Bayesian Networks in Educational Testing

Size: px
Start display at page:

Download "Bayesian Networks in Educational Testing"

Transcription

1 Bayesian Networks in Educational Testing Jiří Vomlel Institute of Information Theory and Automation Academy of Science of the Czech Republic Prague This presentation is available at:

2 Contents: What is a Bayesian network? Student model and evidence models. A case study: Students perfoming computations with fractions. Variables in the student model. Construction of the student model. Evidence models. Construction of an adaptive test. Construction of a fixed test. Results of experiments.

3 Bayesian network X 1 P (X 1 ) X 2 P (X 2 ) P ( X 1 ) X 4 P (X 4 X 2 ) X 5 P (X 5 X 1 ) X 6 P (X 6, X 4 ) X 7 X 8 X 9 P (X 7 X 5 ) P (X 8 X 7, X 6 ) P (X 9 X 6 ) P (X 1,..., X 9 ) = = P (X 9 X 8,..., X 1 ) P (X 8 X 7,..., X 1 )... P (X 2 X 1 ) P (X 1 ) = P (X 9 X 6 ) P (X 8 X 7, X 6 ) P (X 7 X 5 ) P (X 6 X 4, ) P (X 5 X 1 ) P (X 4 X 2 ) P ( X 1 ) P (X 2 ) P (X 1 )

4 Student and evidence models (R. Almond and R. Mislevy, 1999) S 1 S 2 S 3 S 4 S 5 S 1 S 3 S 3 S 4 S 2 S 5 X 1 X 2

5 Sudents solving problems with fractions A group of university students from Aalborg University prepared paper tests that were given to students at Brønderslev High School. Four elementary skills, four operational skills, and abilities to apply operational skills to complex tasks were tested. 149 students solved the test. The tests were analyzed in detail so that it was possible for most of students to decide whether they have or have not the tested skills. Several different models were learned using the PC algorithm Models were compared on how well they predict skills using the leave-one-out method.

6 Examples of tasks - operations with fractions T 1 : ( 3 ) = 15 1 = 5 1 = 4 = T 2 : = = 3 12 = T 3 : 1 1 = 1 3 = ) T 4 : ( ) ( = = 2 12 = 1 6.

7 Elementary and operational skills CP AD SB MT CD CL CIM Comparison (common numerator or denominator) Addition (comm. denom.) Subtract. (comm. denom.) Multiplication Common denominator Cancelling out Conv. to mixed numbers 1 > 1, 2 > = = = 2 1 = = ` 1 2, 2 3 = ` 3 6, = 2 2 = = = CMI Conv. to improp. fractions = = 7 2

8 Misconceptions Label Description Occurrence MAD MSB MMT1 MMT2 MMT3 MMT4 MC a b + c d = a+c b+d 14.8% a b c d = a c b d 9.4% a b c b = a c a b c b = a+c a b c d = a d b 14.1% b b 8.1% b c 15.4% a b c d = a c b+d 8.1% a b c = a b c 4.0%

9 Student model HV1 ACL ACMI ACIM ACD CP MT CL CMI CIM CD AD SB MMT1 MMT4 MMT3 MMT2 MC MAD MSB

10 Evidence model for task T «1 8 = = = 4 8 = 1 2 T 1 MT & CL & ACL & SB & MMT 3 & MMT 4 & MSB CL ACL MT SB MMT4 MSB T1 MMT3 P (X1 T1) X1

11 The overal model

12 See the model in Hugin:

13 Tested models (a) (b) (c) (d) (e) (f) (g) (h) two hidden variables with several restrictions on presence or absence of edges, two hidden variables and only few restrictions, one hidden variable and few restrictions, no hidden variable and few restrictions, no hidden variable and only obvious logical constraints as restrictions, no hidden variable and independent skills, Naïve Bayes model with one hidden variable (with two states) being parent of all skills, as above, but the hidden variable has three states,

