Supplementary Document for the Manuscript entitled A Functional Single Index Model

Size: px
Start display at page:

Download "Supplementary Document for the Manuscript entitled A Functional Single Index Model"

Transcription

1 Supplementary Document for the Manuscript entitled A Functional Single Index Model S1 Definition and Regularity Conditions Let H e the separale Hilert space of square integrale functions on, 1], and let < φ 1, φ 2 > φ 1t)φ 2 t)dt denote the inner product of the functions φ 1, φ 2 in H. Then the L 2 norm 2 is the norm induced y the inner product. Let α ) e a function in H. Let γ e the B-spline coefficient such that B r ) T γ converges to α ), uniformly on, 1] when the numer of the B-spline inner knots goes to infinite, and B r ) T γ converges to α ), the true function. Here B r = B r1,..., B rdγ ) T is the rth order B-spline asis vector. Note that for identifiaility, we assumed α ) = B r ) T γ = 1, i.e., γ 1 = B r1 ) 1 1 dγ k=2 B rk)γ k } = 1. So we only have d γ 1 B-spline coefficients to estimate, and we denote γ = γ 2,..., γ dγ ) T. Further, we denote αx) = Xt)αt)dt and α X) = Xt)α t)dt. We denote the functional sup norm as, and the L p norm as p. In addition, we define Γβ) to e a second moment ased linear operator such that Γβ)φt) Eβ T Xt)β T Xs)}φs)ds = E< β T X, φ > β T Xt)} while its empirical version can e written as Γ n β)φt) n 1 < β T X i, φ > β T X i t). Using these definitions, we can write < Γβ)B rk, B rl > = E B rk t)β T X i t)dt ) B rl t)β T X i t)dt,

2 < Γ n β)b rk, B rl > = n 1 B rk t)β T X i t)dt B rl t)β T X i t)dt. Define Cβ) as a d γ d γ matrix with its k, l) element < Γβ)B rk, B rl >, and Ĉβ) as a d γ d γ matrix matrix with its k, l) element < Γ n β)b rk, B rl >. The locally efficient score function for β, γ can e written as S effβ Y, Z, β, γ, g ) = g Y, β T Zγ) Eg Y, β T Zγ) β T Zγ}]Θ β Z EZ β T Zγ)}γ, S effγ Y, Z, β, γ, g ) = g Y, β T Zγ) Eg Y, β T Zγ) β T Zγ}]Θ γ Z EZ β T Zγ)} T β. Here g Y, β T Zγ) = f 2 Y, β T Zγ)/f Y, β T Zγ), f Y, β T Zγ) is the possily misspecified conditional density of Y given β T Zγ and f 2 Y, β T Zγ) is the derivative of f Y, β T Zγ) with respect to β T Zγ. When f is correctly specified, i.e. when f = f, we denote the resulting g as g. Θ β = I J 1, ) and Θ γ =, I dγ 1). Note that when f Y, β T Zγ) = fy, β T Zγ), the true density function, the locally efficient score is the efficient score of 2). Throughout the text, A 1 = o p A 2 ) for aritrary vectors or matrices A 1, A 2 means that A 1 has smaller order than A 2 component wise. We first list the regularity conditions under which we perform our theoretical analysis. A1) The kernel function K ) is non-negative, has compact support, and satisfies Ks)ds = 1, Ks)sds = and Ks)s 2 ds <, and K 2 s)ds <. A2) The andwidth h in the kernel smoothing satisfies nh 2 and nh 8 when n. A3) Assume α α C q, 1]), α is one-to-one, and α ) = 1}. The spline order r q. A4) We define the knots t r+1... t = and t N+r... t N+1 = 1. Let N e the numer of interior knots and, 1] e divided into N + 1 2

3 suintervals. In this case, d γ = N + r. Let h p e the distance etween the p + 1)th and pth interior knots of the order r B-spline functions and let h = that max r p N+r h p. There exists a constant C hn, < c h max h p = ON 1 ) and h / min h p < c h, r p N+r r p N+r <, such where N is the numer of knots which satisfies N as n, and N 1 nlogn) 1 and Nn 1/2q+1). A5) γ is a spline coefficient such that sup t,1] B r t) T γ α t) = O p h q ). The existence of such γ has een shown in De Boor 1978). A6) X j ), j = 1,..., J are continuous random functions in t, 1]. For each A7) t, EX j t)} <. β T X ) 2 is finite almost surely for any ounded β. Eβ T X i ) β T Z i γ} and its first two derivatives have finite L 2 norm almost surely for any ounded β, γ. The second moment operator Γβ) is strictly positive definite. ES effβ Y i, Z i, β, γ, g ) T, S effγ Y i, Z i, β, γ, g ) T } T ] is a smooth function of β T, γ T ) T and has unique root for β, γ. A8) f Y, β T Zγ) is a continuous density function and has ounded derivative with respect to the second argument. f Y, β T Zγ) is ounded away from and on its support. This implies g Y, β T Zγ) is a continuous ounded function and g Y, β T Zγ) is ounded away from and on its support. Let f Z β T Z i γ ) e the density for β T Zγ. f Z has two ounded derivatives, and f Z is ounded away from and on its support. 3

4 S2 Proofs of the propositions in the main text S2.1 Proof of Proposition 1 Assume the prolem is not identifiale. f, β, αt)} such that J } 1 f Y, β j αt)x j t)dt = f Y, Then there exist f, β, αt)} J } 1 β j αt)x j t)dt S1) for all Y and all functions X 1 ),..., X J ). Because S1) holds for all X j ), j = 1,..., J, it holds when X j t) = for j = 1,..., J 1 as well. Note that β J = β J = 1, we then have } f Y, αt)x J t)dt = f Let X J t) = at) + δt) and let δ, this yields f 2 = lim δ = lim δ = f 2 Y, f Y, f Y, Y, } αt)at)dt αt)t)dt ] αt)at) + δt)}dt f } Y, αt)x J t)dt. S2) Y, ] αt)at) + δt)}dt f Y, } αt)at)dt αt)t)dt, }) αt)at)dt /δ }) αt)at)dt /δ S3) where f 2Y, ), f 2Y, ) denote the partial derivatives of f, f with respect to the second component. Set t) to e the delta function with mass at. Because α) = α) = 1, this yields f 2 Y, } } αt)at)dt = f 2 Y, αt)at)dt for any a ), hence susequently from S3), αt)t)dt = αt)t)dt 4

5 for any ). Because αt), αt) are continuous, the latter directly yields αt) = αt). From S2), this further indicates fy, ) = fy, ). It is now easy to see from S1) that y taking X 1 t),..., X j 1 t), X j+1 t),..., X J t) to e zero, we can otain β j = β j for j = 1,..., J 1. This contradicts the assumption f, β, αt)} f, β, αt)}. Hence the model in 1) is indeed identifiale. S2.2 Proof of Proposition 2 Recall that we can write β T Z i γ as B rt) T γβ T X i t)dt. Note that ES effβ Y i, X i ); β, α ), g } T, S effγ Y i, X i ); β, α ), g } T ] T ) =, where S effβ Y i, X i ); β, α ), g } T, S effγ Y i, X i ); β, α ), g } T ] T is the vector which replaces the occurrence of B r ) T γ in the vector S effβ Y i, Z i, β, γ, g ) T, S effγ Y i, Z i, β, γ, g ) T ] T y α ). So the uniform convergence of B r ) T γ to α ) leads to ES effβ Y i, Z i, β, γ, g ) T, S effγ Y i, Z i, β, γ, g ) T } T = o1). On the other hand, from the estimating equation n 1 ŜeffβY i, Z i, β, γ, g ) T, ŜeffγY i, Z i, β, γ, g ) T } T =, using the consistency of the nonparametric kernel estimation, we have n 1 S effβ Y i, Z i, β, γ, g ) T, S effγ Y i, Z i, β, γ, g ) T } T = o p 1). The law of large numers further leads to ES effβ Y i, Z i, β, γ, g ) T, S4) S effγ Y i, Z i, β, γ, g ) T } T β= β,γ= γ = o p 1). The unique root property in Condition A7) implies that the derivative of ES effβ Y i, Z i, β, γ, g ) T, Y i, Z i, β, γ, g ) T }] T 5

