUST: Put your name and student ID on the bubble sheet correctly. Put the exam version on the bubble sheet on the

More information

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1. DATA THAT YOU MAY USE Units Conventional S.I. Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.013 10 5 Pa torr = 133.3 Pa Temperature C 0 C = 73.15 K PV L-atm = 1.013

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality We know: Heat flows from higher temperature to lower temperature. T A V A U A + U B = constant V A, V B constant S = S A + S B T B V B Diathermic The wall insulating, impermeable

More information

CHAPTER 6 CHEMICAL EQUILIBRIUM

CHAPTER 6 CHEMICAL EQUILIBRIUM CHAPTER 6 CHEMICAL EQUILIBRIUM Spontaneous process involving a reactive mixture of gases Two new state functions A: criterion for determining if a reaction mixture will evolve towards the reactants or

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007)

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007) The mathematical description of the motion of Atoms, Molecules Other Particles Particle Dynamics Mixture of gases are made of different entities: atoms, molecules, ions, electrons. In principle, the knowledge

More information

Final Exam, Chemistry 481, 77 December 2016

Final Exam, Chemistry 481, 77 December 2016 1 Final Exam, Chemistry 481, 77 December 216 Show all work for full credit Useful constants: h = 6.626 1 34 J s; c (speed of light) = 2.998 1 8 m s 1 k B = 1.387 1 23 J K 1 ; R (molar gas constant) = 8.314

More information

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points Chemistry 360 pring 2017 Dr. Jean M. tandard April 19, 2017 Name Exam 3 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must turn in your equation

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

Name: First three letters of last name

Name: First three letters of last name Name: First three letters of last name Chemistry 342 Third Exam April 22, 2005 2:00 PM in C6 Lecture Center Write all work you want graded in the spaces provided. Both the logical solution to the problem

More information

AP Chemistry. Free-Response Questions

AP Chemistry. Free-Response Questions 2018 AP Chemistry Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name:

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name: Page 1 of 7 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may answer all 5 questions if

More information

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas:

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: CHATER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: Fig. 3. (a) Isothermal expansion from ( 1, 1,T h ) to (,,T h ), (b) Adiabatic

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Lecture Synopsis 1. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Phase Equilibrium: Preliminaries

Phase Equilibrium: Preliminaries Phase Equilibrium: Preliminaries Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between two phases.

More information

Practice Questions Placement Exam for Exemption from Chemistry 120

Practice Questions Placement Exam for Exemption from Chemistry 120 Practice Questions Placement Exam for Exemption from Chemistry 120 Potentially Useful Information Avogadro's number = 6.0221420 10 23 h = 6.6260688 10 34 J s c = 2.9979246 10 8 m/s 1amu = 1.6605387 10

More information

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc.

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

The Chemical Potential

The Chemical Potential CHEM 331 Physical Chemistry Fall 2017 The Chemical Potential Here we complete our pivot towards chemical thermodynamics with the introduction of the Chemical Potential ( ). This concept was first introduced

More information

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.)

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.) (Syllabus) Temperature Thermal Expansion Temperature and Heat Heat and Work The first Law Heat Transfer Temperature Thermodynamics:

More information

Exam 4, Enthalpy and Gases

Exam 4, Enthalpy and Gases CHEM 1100 Dr. Stone November 8, 2017 Name_ G Exam 4, Enthalpy and Gases Equations and constants you may need: ΔE system = q + w PV = nrt R = 0.0821 (L*atm)/(mole*K) w = -PΔV K.E. = 1 2 m *µ 2 rms µ rms=

More information

Chemistry 1A, Spring 2011 Midterm 1 February 7, 2011 (90 min, closed book)

Chemistry 1A, Spring 2011 Midterm 1 February 7, 2011 (90 min, closed book) Name: SID: TA Name: Chemistry 1A, Spring 2011 Midterm 1 February 7, 2011 (90 min, closed book) There are 40 multiple choice questions worth 3 points each. There is only one correct answer for each question