14 Comparison of different models using t values vs. (b) vs. (c) vs. (d) vs. (e) vs. (f) vs. (g) vs. (h) total (a) (b) (c) (d) (e) (f) (g) (h) +3

15 Fixed Test vs. Adaptive Test Q 1 Q 2 Q 5 Q 3 wrong correct Q 4 wrong Q 4 correct wrong Q 8 correct Q 5 Q 6 wrong Q 2 correct wrong Q 7 correct wrong Q 6 correct wrong Q 9 correct Q 7 Q 1 Q 3 Q 6 Q 8 Q 4 Q 7 Q 10 Q 7 Q 8 Q 9 Q 10

16 Entropy as an information criteria 0.7 -x*log(x)-(1-x)*log(1-x) Entropy of probability distribution P (S) on skills S is defined as H (P (S)) = s P (S = s) log P (S = s) The lower the entropy the more we know about a student.

17 X 1 X 2 X 2 X 2 X 1 X 1 X 1 X 2 X 1 X 2 Entropy in node n H(e n ) = H(P (S e n )) Expected entropy at the end of test t E H (t) = l L(t) P (e l ) H(e l ) T... the set of all possible tests A test t is optimal iff (e.g. of a given length) t = arg min t T E H(t).

18 A myopically optimal test t is a test where each question X of t minimizes the expected value of entropy after the question is answered: X = arg min X X E H(t X ), i.e. it works as if the test finished after the selected question X.

19 X 2 X 1 X 2 P (X 2 = 0) X 1 X 2 X 1 P (X 2 = 1) X 1 X 2 X 1 X 2 e list = {{X 2 = 0}, {X 2 = 1}} counts[3] = P (X 2 = 0) = 0.7 counts[1] = P (X 2 = 1) = 0.3 X 2... Myopic construction of a fixed test e list := [ ]; test := [ ]; for i := 1 to X do counts[i] := 0; for position := 1 to test lenght do new e list := [ ]; for all e e list do i := most informative X(e); counts[i] := counts[i] + P (e); for all x i X i do append(new e list, {e {X i = x i }}); e list := new e list; i := arg max i counts[i]; append(test, X i ); counts[i ] := 0; return(test);

20 Entropy of the probability distributions on the skills adaptive average descending ascending 10 Entropy on skills Number of answered questions

21 Skill Prediction Quality adaptive average descending ascending 88 Quality of skill predictions Number of answered questions

22 Conclusions Empirical evidence shows that educational testing can benefit from application of Bayesian networks. Adaptive tests may substantially reduce the number of questions that are necessary to be asked. Method for the design of a fixed test provided good results on tested data. It may be regarded as a good cheap alternative to computerized adaptive tests when they are not suitable. One theoretical problem related to application of Bayesian networks to educational testing is efficient inference exploiting deterministic relations in the model. This problem is a topic of our current research.

Bayesian Networks in Educational Testing

Bayesian Networks in Educational Testing Bayesian Networks in Educational Testing Jiří Vomlel Institute of Information Theory and Automation Academy of Science of the Czech Republic This presentation is available at: http://www.utia.cas.cz/vomlel/slides/pgm02slides.pdf

More information

Bayesian Networks in Educational Testing

Bayesian Networks in Educational Testing Bayesian Networks in Educational Testing Jiří Vomlel Laboratory for Intelligent Systems Prague University of Economics This presentation is available at: http://www.utia.cas.cz/vomlel/slides/lisp2002.pdf

More information

Applications of Bayesian networks

Applications of Bayesian networks Applications of Bayesian networks Jiří Vomlel Laboratory for Intelligent Systems University of Economics, Prague Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

More information

Bayesian networks in Mastermind

Bayesian networks in Mastermind Bayesian networks in Mastermind Jiří Vomlel http://www.utia.cas.cz/vomlel/ Laboratory for Intelligent Systems Inst. of Inf. Theory and Automation University of Economics Academy of Sciences Ekonomická