6 with respect to β T, γ T ) T is a nonsingular matrix in the neighorhood where the function value is. Therefore, the left hand side of oth S4) and S4) are invertile functions of β T, γ T ) T. This implies β β = o p 1) and γ γ = o p 1) y the continuous mapping theorem. S2.3 Proof of Proposition 3 Denote the nuisance tangent space corresponding to f and the marginal density of Z as respectively Λ f and Λ z. Taking derivative of the loglikelihood function with respect to the nuisance parameters in each parametric sumodel and then taking the closure of their union, we have Λ z = fz) : f such that Ef) = } Λ f = fy, β T Zγ) : f such that Ef Z) = Ef β T Zγ) = }. We can easily verify that Λ z Λ f, hence Λ = Λ z Λ f, where Λ is the nuisance tangent space. Thus, Λ = Λ z Λ f. It is easy to see that Λ z = fy, Z) : Ef Z) = }. We now show that Λ f show this in two aspects. = fy, Z) : Ef Y, β T Zγ) = Ef β T Zγ)}. We First, it is easy to verify that functions having the aove conditional expectation property are elements in Λ f. To show the second aspect that elements in Λ f have to satisfy the conditional expectation requirement, consider any fy, Z) Λ f. We choose g = Ef Y, βt Zγ) Ef β T Zγ). Oviously, g Λ f hence Eg T f) =. We write this relation alternatively as = Eg T f) = Eg T Ef Y, β T Zγ)} = Eg T g) + Eg T Ef β T Zγ)} = Eg T g) + EEg β T Zγ) T Ef β T Zγ)} = Eg T g) +. This implies g itself should e zero. This means f indeed satisfies the conditional expectation requirement. 6

7 We are now ready to prove the form of Λ. For convenience, we denote set descried in the proposition A first and we will estalish Λ = A through proving Λ A and A Λ. To see A Λ, we can verify that for any fy, Z) Ef Y, β T Zγ) A, we oviously have EfY, Z) Ef Y, β T Zγ) Z} = Ef Z) Ef β T Zγ) =, thus A Λ z. The form of elements in A also ensures that EfY, Z) Ef Y, β T Zγ) Y, β T Zγ} = = EfY, Z) Ef Y, β T Zγ) β T Zγ}. Thus A Λ f. This shows A Λ. We now show Λ A. Assume gy, Z) Λ. Then Eg Z) = and Eg Y, β T Zγ) = Eg β T Zγ) = EEg Z) β T Zγ} =. This means we can always write gy, Z) as fy, Z) Ef Y, β T Zγ). The additional requirement of Eg Z) = further imposes Ef Z) = EEf Y, β T Zγ) Z} = Ef β T Zγ). Thus, we indeed have Λ A. S3 Proofs of the theorems in the main text S3.1 Proof of Theorem 1 By the consistency shown in Proposition 2, we expand the score function as = n 1/2 g Y i, β T Z i γβ )} K hβ T Z j γβ ) β T Z i γβ )}g Y j, β T } Z j γβ )} K hβ T Z j γβ ) β T Z i γβ )} Θ γ Z i K } hβ T Z j γβ ) β T T Z i γβ )}Z j K β hβ T Z j γβ ) β T Z i γβ )} S5) = R + Tn 1/2 γ β ) γ }, S6) where J R = n 1/2 g Y i, β T Z i γ ) K } hβ T Z j γ β T Z i γ )g Y j, β T Z j γ ) K hβ T Z j γ β T Z i γ ) Θ γ Z i K } hβ T Z j γ β T T Z i γ )Z j K β hβ T Z j γ β T, Z i γ ) 7

8 T = n 1 g Y i, β T Z i γ) K } hβ T Z j γ β T Z i γ)g Y j, β T Z j γ) K hβ T Z j γ β T Z i γ) Θ γ Z i K } hβ T Z j γ β T T ] Z i γ)z j K β hβ T Z j γ β T / β T Z i γ) Z i γ) γ=γ β T Z i Θ T γ, and γ is the point on the line connecting γβ ) and γ. The Asymptotic Property of R Now R can e written as R = R + R 1 + R 2 + R 3, where R = n 1/2 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ Z i EZ i β T Z i γ ) } T β, R 1 = n 1/2 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZ i β T Z i γ ) K } hβ T Z j γ β T T Z i γ }Z j K β hβ T Z j γ β T, Z i γ } R 2 = n 1/2 Eg Y i, β T Z i γ ) β T Z i γ } K hβ T Z j γ β T Z i γ )g Y j, β T Z j γ ) K hβ T Z j γ β T Z i γ ) Z i EZ i β T Z i γ ) } T β, R 3 = n 1/2 Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ K hβ T Z j γ β T Z i γ )g Y j, β T ] Z j γ ) K Θ hβ T Z j γ β T γ Z i γ ) EZ i β T Z i γ ) K } hβ T Z j γ β T T Z i γ }Z j K β hβ T Z j γ β T. Z i γ } Further, we write R 1 = R 11 + R 12, where R 11 = n 1/2 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ ) K hβ T Z j γ β T Z i γ ) nf Z β T Z i γ ) 8

9 K hβ T Z j γ β T } Z i γ }Z T j β nf Z β T, Z i γ ) R 12 = n 1/2 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ ) K hβ T Z j γ β T Z i γ } nf Z β T Z i γ ) K hβ T Z j γ β T Z i γ )Z j } T β nf Z β T Z i γ ) } nf Z β T Z i γ ) K hβ T Z j γ β T Z i γ ) 1 } nf Z β T Z i γ = R ) 11 K hβ T Z j γ β T Z i γ ) 1, where f Z β T Z i γ ) is the density for β T Zγ. We first analyze R 11. Using the U statistics property, we write R 11 as R 11 = R R 112 R o p R R 112 R 113 ), where where R 111 = R 11 = n 3/2 J g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ )K h β T Z j γ β T Z i γ ) nf Z β T Z i γ ) K hβ T Z j γ β T } T Z i γ )Z j β nf Z β T Z i γ ) = R R 112 R o p R R 112 R 113 ), n 1/2 g E Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ )K h β T Z j γ β T Z i γ ) nf Z β T Z i γ ) K hβ T Z j γ β T } T ) Z i γ )Z j β nf Z β T O i, Z i γ ) J g R 112 = n 1/2 E Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ 9

10 EZi β T Z i γ )K h β T Z j γ β T Z i γ ) nf Z β T Z i γ ) K hβ T Z j γ β T } T ) Z i γ )Z j β O j, nf Z β T Z i γ ) g R 113 = n 1/2 E Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ )K h β T Z j γ β T Z i γ ) nf Z β T Z i γ ) K hβ T Z j γ β T Z i γ )Z j nf Z β T Z i γ ) } T β )}, where O i is the random variale corresponding to the ith oservation. Now ecause the summand for R 111, i.e., g E Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ )K h β T Z j γ β T Z i γ ) nf Z β T Z i γ ) K hβ T Z j γ β T } T ) Z i γ )Z j β nf Z β T O i Z i γ ) = g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ )EK h β T Z j γ β T Z i γ ) O i } f Z β T Z i γ ) EK hβ T Z j γ ) β T ] T Z i γ )Z j O i } β f Z β T Z i γ ) = g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ )EK h β T Z j γ β T Z i γ ) O i } f Z β T Z i γ ) EK hβ T Z j γ β T Z i γ )EZ j β T ] T Z j γ ) O i ] β f Z β T Z i γ ) = g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZ i β T Z i γ ) T Ks)s 2 β 1 + 2f Z β T Z i γ ) 2 f Z aβ T } Z i γ, sh)} dsh 2 EZ aβ T i β T Z i γ, sh) 2 Z i γ ) T β 2 EZ i β T β T Z i γ, sh)} T β f Z β T Z i γ, sh)}] β T Z i γ, sh) 2 dsh 2 1 s 2 Ks) 2f Z β T Z i γ ) ]