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Similarities and differences:

Similarities and differences: How does the system reach equilibrium? I./9 Chemical equilibrium I./ Equilibrium electrochemistry III./ Molecules in motion physical processes, non-reactive systems III./5-7 Reaction rate, mechanism, molecular

More information

PLEASE PRINT YOUR NAME IN BLOCK LETTERS. Practice Exam 3. Last 4 Digits of USC ID:

PLEASE PRINT YOUR NAME IN BLOCK LETTERS. Practice Exam 3. Last 4 Digits of USC ID: Chemistry 105 B Practice Exam 3 Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 1 18 2 14 3

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins

Work and heat. Expansion Work. Heat Transactions. Chapter 2 of Atkins: The First Law: Concepts. Sections of Atkins Work and heat Chapter 2 of Atkins: The First Law: Concepts Sections 2.3-2.4 of Atkins Expansion Work General Expression for Work Free Expansion Expansion Against Constant Pressure Reversible Expansion

More information

Chemical Thermodynamics : Georg Duesberg

Chemical Thermodynamics : Georg Duesberg The Properties of Gases Kinetic gas theory Maxwell Boltzman distribution, Collisions Real (non-ideal) gases fugacity, Joule Thomson effect Mixtures of gases Entropy, Chemical Potential Liquid Solutions

More information

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY . Pressure CHAPER GASES AND KINEIC-MOLECULAR HEORY. Boyle s Law: he -P Relationship 3. Charles Law: he - Relationship 4. Standard &P 5. he Combined Gas Law Equation 6. Avogadro s Law and the Standard Molar

More information

CHEM 4641 Fall questions worth a total of 32 points. Show your work, except on multiple-choice questions. 1 V α=

CHEM 4641 Fall questions worth a total of 32 points. Show your work, except on multiple-choice questions. 1 V α= Physical Chemistry I Final Exam Name: KEY CHEM 4641 Fall 017 15 questions worth a total of 3 points. Show your work, except on multiple-choice questions. 1 V 1 V α= κt = V T P V P T Gas constant R = 8.314

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Lecture 25 Thermodynamics, Heat and Temp (cont.) Lecture 25 Thermodynamics, Heat and Temp (cont.) Heat and temperature Gases & Kinetic theory http://candidchatter.files.wordpress.com/2009/02/hell.jpg Specific Heat Specific Heat: heat capacity per unit

More information

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K.

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K. 5. PHASES AND SOLUTIONS n Thermodynamics of Vapor Pressure 5.. At equilibrium, G(graphite) G(diamond); i.e., G 2 0. We are given G 2900 J mol. ( G/ P) T V V 2.0 g mol.95 0 6 m 3 mol Holding T constant

More information

rate of reaction forward conc. reverse time P time Chemical Equilibrium Introduction Dynamic Equilibrium Dynamic Equilibrium + RT ln f p

rate of reaction forward conc. reverse time P time Chemical Equilibrium Introduction Dynamic Equilibrium Dynamic Equilibrium + RT ln f p Chemical Equilibrium Chapter 9 of Atkins: Sections 9.1-9.2 Spontaneous Chemical Reactions The Gibbs Energy Minimum The reaction Gibbs energy Exergonic and endergonic reactions The Description of Equilibrium

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

PHYSICS 214A Midterm Exam February 10, 2009

PHYSICS 214A Midterm Exam February 10, 2009 Clearly Print LAS NAME: FIRS NAME: SIGNAURE: I.D. # PHYSICS 2A Midterm Exam February 0, 2009. Do not open the exam until instructed to do so. 2. Write your answers in the spaces provided for each part

More information

Pressure Volume Temperature Relationship of Pure Fluids

Pressure Volume Temperature Relationship of Pure Fluids Pressure Volume Temperature Relationship of Pure Fluids Volumetric data of substances are needed to calculate the thermodynamic properties such as internal energy and work, from which the heat requirements

More information