More information

Tensor rank-one decomposition of probability tables

Tensor rank-one decomposition of probability tables Tensor rank-one decomposition of probability tables Petr Savicky Inst. of Comp. Science Academy of Sciences of the Czech Rep. Pod vodárenskou věží 2 82 7 Prague, Czech Rep. http://www.cs.cas.cz/~savicky/

More information

Applying Bayesian networks in the game of Minesweeper

Applying Bayesian networks in the game of Minesweeper Applying Bayesian networks in the game of Minesweeper Marta Vomlelová Faculty of Mathematics and Physics Charles University in Prague http://kti.mff.cuni.cz/~marta/ Jiří Vomlel Institute of Information

More information

Noisy-or classifier. Laboratory for Intelligent Systems University of Economics, Prague, Czech Republic

Noisy-or classifier. Laboratory for Intelligent Systems University of Economics, Prague, Czech Republic Noisy-or classifier Jiří Vomlel Laboratory for Intelligent Systems University of Economics, Prague, Czech Republic Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Kybernetika. Jiří Vomlel Building adaptive tests using Bayesian networks. Terms of use:

Kybernetika. Jiří Vomlel Building adaptive tests using Bayesian networks. Terms of use: Kybernetika Jiří Vomlel Building adaptive tests using Bayesian networks Kybernetika, Vol. 40 (2004), No. 3, [333]--348 Persistent URL: http://dml.cz/dmlcz/135599 Terms of use: Institute of Information

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Conditional Independence

Conditional Independence Conditional Independence Sargur Srihari srihari@cedar.buffalo.edu 1 Conditional Independence Topics 1. What is Conditional Independence? Factorization of probability distribution into marginals 2. Why

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Isomorphism Testing Standard Presentations Example. Isomorphism testing. Go to Classifications. Go to Automorphisms

Isomorphism Testing Standard Presentations Example. Isomorphism testing. Go to Classifications. Go to Automorphisms Isomorphism Testing Standard Presentations Example Isomorphism testing Go to Classifications Go to Automorphisms Isomorphism Testing Standard Presentations Example Conclusion Lecture 3 Things we have discussed

More information

Bayesian Learning. Bayesian Learning Criteria

Bayesian Learning. Bayesian Learning Criteria Bayesian Learning In Bayesian learning, we are interested in the probability of a hypothesis h given the dataset D. By Bayes theorem: P (h D) = P (D h)p (h) P (D) Other useful formulas to remember are:

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Factoring Trinomials of the Form ax 2 + bx + c, a 1

Factoring Trinomials of the Form ax 2 + bx + c, a 1 Factoring Trinomials of the Form ax 2 + bx + c, a 1 When trinomials factor, the resulting terms are binomials. To help establish a procedure for solving these types of equations look at the following patterns.

More information

Intro to AI: Lecture 8. Volker Sorge. Introduction. A Bayesian Network. Inference in. Bayesian Networks. Bayesian Networks.

Intro to AI: Lecture 8. Volker Sorge. Introduction. A Bayesian Network. Inference in. Bayesian Networks. Bayesian Networks. Specifying Probability Distributions Specifying a probability for every atomic event is impractical We have already seen it can be easier to specify probability distributions by using (conditional) independence

More information

Quadratic and Other Inequalities in One Variable

Quadratic and Other Inequalities in One Variable Quadratic and Other Inequalities in One Variable If a quadratic equation is not in the standard form equaling zero, but rather uses an inequality sign ( , ), the equation is said to be a quadratic

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Midterm, Fall 2003

Midterm, Fall 2003 5-78 Midterm, Fall 2003 YOUR ANDREW USERID IN CAPITAL LETTERS: YOUR NAME: There are 9 questions. The ninth may be more time-consuming and is worth only three points, so do not attempt 9 unless you are

More information

Bayesian Networks in Educational Assessment Tutorial

Bayesian Networks in Educational Assessment Tutorial Bayesian Networks in Educational Assessment Tutorial Session V: Refining Bayes Nets with Data Russell Almond, Bob Mislevy, David Williamson and Duanli Yan Unpublished work 2002-2014 ETS 1 Agenda SESSION

More information

A. Incorrect! Perform inverse operations to find the solution. B. Correct! Add 1 to both sides of the equation then divide by 2 to get x = 5.