11 = g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZ i β T Z i γ ) T 2 f Z aβ T Z i γ β, sh)} s 2 Ks) aβ T Z i γ, sh) 2 2f Z β T Z i γ ) ds 2 EZ i β T Z i γ, sh)} T β f Z β T ] Z i γ, sh)}] s 2 Ks) β T Z i γ, sh) 2 2f Z β T Z i γ ) ds h 2, S7) where aβ T Z i γ, sh), β T Z i γ, sh) are points on the line connecting β T Z i γ and β T Z i γ +sh. Note that aβ T Z i γ, sh), β T Z i γ, sh) depend on the values of oth β T Z i γ and sh and will go to β T Z i γ when h. Now note that g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZ i β T Z i γ ) T 2 f Z aβ T Z i γ β, sh)} s 2 Ks) aβ T Z i γ, sh) 2 2f Z β T Z i γ ) ds 2 EZ i β T Z i γ, sh)} T β f Z β T Z i γ, sh)}] β T Z i γ, sh) 2 can e written as with C 1i t) C 1i t)θ γ B r t)dt = C 1i t)b rk t), k = 2,..., d γ } T dt, s 2 Ks) 2f Z β T Z i γ ) ds = g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] EX i t) T β β T 2 f Z aβ T Z i γ Z i γ ), sh)} s 2 Ks) aβ T Z i γ, sh) 2 2f Z β T Z i γ ) ds 2 EX i t) T β β T Z i γ, sh)}f Z β T ] Z i γ, sh)}] s 2 Ks) β T Z i γ, sh) 2 2f Z β T Z i γ ) ds. Oviously EC 1i t)} = and hence EC 1i t)} <. From Conditions A6) and A8), C 1i ) 2 <, a.s., so y Lemma 3, we have ] R 111 = O p h 2 h logn)}, S8) which also implies R 113 = ER 111 ) = Oh 2 h logn)}. S9) 11

12 Further, the summand of R 112, i.e., g E Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ γ EZi β T Z i γ )K h β T Z j γ β T Z i γ ) nf Z β T Z i γ ) K hβ T Z j γ β T } T ) Z i γ )Z j β nf Z β T O j Z i γ ) = E E g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] ) β T Z i γ, O j Θγ EZi β T Z i γ )K h β T Z j γ β T Z i γ ) nf Z β T Z i γ ) K hβ T Z j γ β T } T ) Z i γ )Z j β nf Z β T O j Z i γ ) =. Comining S8), S1), S9), we get S1) R 11 = O p h 2 h logn)}. S11) Further, to treat R 12, note that } nf Z β T Z i γ ) K hβ T Z j γ β T Z i γ ) 1 hence = fz β T Z i γ ) n 1 J K } hβ T Z j γ β T Z i γ ) n 1 K hβ T Z j γ β T Z i γ ) = O p h 2 + nh) 1/2 } S12) R 12 = o p h 2 h logn)}. S13) Thus, comining S11) and S13), we have R 1 = O p h 2 h logn)}. S14) 12

13 Using similar derivation as those led to S14) while exchange the roles of Z and g, we can otain R 2 = O p h 2 h logn)}. S15) For R 3, we first note that Eg Y i, β T Z i γ ) β T Z i γ } K ] hβ T Z j γ β T Z i γ )g Y j, β T Z j γ ) K hβ T Z j γ β T Z i γ ) = O p h 2 + n 1/2 h 1/2 ) y the uniform consistency of the kernel estimator. Further, the summand in R 3 has the form Eg Y i, β T Z i γ ) β T Z i γ } K ] hβ T Z j γ β T Z i γ )g Y j, β T Z j γ ) K hβ T Z j γ β T Z i γ ) EZ i β T Z i γ ) K } hβ T Z j γ β T T Z i γ }Z j K β hβ T Z j γ β T Z i γ } = = where h 4 + n 1 h 1 )C 2i t)θ γ B r t)dt h 4 + n 1 h 1 )C 2i t)b rk t), k = 2,..., d γ } T dt, C 2i t) = h 4 + n 1 h 1 ) 1 Eg Y i, β T Z i γ ) β T Z i γ } K hβ T Z j γ β T Z i γ )g Y j, β T ] Z j γ ) K hβ T Z j γ β T Z i γ ) EX i t) T β β T Z i γ } K } hβ T Z j γ β T Z i γ }X j t) T β K. hβ T Z j γ β T Z i γ } Note that EC 2i t)}, EC 2i t)} <, C 2i ) 2 <, a.s. y Conditions A2), A6) and the uniform consistency of the kernel estimator. So y Lemma 3, we have R 3 = n 1/2 h 4 + n 1 h 1 )C 2i B rk t), k = 2,..., d γ } T dt 13 Θ γ

14 = O p n 1/2 h 4 + n 1/2 h 1 )h }. S16) We now assess S7). We write where R = n 1/2 g Y i, β T Z i γ } Eg Y i, β T Z i γ ) β T Z i γ }]Θ γ Z i EZ i β T Z i γ ) } T β = n 1/2 C 3i t)θ γ B r t)dt = n 1/2 C 3i t)b rk t), k = 2,..., d γ } T dt, C 3i t) = g Y i, β T Z i γ } Eg Y i, β T Z i γ ) β T Z i γ }]X i t) T β EX i t) T β β T Z i γ }]. We can easily verify that EC 3i t)} =, EC 3i t)} < and C 3i ) 2 <, a.s. y Condition A6). Therefore, y Lemma 3 we know R = O p n 1/2 h ). S17) Comparing S14), S15), S16) with S17), from Condition A2), it is clear that R dominates R 1, R 2 and R 3. We further analyze R y writing where R = R + R 1 + R 2 S18) R = n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ and Z i EZ i β T α X i )} ] T β S19) R 1 = n 1/2 g Y i, β T Z i γ } Eg Y i, β T Z i γ } β T Z i γ }] 14

15 ) g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] Θ γ Z i EZ i β T Z i γ } ] T β, R 2 = n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Zi EZ i β T Z i γ } ] Z i EZ i β T α X i )} ] ) Tβ. To analyze R, we write it as R = n 1/2 = n 1/2 C 4i t)θ γ B r t)dt C 4i t)b rk t), k = 2,..., d γ } T dt, where C 4i t) = g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]X i t) T β EX i t) T β β T α X i )}]. We can check that EC 4i t)} = and C 4i ) 2 < a.s. y Condition A6). Thus, y Lemma 3, R = h logn). S2) Further R 2 = n 1/2 = n 1/2 h q C 5it)Θ γ B r t)dt h q C 5it)B rk t), k = 2,..., d γ } T dt, where C 5i t) = h q g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] 15

16 X i t) T β EX i t) T β β T Z i γ }] X i t) T β ) EX i t) T β β T α X i )}]. Now EC 5i t)} = ecause E g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] Xi t) T β EX i t) T β β T Z i γ } ] X i t) T β )} EX i t) T β β T α X i )}] } = E E g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] X i Xi t) T β EX i t) T β β T Z i γ } ] X i t) T β )] EX i t) T β β T α X i )}] =. Further C 5i ) 2 <, a.s. y Condition A6). Therefore, y Lemma 3 we have R 2 = n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Zi EZ i β T Z i γ } ] Z i EZ i β T α X i )} ] ) Tβ = O p h q h logn)}. In addition, where R 1 = n 1/2 C 6i t) = h q = n 1/2 h q C 6it)Θ γ B r t)dt h q C 6it)B rk t), k = 2,..., d γ } T dt, g Y i, β T Z i γ } Eg Y i, β T Z i γ } β T Z i γ }] 16

17 ) g Y i, β T α X i )} Eg Y i, β T Z i γ } β T α X i )}] X i t) T β EX i t) T β β T Z i γ } ], with EC 6i t)}, EC 6i t)} <, C 6i ) 2 <, a.s. y Condition A6). Therefore, y Lemma 3 we have R 1 = n 1/2 g Y i, β T Z i γ } Eg Y i, β T Z i γ } β T Z i γ }] ) g Y i, β T α X i )} Eg Y i, β T Z i γ } β T α X i )}] Θ γ Z i EZ i β T Z i γ } ] T β = O p h q+1 n 1/2 ). Now y the fact that R 1 + R 2 = O p h q+1 n 1/2 + h q h logn)} and R = O p h logn)} y S2), we have R 1 + R 2 = o p R ) y Condition A4). Therefore, y S18) we have R = R +o p R ), comining with the fact that R dominates R 1, R 2, R 3 and R = R + R 1 + R 2 + R 3 in S5), we have R = R + o p R ), S21) i.e., n 1/2 J g Y i, β T Z i γ } K } hβ T Z j γ β T Z i γ }g Y j, β T Z j γ } K hβ T Z j γ β T Z i γ } Θ γ Z i K } hβ T Z j γ β T T Z i γ }Z j K β hβ T Z j γ β T = R + o p R ), Z i γ } where R is given in S19). The Asymptotic Property of T T = n 1 g Y i, β T Z i γ) Now consider the term K hβ T Z j γ β T Z i γ)g Y j, β T } Z j γ) K hβ T Z j γ β T Z i γ) 17