A. Incorrect! Perform inverse operations to find the solution. B. Correct! Add 1 to both sides of the equation then divide by 2 to get x = 5. Test-Prep Math - Problem Drill 07: The Multi-Step Equations Question No. 1 of 10 1. Solve: 2x 1 = 9 Question #01 (A) 4 (B) 5 (C) 1/5 (D) -5 (E) 0 B. Correct! Add 1 to both sides of the equation then divide

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Review: Bayesian learning and inference

Review: Bayesian learning and inference Review: Bayesian learning and inference Suppose the agent has to make decisions about the value of an unobserved query variable X based on the values of an observed evidence variable E Inference problem:

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 16 Undirected Graphs Undirected Separation Inferring Marginals & Conditionals Moralization Junction Trees Triangulation Undirected Graphs Separation

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Which coin will I use? Which coin will I use? Logistics. Statistical Learning. Topics. 573 Topics. Coin Flip. Coin Flip

Which coin will I use? Which coin will I use? Logistics. Statistical Learning. Topics. 573 Topics. Coin Flip. Coin Flip Logistics Statistical Learning CSE 57 Team Meetings Midterm Open book, notes Studying See AIMA exercises Daniel S. Weld Daniel S. Weld Supervised Learning 57 Topics Logic-Based Reinforcement Learning Planning

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

CS 188: Artificial Intelligence Spring Today

CS 188: Artificial Intelligence Spring Today CS 188: Artificial Intelligence Spring 2006 Lecture 9: Naïve Bayes 2/14/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Bayes rule Today Expectations and utilities Naïve

More information

Probabilistic Classification

Probabilistic Classification Bayesian Networks Probabilistic Classification Goal: Gather Labeled Training Data Build/Learn a Probability Model Use the model to infer class labels for unlabeled data points Example: Spam Filtering...

More information

Machine Learning 3. week

Machine Learning 3. week Machine Learning 3. week Entropy Decision Trees ID3 C4.5 Classification and Regression Trees (CART) 1 What is Decision Tree As a short description, decision tree is a data classification procedure which

More information

Mathematics Success Grade 6

Mathematics Success Grade 6 T632 Mathematics Success Grade 6 [OBJECTIVE] The students will draw polygons in the coordinate plane given the coordinates for the vertices and use the coordinates to find the length of the sides in mathematical

More information

Arithmetic circuits of the noisy-or models

Arithmetic circuits of the noisy-or models Arithmetic circuits of the noisy-or models Jiří Vomlel Institute of Information Theory and Automation of the ASCR Academy of Sciences of the Czech Republic Pod vodárenskou věží 4, 182 08 Praha 8. Czech

More information

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan, Steinbach, Kumar Adapted by Qiang Yang (2010) Tan,Steinbach,

More information

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition.

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition. CH 0 MORE FRACTIONS Introduction I n this chapter we tie up some loose ends. First, we split a single fraction into two fractions, followed by performing our standard math operations on positive and negative

More information

Lesson 3: Advanced Factoring Strategies for Quadratic Expressions

Lesson 3: Advanced Factoring Strategies for Quadratic Expressions Advanced Factoring Strategies for Quadratic Expressions Student Outcomes Students develop strategies for factoring quadratic expressions that are not easily factorable, making use of the structure of the

More information

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 4 part 2 Bayesian inductive reasoning Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied

More information

A group of figures, representing a number, is called a numeral. Numbers are divided into the following types.