18 Θ γ Z i K } hβ T Z j γ β T T ] Z i γ)z j K β hβ T Z j γ β T Z i γ) ) / β T Z i γ) γ=γ β T Z i Θ T γ S22) in S5). We decompose T as T = T + T 1 + T 2, where T = T 1 = T 2 = n 1 g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] Θ γ Z i EZ i β T α X i )} ] } T β )/ β T α X i )}β T Z i Θ T γ, g n 1 Y i, β T Z i γ) Eg Y i, β T Z i γ) β T Z i γ} ] Θ γ Z i EZ i β T Z i γ} ] } T β )/ β T Z i γ) γ=γ β T Z i Θ T γ g n 1 Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] Θ γ Z i EZ i β T α X i )} ] } T β )/ β T α X i )}β T Z i Θ T γ, n 1 g Y i, β T Z i γ) K } hβ T Z j γ β T Z i γ)g Y j, β T Z j γ) K hβ T Z j γ β T Z i γ) Θ γ Z i K } hβ T Z j γ β T T ] ) Z i γ)z j K β hβ T Z j γ β T / β T Z i γ) Z i γ) γ=γ β T Z i Θ T γ g n 1 Y i, β T Z i γ) Eg Y i, β T Z i γ) β T Z i γ} ] Θ γ Z i EZ i β T Z i γ} ] } T β )/ β T Z i γ) γ=γ β T Z i Θ T γ. Now T = max k=1,...,d γ d γ n 1 l=1 C 7i t)b rk t)}dt 18

19 = max k=1,...,d γ β T X i s)b rl s) B rl )/B r1 )B r1 s)}ds] d γ n 1 l=1 C 7i t)b rk t)}dt β T X i ξ 1 )B rl ξ 1 ) B rl )/B r1 )B r1 ξ 1 )}] = max k=1,...,d γ n 1 C 7i t)b rk t)}dt ] d γ β T X i ξ 1 ) B rlξ 1 ) B rl )/B r1 )B r1 ξ 1 )} = max k=1,...,d γ n 1 l=1 β T X i ξ 1 ) M = max k=1,...,d γ n 1 where ξ 1 is a point in, 1), and M = d γ l=1 d γ l=1 <, C 7i t)b rk t)}dt a n C 7i t)b rk t)}dt, B rlξ 1 ) B rl )/B r1 )B r1 ξ 1 )} B rl ξ 1 ) + d γ l=1 B rl )/B r1 )B r1 ξ 1 ) which holds y 3.4) on page 141 in DeVore and Lorentz 1993), and a n is the sequence such that β T X i ξ 1 ) = O a.s. a n ). Note that a n does not need to e ounded. Here C 7i t) = g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] X i t) T β EX i t) T β β T α X i )} ] T β )/ β T α X i )} and g C 7i t) = a 1 n Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] 19

20 X i t) T β EX i t) T β β T α X i )} ] T β )/ β T α X i )} Mβ T X i ξ 1 ). Now EC 7i t)} =, EC 7i t)} <, and C 7i ) 2 <. By Lemma 3, we have T = O p h a n ). Similarly, T 1 = max k=1,...,d γ n 1 h q a nc 8i t)b rk t)}dt where g C 8i t) = h q a 1 n Y i, β T Z i γ) Eg Y i, β T Z i γ) β T Z i γ} ] X i t) T β EX i t) T β β T Z i γ} ] ) / β T Z i γ) γ=γ Mβ T X i ξ 1 ) g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] X i t) T β EX i t) T β β T α X i )} ] ) } / β T α X i )}Mβ T X i ξ 1 ), with EC 8i t)} =, EC 8i t)} <, and C 8i ) 2 <. By Lemma 3, we have T 1 = O p h q+1 a n ). Next, T 2 = max k=1,...,d γ n 1 a n h 2 + n 1/2 h 1/2 )C 9i t)b rk t)}dt, where C 9i t) = a 1 n h 2 + n 1/2 h 1/2 ) 1 g Y i, β T Z i γ) K hβ T Z j γ β T Z i γ)g Y j, β T } Z j γ) K hβ T Z j γ β T Z i γ) X i t) T β K } ] hβ T Z j γ β T Z i γ)x j t) T β K / β T hβ T Z j γ β T Z i γ) Z i γ) g Mβ T X i ξ 1 ) Y i, β T Z i γ) Eg Y i, β T Z i γ) β T Z i γ} ] X i t) T β EX i t) T β β T Z i γ} ] ) ) / β T Z i γ) γ=γ Mβ T X i ξ 1 ), γ=γ 2

21 with EC 9i t)} =, EC 9i t)} <, and C 9i ) 2 <. By Lemma 3, we have T 2 = O p h h 2 +n 1/2 h 1/2 )a n }. Comining the orders of T, T 1 and T 2, we see that T clearly dominates T 1, T 2. So we can write T = T +o p T ). We further analyze T. Note that T = T + T 1 + T 2, where T = = T 1 = n 1 g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] Z i EZ i β T α X i )} ] T β β T n 1 β T α X i ) Θ γ Zi EZ i β T α X i )} ] T β Zi EZ i β T α X i )} ] Θ T γ g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] β T α X i ) Zi EZ i β T α X i )} ] ) Θ T γ, n 1 g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] β T ) Θ γ / β T α X i )}Θ γ Zi EZ i β T α X i )} ] T β )β T } EZ i β T α X i )}]Θ T γ, and T 2 = n 1 g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] Θ γ Zi EZ i β T α X i )} ] ) } T β / β T α X i )}β T Z i Θ T γ. Now where T = max k=1,...,d γ n 1 a n C 1i t)b rk t)}dt, C 1i t) = a 1 n Xi t) T β EX i t) T β β T α X i )} ] 21

22 g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] M β T α X i ) β T X i ξ 1 ) EX i ξ 1 ) β T α X i )}]. Now EC 1i t)}, EC 1i t)} < and C 1i ) 2 <. By Lemma 3, we have T = O p h a n ). Similarly T 1 + T 2 = max k=1,...,d γ n 1 a n C 11i t)b rk t)}dt, where g C 11i t) = a 1 n Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] / β T α X i )}Θ γ Xi t) T β EX i t) T β β T α X i )} ] ) Mβ T EX i ξ 1 ) β T α X i )}] + a 1 n g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )}] X i t) T β ) EX i t) T β β T α X i )}] / β T α X i )}Mβ T X i ξ 1 ). Now EC 11i t)} = and C 11i ) 2 <. By Lemma 3, we have T 1 + T 2 = O p h n 1 logn)a n } = o p T ) S23) y Condition A4). Comining the results that T = T + o p T ) and T = T + o p T ), we have T = T + o p T ). S24) The Asymptotic Property of γβ ) S5), S21) and S24), we otain Comining the aove results with n 1/2 γ β ) γ } = T 1 R 1 = T + o p T )} R + o p R )} 22

23 = E Θ γ Zi EZ i β T α X i )} ] T β g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] β T α X i ) β T Zi EZ i β T α X i )} ] Θ T γ 1 T + o p T )} R + o p R )} +E Θ γ Zi EZ i β T α X i )} ] T β ) 1 R + o p R )} g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] β T α X i ) ) 1 R + o p R )} β T Zi EZ i β T α X i )} ] Θ T γ = Θ γ C Q β )Θ T γ } 1 n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Z i EZ i β T α X i )} } T β + o p R ) Θ γ Ĉ Q β )Θ T γ + o p Θ γ Ĉ Q β )Θ T γ }] 1 n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Zi EZ i β T α X i )} } T β ) +o p R ) + Θ γ C Q β )Θ Tγ } 1 n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] Θ γ Zi EZ i β T α X i )} } ) T β + o p R ) ) = Θ γ C Q β )Θ T γ } 1 + o p Θ γ C Q β )Θ T γ } 1 ] n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] Θ γ Zi EZ i β T α X i )} } ) T β + o p R ), S25) 23