A group of figures, representing a number, is called a numeral. Numbers are divided into the following types. 1. Number System Quantitative Aptitude deals mainly with the different topics in Arithmetic, which is the science which deals with the relations of numbers to one another. It includes all the methods that

More information

Challenges (& Some Solutions) and Making Connections

Challenges (& Some Solutions) and Making Connections Challenges (& Some Solutions) and Making Connections Real-life Search All search algorithm theorems have form: If the world behaves like, then (probability 1) the algorithm will recover the true structure

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

More information

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition.

Before this course is over we will see the need to split up a fraction in a couple of ways, one using multiplication and the other using addition. CH MORE FRACTIONS Introduction I n this chapter we tie up some loose ends. First, we split a single fraction into two fractions, followed by performing our standard math operations on positive and negative

More information

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution NETWORK ANALYSIS Lourens Waldorp PROBABILITY AND GRAPHS The objective is to obtain a correspondence between the intuitive pictures (graphs) of variables of interest and the probability distributions of

More information

Today. Statistical Learning. Coin Flip. Coin Flip. Experiment 1: Heads. Experiment 1: Heads. Which coin will I use? Which coin will I use?

Today. Statistical Learning. Coin Flip. Coin Flip. Experiment 1: Heads. Experiment 1: Heads. Which coin will I use? Which coin will I use? Today Statistical Learning Parameter Estimation: Maximum Likelihood (ML) Maximum A Posteriori (MAP) Bayesian Continuous case Learning Parameters for a Bayesian Network Naive Bayes Maximum Likelihood estimates

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Choosing Hypotheses Generally want the most probable hypothesis given the training data Maximum a posteriori

More information

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment Introduction to Probabilistic Reasoning Brian C. Williams 16.410/16.413 November 17 th, 2010 11/17/10 copyright Brian Williams, 2005-10 1 Brian C. Williams, copyright 2000-09 Image credit: NASA. Assignment

More information

1 [15 points] Search Strategies

1 [15 points] Search Strategies Probabilistic Foundations of Artificial Intelligence Final Exam Date: 29 January 2013 Time limit: 120 minutes Number of pages: 12 You can use the back of the pages if you run out of space. strictly forbidden.

More information

Department of Computer Science and Engineering CSE 151 University of California, San Diego Fall Midterm Examination

Department of Computer Science and Engineering CSE 151 University of California, San Diego Fall Midterm Examination Department of Computer Science and Engineering CSE 151 University of California, San Diego Fall 2008 Your name: Midterm Examination Tuesday October 28, 9:30am to 10:50am Instructions: Look through the

More information

ACTIVITY 15 Continued Lesson 15-2

ACTIVITY 15 Continued Lesson 15-2 Continued PLAN Pacing: 1 class period Chunking the Lesson Examples A, B Try These A B #1 2 Example C Lesson Practice TEACH Bell-Ringer Activity Read the introduction with students and remind them of the

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

{ p if x = 1 1 p if x = 0

{ p if x = 1 1 p if x = 0 Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information

Building Bayesian Networks. Lecture3: Building BN p.1

Building Bayesian Networks. Lecture3: Building BN p.1 Building Bayesian Networks Lecture3: Building BN p.1 The focus today... Problem solving by Bayesian networks Designing Bayesian networks Qualitative part (structure) Quantitative part (probability assessment)

More information

Bayesian Networks 2:

Bayesian Networks 2: 1/27 PhD seminar series Probabilistics in Engineering : Bayesian networks and Bayesian hierarchical analysis in engineering Conducted by Prof. Dr. Maes, Prof. Dr. Faber and Dr. Nishijima Bayesian Networks

More information

SPIRAL PROGRESSION in the K + 12 MATHEMATICS CURRICULUM

SPIRAL PROGRESSION in the K + 12 MATHEMATICS CURRICULUM SPIRAL PROGRESSION in the K + 12 MATHEMATICS CURRICULUM Soledad A. Ulep University of the Philippines National Institute for Science and Mathematics Education Development (UP NISMED) Objective of the Presentation