24 where ĈQβ ), C Q β ) are defined in Corollary 1 for v = β and the corresponding Q i t) g Y i, β T α X i )) Eg Y i, β T α X i )) β T α X i )} ] β T α X i ) X i t) EX i t) β T α X i )}]. ) 1/2 The last equality holds ecause for aritrary d γ 1 -dimensional unit vector u u 1,..., u γ 1 ) T, we have u T Θ γ = γ 1 k=1 u kb rk+1 )/B r1 ), u 1,..., u γ 1 } T. Now since B rk+1 ) is positive for at most r k s, γ 1 k=1 u kb rk+1 )/B r1 ) is finite, which implies Θ T γ u 2 2 = 1 u γ 1 k=1 u kb rk+1 )/B r1 )} 2 and Θ γ 2 = O p 1). Therefore, D 7 Θ T γ u 2 h u T Θ γ Ĉ Q β )Θ T γ u D 8 Θ T γ u 2 h S26) for ounded positive constants D 7, D 8 y Corollary 1, which implies the maximum and minimum eigenvalue of Θ γ Ĉ Q β )Θ γ is ounded etween D 7 Θ T γ u 2 h and D 8 Θ T γ u 2 h. Since Θ γ Ĉ Q β )Θ γ is a symmetric matrix, Θ γ Ĉ Q β )Θ γ 2 is its maximum eigenvalue, which is of order O p h ). Now note that Θ γ Ĉ Q β )Θ γ } 1 2 is the inverse of the minimum eigenvalue of Θ γ Ĉ Q β )Θ γ. Therefore, Θ γ Ĉ Q β )Θ γ } 1 2 = O p h 1 ). In summary, Θ γ Ĉ Q β )Θ γ 2 = O p h ), Θ γ Ĉ Q β )Θ γ } 1 2 = O p h 1 ) S27) Similar to those arguments that led to S27), we have Θ γ C Q β )Θ γ 2 = O p h ), Θ γ C Q β )Θ γ } 1 2 = O p h 1 ). S28) Now ecause as shown in Corollary 1, ĈQβ ) C Q β ) 2 o p h n h 1)/2 } and Θ γ 2 = O p 1), we have Θ γ Ĉ Q β )Θ T γ + o p Θ γ Ĉ Q β )Θ T γ } Θ γ C Q β )Θ T γ 2 24

25 Therefore, Θ γ Ĉ Q β )Θ T γ Θ γ C Q β )Θ T γ 2 + o p Θ γ Ĉ Q β )Θ T γ 2 } o p h n h 1)/2 } + o p h ). Θ γ Ĉ Q β )Θ T γ + o p Θ γ Ĉ Q β )Θ T γ }] 1 Θ γ C Q β )Θ T γ } 1 2 = Θ γ C Q β )Θ T γ } 2 Θ γ Ĉ Q β )Θ T γ + o p Θ γ Ĉ Q β )Θ T γ } Θ γ C Q β )Θ T γ ]1 + o p 1)} 2 o p h 2 h n h 1)/2 } + o p h 2 h ) = o p h 1 n h 1)/2 } + o p h 1 ) = o p Θ γ C Q β )Θ T γ } 1 ]. S29) As a result, S25) holds and we can write n 1/2 γ β ) γ } = Θ γ C Q β )Θ T γ } 1 + o p Θ γ C Q β )Θ T γ } 1 ]) n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Zi EZ i β T α X i )} ] ) T β + o p R ) = E Θ γ Z i EZ i β α X i }] T β g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ] ) β T α X i ) )} 1 ) β T Z i EZ i β T α X i )}]Θ T γ + o p Θ γ C Q β )Θ T γ } 1 ] n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Z i EZ i β T α X i )} ] ) T β + o p R ) = L + o p L), where recall that we have defined in the statement that L = Θ γ C Q β )Θ T γ } 1 n 1/2 g Y i, β T α X i )} 25

26 Eg Y i, β T α X i )} β T α X i )}]Θ γ Zi EZ i β T α X i )} ] ) T β = E Θ γ Z i EZ i β α X i }] T β S3) g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ] ) β T α X i ) )} 1 ) β T Z i EZ i β T α X i )}]Θ T γ n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Zi EZ i β T α X i )} ] T β ). Now for aritrary d γ 1 -dimensional vector a with a 2 < y using the same argument as those lead to S23), we have where a T n 1/2 γ β ) γ }] 2 = a T LL T a + o p a T LL T a) = L 1 + o p L 1 ), a T Θ L 1 = a T Θ γ C Q β )Θ T γ } 1 2 γ C Q β )Θ T γ } 1 2 a T Θ γ C Q β )Θ T γ } 1 2 n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Z i EZ i β T α X i )}] T β ) 2 Θ γ C Q β )Θ T γ } 1 a a T Θ γ C Q β )Θ T γ } 1 2 a T Θ = a T Θ γ C Q β )Θ T γ } 1 2 γ C Q β )Θ T γ } 1 2 a T Θ γ C Q β )Θ T γ } 1 2 n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Z i EZ i β T α X i )}} T β ) 2 O p h 2 h ) = O p h 1 ). Θ γ C Q β )Θ T γ } 1 a a T Θ γ C Q β )Θ T γ }

27 The third line holds y noting that Θ γ C Q β )Θ T γ } 1 = O p h 1 ) y S28) and n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]Θ γ Z i EZ i β T α X i )} } T β ) 2 is in the form of Θ γ Ĉ Q β )Θ T γ, where ĈQβ ) is defined in Corollary 1 with v = β and Q i t) g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] X i t) EX i t) β T α X i )}]. Using the arguments as those led to S26), we have a T Θ γ C Q β )Θ T γ } 1 D 1 h n 1 g Y a T Θ γ C Q β )Θ T γ } 1 i, β T α X i )} 2 Eg Y i, β T α X i )} β T α X i )}]Θ γ Zi EZ i β T α X i )} } T β ) 2 Θ γc Q β )Θ T γ } 1 a a T Θ γ C Q β )Θ T γ } 1 2 D 11 h, S31) where D 1 and D 11 are positive constants. Therefore a T γ β ) γ } = O p n 1/2 h 1/2 ). This proves the result. S3.2 Proof of Theorem 2 The proof of Theorem 2 is divided into two parts. In Part I, we show that n β β) convergences to a random quantity which exists under the approximated model. In Part II, we show that this quantity converges to a Gaussian vector defined on the measurale space under the true model. Part I By the consistency shown in Proposition 2, we expand the score function as = n 1/2 g Y i, β T Z i γ β)} 27

28 where K h β T Z j γ β) β T Z i γ β)}g Y j, β T ] Z j γ β)} K h β T Z j γ β) β Θ T β Z i γ β)} Z i K h β T Z j γ β) β T Z i γ β)}z j K h β T Z j γ β) β γ β) T Z i γ β)} = G + Hn 1/2 β β ), S32) G = n 1/2 g Y i, β T Z i γβ )} K hβ T Z j γβ ) β T Z i γβ )}g Y j, β T ] Z j γβ )} K Θ hβ T Z j γβ ) β T β Z i γβ )} Z i K ] hβ T Z j γβ ) β T Z i γβ )}Z j K γβ hβ T Z j γβ ) β T ) Z i γβ )} and H = n 1 g Y i, β T Z i γβ)} K hβ T Z j γβ) β T Z i γβ)}g Y j, β T ] Z j γβ)} K Θ hβ T Z j γβ) β T β Z i γβ)} Z i K ] hβ T Z j γβ) β T Z i γβ)}z j K γβ)/ β T hβ T Z j γβ) β T β=β, Z i γβ)} where β is the point on the line connecting β and β. In the following, we study the asymptotic properties for G and H separately. The Asymptotic Property for G Now we can decompose G as G = G + G 1 + G 2 + G 3, where G = n 1/2 g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β Z i EZ i β T Z i γβ )} ] γβ ), 28