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Maximum Entropy Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 24 Introduction Classification = supervised

More information

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London Distributed Data Fusion with Kalman Filters Simon Julier Computer Science Department University College London S.Julier@cs.ucl.ac.uk Structure of Talk Motivation Kalman Filters Double Counting Optimal

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Factorise each polynomial: a) x 2 6x + 5 b) x 2 16 c) 9x 2 25 2) Simplify the following algebraic fractions fully: a) x 2

More information

On the errors introduced by the naive Bayes independence assumption

On the errors introduced by the naive Bayes independence assumption On the errors introduced by the naive Bayes independence assumption Author Matthijs de Wachter 3671100 Utrecht University Master Thesis Artificial Intelligence Supervisor Dr. Silja Renooij Department of

More information

Sampling Methods (11/30/04)

Sampling Methods (11/30/04) CS281A/Stat241A: Statistical Learning Theory Sampling Methods (11/30/04) Lecturer: Michael I. Jordan Scribe: Jaspal S. Sandhu 1 Gibbs Sampling Figure 1: Undirected and directed graphs, respectively, with

More information

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits Computer Organization I Lecture 13: Design of Combinational Logic Circuits Overview The optimization of multiple-level circuits Mapping Technology Verification Objectives To know how to optimize the multiple-level

More information

Naïve Bayes Classifiers

Naïve Bayes Classifiers Naïve Bayes Classifiers Example: PlayTennis (6.9.1) Given a new instance, e.g. (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong ), we want to compute the most likely hypothesis: v NB

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

Prentice Hall CME Project Algebra

Prentice Hall CME Project Algebra Prentice Hall CME Project Algebra 1 2009 Algebra 1 C O R R E L A T E D T O from March 2009 Algebra 1 A1.1 Relations and Functions A1.1.1 Determine whether a relation represented by a table, graph, words

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses Bayesian Learning Two Roles for Bayesian Methods Probabilistic approach to inference. Quantities of interest are governed by prob. dist. and optimal decisions can be made by reasoning about these prob.

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Influence diagrams for speed profile optimization: computational issues

Influence diagrams for speed profile optimization: computational issues Jiří Vomlel, Václav Kratochvíl Influence diagrams for speed profile optimization: computational issues Jiří Vomlel and Václav Kratochvíl Institute of Information Theory and Automation Czech Academy of

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Machine learning: lecture 20. Tommi S. Jaakkola MIT CSAIL

Machine learning: lecture 20. Tommi S. Jaakkola MIT CSAIL Machine learning: lecture 20 ommi. Jaakkola MI CAI tommi@csail.mit.edu opics Representation and graphical models examples Bayesian networks examples, specification graphs and independence associated distribution

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Uncertain Knowledge and Bayes Rule. George Konidaris

Uncertain Knowledge and Bayes Rule. George Konidaris Uncertain Knowledge and Bayes Rule George Konidaris gdk@cs.brown.edu Fall 2018 Knowledge Logic Logical representations are based on: Facts about the world. Either true or false. We may not know which.

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Representation of undirected GM. Kayhan Batmanghelich

Representation of undirected GM. Kayhan Batmanghelich Representation of undirected GM Kayhan Batmanghelich Review Review: Directed Graphical Model Represent distribution of the form ny p(x 1,,X n = p(x i (X i i=1 Factorizes in terms of local conditional probabilities

More information

Solve Systems of Equations Algebraically

Solve Systems of Equations Algebraically Part 1: Introduction Solve Systems of Equations Algebraically Develop Skills and Strategies CCSS 8.EE.C.8b You know that solutions to systems of linear equations can be shown in graphs. Now you will learn

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

COS 424: Interacting with Data. Lecturer: Dave Blei Lecture #11 Scribe: Andrew Ferguson March 13, 2007