29 G 1 = n 1/2 g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZ i β T Z i γβ )} K ] hβ T Z j γβ ) β T Z i γβ )}Z j K γβ hβ T Z j γβ ) β T ), Z i γβ )} G 2 = n 1/2 Eg Y i, β T Z i γβ )} β T Z i γβ )] K hβ T Z j γβ ) β T Z i γβ )}g Y j, β T Z j γβ )} K hβ T Z j γβ ) β T Z i γβ )} Z i EZ i β T Z i γβ )} ] γβ ), G 3 = n 1/2 Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β K hβ T Z j γβ ) β T Z i γβ )}g Y j, β T ) Z j γβ )} K Θ hβ T Z j γβ ) β T β Z i γβ )} EZ i β T Z i γβ )} K ] hβ T Z j γβ ) β T Z i γβ )}Z j K γβ hβ T Z j γβ ) β T ). Z i γβ )} We can further write G 1 = G 11 + G 12, where G 11 = n 1/2 g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZi β T Z i γβ )} K hβ T Z j γβ ) β T Z i γβ )} nf Z β T Z i γβ )} K hβ T Z j γβ ) β T } Z i γβ )}Z j γβ nf Z β T ), Z i γβ )} G 12 = n 1/2 g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZi β T Z i γβ )} K hβ T Z j γβ ) β T Z i γβ )} nf Z β T Z i γβ )} K hβ T Z j γβ ) β T } Z i γβ )}Z j nf Z β T Z i γβ )} } nf Z β T Z i γβ )} K hβ T Z j γβ ) β T Z i γβ )} 1 γβ ) } nf Z β T Z i γβ = G )} 11 K hβ T Z j γβ ) β T Z i γβ )} 1. 29

30 Note that G 11, G 12 are of finite dimension, so the sup norm and the L 2 norm are equivalent. Using the U-statistics techniques similar to those led to S11) and S13), we get G 11 = n 3/2 where J g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZi β T Z i γβ )}K h β T Z j γβ ) β T Z i γβ )} nf Z β T Z i γβ )} K hβ T Z j γβ ) β T } Z i γβ )}Z j γβ nf Z β T ) Z i γβ )} = G G 112 G o p G G 112 G 113 ), G 111 = n 1/2 g E Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZi β T Z i γβ )}K h β T Z j γβ ) β T Z i γβ )} nf Z β T Z i γβ )} K hβ T Z j γβ ) β T ] Z i γβ )}Z j } γβ nf Z β T ) O i, Z i γβ )} J g G 112 = n 1/2 E Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZi β T Z i γβ )}K h β T Z j γβ ) β T Z i γβ )} nf Z β T Z i γβ )} K hβ T Z j γβ ) β T ] Z i γβ )}Z j } γβ nf Z β T ) O j, Z i γβ )} g G 113 = n 1/2 E Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZi β T Z i γβ )}K h β T Z j γβ ) β T Z i γβ )} nf Z β T Z i γβ )} K hβ T Z j γβ ) β T Z i γβ )}Z j nf Z β T Z i γβ )} } γβ ) Similar to R 111, using the same derivation in S7), we can write the summand of G 111 as g E Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β ]. 3

31 EZi β T Z i γβ )}K h β T Z j γβ ) β T Z i γβ )} nf Z β T Z i γβ )} K hβ T Z j γβ ) β T ] Z i γβ )}Z j } γβ nf Z β T ) O i Z i γβ )} = g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β EZ i β T 2 f Z cβ T Z i γβ Z i γβ )} γβ ) ), sh}] s 2 Ks) cβ T Z i γβ ), sh} 2 2f Z β T Z i γβ )} ds 2 EZ i dβ T Z i γβ ), sh}} γβ )f Z dβ T Z i γβ ), sh}}] dβ T Z i γβ ), sh} ) 2 s 2 Ks) 2f Z β T Z i γβ )} ds h 2, which is a mean finite dimensional vector. Here cβ T Z i γβ ), sh} and dβ T Z i γβ ), sh} are points on the line connecting β T Z i γβ ) and β T Z i γβ )+ sh. Therefore, we have h 2 G 111 = O p 1), and in turn G 111 and G 113 have the order of O p h 2 ). Further, similar to R 112, we have G 112 =. As a result, G 11 = G G 112 G o p G G 112 G 113 ) = O p h 2 ). Now similar to S12), since } nf Z β T Z i γβ )} K hβ T Z j γβ ) β T Z i γβ )} 1 = O p h 2 + nh) 1/2 }, we otain G 12 = o p G 11 ). Thus, we have G 1 2 = G 11 + G 12 2 = O p h 2 ). S33) Using similar derivation as those led to S33) while exchanging the roles of Z and g, we otain G 2 2 = O p h 2 ). Using the same reasoning as those led to S16), and noting that G 3 is a finite dimensional vector, we have that the order of G 3 is the same as n 1/2 times the square of the order for kernel estimation errors, i.e., G 3 2 = O p n 1/2 h 4 + n 1/2 h 1 ) = o p 1) under Condition A2). Now we can further write G = G + G 1 + G 2, where G = n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ) Θ β α X i ) Eα X i ) β T α X i )} ], 31

32 G 1 = n 1/2 g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β Z i EZ i β T Z i γβ )} ] γβ ) n 1/2 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ }]Θ β Zi EZ i β T Z i γ ) } γ, G 2 = n 1/2 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ β Z i EZ i β T Z i γ )}γ n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )])Θ β α X i ) Eα X i ) β T α X i )} ] = n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ) Θ β αx i ) EαX i ) β T αx i )} ] α=α αx i ) X i,z i )}Z i γ α X i )}, where α X i, Z i ) is the point on the line connecting α X i ) and Z i γ. Clearly we have EG 2 ) =. Further from B r ) T γ α ) = O p h q ), we have = Z i γ α X i ) 2 B r t) T γ X i t)dt α t)x i t)dt 2 1/2 B r t) T γ α t) dt} 2 X i ) 2 = O p h q ), so h q G 2 2 = O p 1). Therefore, G 2 2 = O p h q ). Next = G 1 n 1 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] Θ β Zi EZ i β T Z i γ ) } γ ) n 1/2 γ β ) γ } 1 + o p 1)} γ T = G T 11n 1/2 γ β ) γ }1 + o p 1)}, 32

33 where G T 11 = n 1 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] β T Z i EZ i β T Z i γ )}Θ T γ. β T Z i γ Θ β Zi EZ i β T Z i γ ) } γ The last equality holds y using the same arguments as those lead to S23) Now G T 11 = n 1 is a J 1) d γ 1) matrix where C 12i t)b T r t)θ T γ dt C 12i t) = g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] β T X i t) Eβ T X i t) β T Z i γ }]. β T Z i γ Θ β Zi EZ i β T Z i γ ) } γ Because J is finite, G 11 and G 11l have the same order as their elements did, where G 11l is the lth column of G 11. The k, l) element of G 11 is G 11kl = n 1 B rk t)}c 12li dt, where C 12li is the lth element of C 12i. Now EC 12li t)}, EC 12li t)} <, C 12li ) 2 <, a.s. y Condition A6). Therefore, y Lemma 3 we have G 11kl = O p h ), and thus G 11l and G 11 satisfy G 11l = O p h ), G 11 = O p h ). S34) Since a 2 N 1/2 a for aritrary vector a with length N, and 2 N 1/2 for aritrary matrix with N rows, we otain G 11l 2 N 1/2 O p h ) = O p h 1/2 ), G 11 2 N 1/2 O p h ) = O p h 1/2 ). 33

34 Therefore, G T 11n 1/2 γ β ) γ } = O p max 1 l J GT 11ln 1/2 γ β ) γ }] = h 1/2 O p max 1 l J h 1/2 G T 11ln 1/2 γ β ) γ }] = O p 1) y Theorem 1 that a T γ β ) γ } = O p n 1/2 h 1/2 ) for aritrary a with a 2 <. Further, G T 11n 1/2 γ β ) γ } = G T 13n 1/2 γ β ) γ } + G 11 G 12 ) T n 1/2 γβ ) γ } where +G 12 G 13 ) T n 1/2 γ β ) γ } G T 12 g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] = E Θ β T β Zi EZ i β T Z i γ ) } γ Z i γ ) β T Z i EZ i β T Z i γ )}Θ T γ and G T 13 = g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ) E β T α X i )} Therefore, α X i ) Eα X i ) β T α X i )} ] β T Z i EZ i β T α X i )}]Θ T γ Θ β }. where G T 11 G T 12 = n 1 C 13i t)b T r t)θ T γ dt, C 13i = g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] β T Z i γ Θ β 34

35 Z i EZ i β T Z i γ ) } γ β T X i t) Eβ T X i t) β T Z i γ }] g Y i, β T Z i γ ) Eg Y i, β T Z i γ ) β T Z i γ } ] E Θ β T β Z i γ Z i EZ i β T Z i γ ) } ) γ β T X i t) Eβ T X i t) β T Z i γ }], with its lth element C 13l t) satisfies EC 13li t)} =, EC 13li t)} <, C 13li ) 2 <, a.s. y Condition A6). Therefore, using the similar argument as those led to S34) and Lemma 3 we have G 11 G 12 = O p h n 1 logn)} = o p h ). Further, G 12 G 13 = O p h q ) y Condition A5). As a result, we have G 12 G 13 = o p G 11 ) = o p h ) S35) and G 13 2 N G 13 = NO p G 11 ) = O p h 1/2 ) S36) y S34) and we can write G 1 = G T 13n 1/2 γ β ) γ } + o p 1). Comining with the result that G 2 = O p h q ) and the fact that G = G + G 1 + G 2, we have G = G + G T 13n 1/2 γ β ) γ } + o p 1) = O p 1). Further, G 1 = O p h 2 ), G 2 = O p h 2 ) and G 3 = o p 1), G = G +G 1 +G 2 +G 3, so we have G = G + G T 13n 1/2 γ β ) γ } + o p 1) = O p 1). S37) 35

36 The Asymptotic Property for H vector, and Note that H is a finite dimensional B r ) γβ ) α ) B r ) γβ ) B r )γ + B r )γ α ) = O p n 1/2 h 1/2 + h q ) = o p 1). Now y the fact that the kernel estimators are uniformly consistent, we have H = H + H 1 + o p 1), where H = E g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ) Θ β α X i ) Eα X i ) β T α X i )} ] / β T }Θ T β, S38) H 1 = n 1 g Y i, β T Z i γβ )} Eg Y i, β T Z i γβ )} β T Z i γβ )] ) Θ β Z i EZ i β T Z i γβ )} ] γβ )}/ γ T β )] γβ)/ β T β=β = G T 11 γ β)/ β T β=β 1 + o p 1)} = G T 13 γ β)/ β T β=β 1 + o p 1)} = G T 13P1 + o p 1)} = G T 13P + o p 1), where P is defined in S53). S39) The second equality holds ecause γβ ) is consistent to γ. The third equality holds y S35). The fourth equality holds y S52). The last equality holds ecause G 13 2 = O p h 1/2 ) y S36), and P 2 = O p h 1/2 ) y S54). Comining S37), S38), S39) and S32), we have n β β ) S4) 36

37 = H 1 G = H + H 1 + o p 1)} 1 G + G T 13n 1/2 γ β ) γ } + o p 1)} = H + G T 13P + o p 1)} 1 G + G T 13L + o p 1)} = O p 1) where L is defined in Theorem 1. Part II Now note that we can write P = P 1,..., P J 1 ), where P l is the lth column of P, l = 1,..., J 1, which can e written as. P l = E X argmin Pl il t)α t)dt + B r t) T Θ T P γ l β T X i t)dt Hence, } ]) 2 E B r t) T Θ T P γ l β T X i t)dt β T α X i ) g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]/ β T α X i )} }. B r ) T Θ T γ P l = argmin Br ) T Θ T γ P l E X il t)α t)dt + B r t) T Θ T P γ l β T X i t)dt } ]) 2 E B r t) T Θ T P γ l β T X i t)dt β T α X i ) g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]/ β T α X i )} }. Now let δ l C q, 1], δ l ) = 1 and δ l ) 2 = E X argmin δl il t)α t)dt + β T δ l t)x ic t)dt]) S41) } gc Y i, β T α X i )} where recalling that gc Y i, β T α X i )} is defined efore Theorem 2, and X ic s) = X i s) EX i s) β T α X i )}. We further define α c X i ) = α X i ) 37

38 Eα X i ) β T α X i )}. As the numer of spline knots goes to infinity, B r ) T Θ T γ P l δ l ) = O p h q ). Hence GT 13P l E gc Y i, β T α X i )}Θ β α c X i ) β T X ic t)δ l t)dt] = o p 1). S42) Further, the Gâteaux derivative of the target function in S41) at δ l = δ l in the direction w t) satisfies = E X il t)α t)dt + gc Y i, β T α X i )}/ v v= = 2E X il t)α t)dt gc Y i, β T α X i )} ]) 2 β T X ic t)δ l t) + v T wt)}dt ] β T X ic t)wt)dt +2 δ l t)θ β Eα c X i ) g Y i, β T α X i )}X T ict)]β dt ] = 2E X icl t)α t)dt gc Y i, β T α X i )} β T X ic t)wt)dt +2 δ l t)θ β Eα c X i ) g Y i, β T α X i )}X T ict)]β dt, where w t) is defined in 7), X icl is the lth element of X ic. The second equality holds y the definition of w t) in 7). The last equality holds ecause =. E EX il t) β T α }α t)dt gc Y i, β T α X i )} This implies E Θ β α c X i ) gc Y i, β T α X i )} = E X icl t)α t)dt gc Y i, β T α X i )} ] β T X ic t)δ l t)dt ] β T X ic t)wt)dt ] β T X ic t)wt)dt. This holds for each l = 1,..., J 1. Comine this result with S42), we have GT 13P + E gc Y i, β T α X i )} β T X ic t)wt)dtα c X i ) T Θβ] T

39 = o p 1). Next, y S29) and S3), where ĈQβ ) and C Q β ) in S29) and S3) are defined in S25), we can write where L = argmin Ln 1 gc Y i, β T α X i )} 1 + Further, y aove equality we have Let B r ) T Θ T γ L = argmin Br ) T Θ T γ L n 1 n 1/2 L = L1 + o p 1)}, S43) g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] gc Y i, β T α X i )} 1 + ]) 2 B r t) T Θ T Lβ T γ X ic t)dt gc Y i, β T α X i )}. g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] ]) 2 B r t) T Θ T Lβ T γ X ic t)dt gc Y i, β T α X i )}. η ) = argmin η ) n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] gc Y i, β T α X i )} 1 ]) 2 } + ηt)β T X ic t)dt gc Y i, β T α X i ). S44) As the numer of spline knots goes to infinity, B r ) T Θ T γ L ) η ) = O p h q ). Comining with S43) we have GT 13L E Θ β α c X i ) ] gc Y i, β T α X i )}β T X ic t) n 1/2 ηt)dt = o p 1). S45) 39

40 Now taking the Gâteaux derivative of the target function in S44) at η in the direction of wt), we have = n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )]) gc Y i, β T α X i )} 1 + ηt) + v T wt)}β T X ic t)dt ] gc Y i, β T α X i ) / v v= = 2n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )]) ] gc Y i, β T α X i )} 1 + ηt)β T X ic t)dt ) gc Y i, β T α X i )} β T X ic t)wt)dt = 2n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )]) } β T X ic t)wt)dt g c Y i, β T α X i )} = 2n ηt)e β T X ic t)dt ] β T X ic t)wt)dt + o p n 1/2 ) g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )]) } β T X ic t)wt)dt + 2 ηt)θ β Eα c X i ) ) g Y i, β T α X i )}X T ict)]β dt + o p n 1/2 ). The last equality holds y the definition of wt). This implies n 1 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] = +o p n 1/2 ) ) β T X ic t)wt)dt ηt)θ β Eα c X i ) g Y i, β T α X i )}X T ict)]β dt } 2 4

41 Comining with S45), we have GT 13L + n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] = o p 1). β T X ic t)w t)dt) 2 As a result, y S4) the population asymptotic forms of n β β ) can e written as n β β ) = H + G T 13P + o p 1)} 1 G + G T 13L + o p 1)} ] = H E gc Y i, β T α X i )} β T X ic t)wt)dtα c X i ) T Θ T β } 1 +o p 1) G n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )]) = A 1 B + o p 1), } ] β T X ic t)wt)dt + o p 1) where A = E gc Y i, β T α X i )}Θ β α c X i )} 2 ] ] ) E gc Y i, β T α X i )} β T X ic t)wt)dtα c X i ) T Θ T β and B = n 1/2 g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}] } Θ β α c X i ) β T X ic t)wt)dt. If g = g, then Eg Y i, β T α X i )} β T α X i )}] =, E g c Y i, β T α X i )} β T αx i )] = Eg 2 Y i, β T α X i )} β T αx i )] and w t) = w t) as defined in S48). Hence we have n β β) = A 1 B + o p 1) 41