COS 424: Interacting with Data. Lecturer: Dave Blei Lecture #11 Scribe: Andrew Ferguson March 13, 2007 COS 424: Interacting with ata Lecturer: ave Blei Lecture #11 Scribe: Andrew Ferguson March 13, 2007 1 Graphical Models Wrap-up We began the lecture with some final words on graphical models. Choosing a

More information

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative Chain CRF General

More information

9 3 Base. We will apply 1 the properties of exponents. Name:

9 3 Base. We will apply 1 the properties of exponents. Name: Learning Objective We will apply the properties of exponents. Name:.2. CFU Activate Prior Knowledge What are we going to do? What does apply mean? Apply means. An exponential expression contains a base

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Proportions PRE-ACTIVITY PREPARATION

Proportions PRE-ACTIVITY PREPARATION Section 4.2 PRE-ACTIVITY PREPARATION Proportions In the photo at right, you can see that the top teapot is a smaller version of the lower one. In fact, if you were to compare the ratios of each teapot

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Mathematics (JUN10MD0101) General Certificate of Education Advanced Subsidiary Examination June Unit Decision TOTAL

Mathematics (JUN10MD0101) General Certificate of Education Advanced Subsidiary Examination June Unit Decision TOTAL Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials Mathematics Unit Decision 1 Wednesday 9 June 2010 General Certificate of Education Advanced

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

Induction on Decision Trees

Induction on Decision Trees Séance «IDT» de l'ue «apprentissage automatique» Bruno Bouzy bruno.bouzy@parisdescartes.fr www.mi.parisdescartes.fr/~bouzy Outline Induction task ID3 Entropy (disorder) minimization Noise Unknown attribute

More information

= ( 17) = (-4) + (-6) = (-3) + (- 14) + 20

= ( 17) = (-4) + (-6) = (-3) + (- 14) + 20 Integer Operations Adding Integers If the signs are the same, add the numbers and keep the sign. If the signs are different, find the difference and use the sign of the number with the greatest absolute

More information

Active Learning for Sparse Bayesian Multilabel Classification

Active Learning for Sparse Bayesian Multilabel Classification Active Learning for Sparse Bayesian Multilabel Classification Deepak Vasisht, MIT & IIT Delhi Andreas Domianou, University of Sheffield Manik Varma, MSR, India Ashish Kapoor, MSR, Redmond Multilabel Classification

More information

The Bayesian Learning

The Bayesian Learning The Bayesian Learning Rodrigo Fernandes de Mello Invited Professor at Télécom ParisTech Associate Professor at Universidade de São Paulo, ICMC, Brazil http://www.icmc.usp.br/~mello mello@icmc.usp.br First

More information

Using first-order logic, formalize the following knowledge:

Using first-order logic, formalize the following knowledge: Probabilistic Artificial Intelligence Final Exam Feb 2, 2016 Time limit: 120 minutes Number of pages: 19 Total points: 100 You can use the back of the pages if you run out of space. Collaboration on the

More information

Pre-Algebra (6/7) Pacing Guide

Pre-Algebra (6/7) Pacing Guide Pre-Algebra (6/7) Pacing Guide Vision Statement Imagine a classroom, a school, or a school district where all students have access to high-quality, engaging mathematics instruction. There are ambitious

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Math 7 Notes Unit Two: Integers

Math 7 Notes Unit Two: Integers Math 7 Notes Unit Two: Integers Syllabus Objective: 2.1 The student will solve problems using operations on positive and negative numbers, including rationals. Integers the set of whole numbers and their

More information

Algebra Student Signature: Parent/Carer signature:

Algebra Student Signature: Parent/Carer signature: Preparing yourself for Mathematics at Guilsborough Algebra Student Signature: Parent/Carer signature: Dear student, This booklet contains work which you need to complete over the summer. It is designed

More information