42 where and A = Eg 2 Y i, β T α X i )}Θ β α c X i )} 2 ] ] E g 2 Y i, β T α X i )} β T X ic t)w t)dtα c X i ) T Θ T β B = n 1/2 gy i, β T α X i )}] Θ β α c X i ) = S oeff, } β T X ic t)w t)dt where S oeff is defined in S47). With simple calculation, we can see that A = varb ). Hence, when g is correctly specified, β is the efficient estimator. This proves the result. S3.3 Proof of Theorem 3 Proof: sup B r t) T γ β) α t) t,1] = sup B r t) T Θ T γ γ β) α t) t,1] sup B r t) T Θ T γ γ β) B r t) T Θ T γ γ β ) + sup B r t) T Θ T γ γ β ) B r t) T Θ T γ γ t,1] t,1] + sup B r t) T γ α t) t,1] γ β)/ β T β=β β β ) + γβ ) γ + O p h q ) = O p n 1/2 h 1/2 = O p n 1/2 h 1/2 + h q ) = O p n 1/2 h 1/2 ). + h q ) + γβ ) γ The third line holds y Lemma 1 and Condition A5). The fourth line holds ecause γ β)/ β T β=β β β ) = P 1 + o p P 1 ) S46) 42

43 y Lemma 4, where P 1 = E Θ γ Z i EZ i β α X i }] T β where g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ] ) β T α X i ) )} 1 ) β T Z i EZ i β T α X i )}]Θ T γ M β β ). M = EΘ γ Zi EZ i β T α X i )} ] T β α X i ) T Θ T β g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )}]/ β T α X i )}) is a d γ 1 d β dimensional matrix. Now note that P 1 P 1 2 y the fact that the vector sup norm is less than its L 2 norm, we otain P 1 E Θ γ Z i EZ i β α X i }] T β g Y i, β T α X i )} Eg Y i, β T α X i )} β T α X i )] ] ) β T α X i ) )} 1 ) β T Z i EZ i β T α X i )}]Θ T γ M 2 β β ) 2 = O p h 1 )O p h 1/2 )O p n 1/2 ) = O p n 1/2 h 1/2 ). The second to the last equality holds ecause of S55) and the root n convergence of β. In addition, M 2 = O p h 1/2 ) y S56). The fifth equality in S46) holds ecause y choosing a to e a unit vector with 1 at one entry in Theorem 1, we can otain that each entry of γβ ) γ is of order O p n 1/2 h 1/2 ), and thus γβ ) γ = O p n 1/2 h 1/2 ). The last equality in S46) holds y Condition A4). 2 43

44 S4 Necessary propositions and lemmas Proposition S4.1. The efficient score function of model 2) is S eff = S T effβ, ST effγ )T, where S effβ = f 2Y, β T Zγ) fy, β T Zγ) I J 1, )Z EZ β T Zγ)}γ, S effγ = f 2Y, β T Zγ) fy, β T Zγ), I d γ 1)Z EZ β T Zγ)} T β. Here f 2 stands for the derivative of f with respect to the second variale. Proof: We first calculate the score vector S = S T β, ST γ ) T. Taking derivative of the log likelihood of one oservation with respect to the parameters in β and γ, we otain S β = f 2Y, β T Zγ) fy, β T Zγ) I J 1, )Zγ, S γ = f 2Y, β T Zγ) fy, β T Zγ), I d γ 1)Z T β. We first show that S eff Λ. This is verified y noting that S eff = S ES Y, β T Zγ), and S satisfies ES Z) = = ES β T Zγ). In addition, we also have ES Y, β T Zγ) Λ f Λ since EES Y, β T Zγ) β T Zγ} =. Proposition S4.2. Under model 1), the efficient score function for β is } S oeff = gy, β T αx)} Θ β α c X) β T X c t)w t)dt S47) where w t) is a J 1)-dimensional function that satisfies = Θ β Eα c X)g 2 Y, β T αx)}x T c t)]β Eβ T X c s)g 2 Y, β T αx)}x T c t)β]w s)ds. S48) Here we use the suindex o to indicate quantities calculated under the original model 1). 44

45 Proof: We first make the oservation that Λ is the nuisance tangent space orthogonal complement of the B-spline approximated model 2). Follow the same arguments as those lead to Proposition 3, it can e shown that the spaces corresponding to Λ x, Λ f for model 1) are Λ ox = f Xt)} : f such that Ef) = ], Λ of = f Y, β T αx) } : f such that E f Xt)} = E f β T αx) } = ]. In addition, the nuisance tangent space with respect to αt) is Λ oα = g Y, β T αx) } ] β T Xt)wt)dt : wt) R J 1. After projecting Λ oα to Λ ox and Λ of to get the residual, we otain Λ oα Λ oα Π Λ oα Λ ox + Λ of ) = g Y, β T αx) } ] β T X c t)wt)dt : wt) R J 1. We can easily see that with respect to the model in 1), the nuisance tangent space is Λ = Λ ox Λ of Λ oα. We can see that the score function with respect to the parameters in β is S oβ = gy, β T αx)}θ β αx) = gy, β T αx)} Θ β α c X) +gy, β T αx)} β T X c t)w t)dt +gy, β T αx)}θ β EαX) β T αx)}, } β T X c t)w t)dt where the second and third summands of S oβ elong to Λ oα and Λ of respectively. We can also verify that the first summand of S oβ is simultaneously orthogonal to Λ ox, Λ of and Λ oα, hence the efficient score of model 1) is indeed as given in S47). Lemma 1. There is a constant D r > such that for each spline d γ k=1 c kb rk, and for each 1 p D r c p d γ k=1 c k B rk p c p, 45

46 where c = c k t k t k r )/r} 1/p, k = 1,..., d γ } T. Proof: This is a direct consequence of Theorem on page 145 in DeVore and Lorentz 1993). Lemma 2. Let u e a d γ -dimensional vector with u 2 = 1. There exist positive constants D 1, D 2, D 3, D 4 such that and in proaility. D 1 h u T Cβ)u D 2 h, D2 1 h 1 u T Cβ) 1 u D1 1 h 1, D 3 h u T Ĉβ)u D 4 h, D4 1 h 1 u T Ĉβ) 1 u D3 1 h 1 Proof: First note that y the Cauchy-Schwartz inequality, Lemma 1 and Condition A6), we have E u T = E } 2 ] B r t)β T Xt)dt dγ u k B rk t) k=1 dγ u k B rk t) k=1 u 2 2O1) = Oh ), }2 }2 dt β T Xt)} 2 dt } dte β T Xt)} 2 dt where u = u k t k t k r )/r} 1/2, k = 1,..., d γ } T, whose L 2 norm is of order Oh 1/2 ). Thus we have u T Cβ)u D 2 h for some positive constant D 2 <. As shown in 28) in Cardot et al. 23), since the eigenvalues of the covariance operator Γβ) are strictly positive, there is a positive constant D such that < Γβ)φ, φ > D φ 2, for φ H. 46

47 Note that B T r u H, so we have u T Cβ)u =< Γβ)B T r u, B T r u > D B T r u 2 D 1 u 2 h = D 1 h for a positive constant D 1 y Lemma 1 and Condition A4). Therefore, D 1 h u T Cβ)u D 2 h. And so D 1 2 h 1 Theorem 1.19 in Chatelin 1983), we have Ĉβ) Cβ) 2 sup 1 l d γ u T C 1 β)u D 1 d γ k=1 1 h 1 Γ n Γ 2 < B rk, B rl >. Further, with As shown in Cardot et al. 23), Lemma 5.3 in Cardot et al. 1999) implies Γ n Γ 2 = o p n h 1)/2 ). Further, y the property of B-spline asis, we have when k l > r, B rk B rl =. Therefore, sup 1 l dγ dγ k=1 < B rk, B rl > = Oh ), which implies Ĉβ) Cβ) 2 o p h n h 1)/2 ). S49) Now ecause h < 1, comine with the result that D 1 h u T Cu D 2 h, y the triangular inequality we otain and Thus, D 3 h u T Ĉβ)u = u T T Cβ)u + u Ĉβ) Cβ)}u D 2 h + u 2 Ĉβ) Cβ)}u 2 D 2 h + Ĉβ) Cβ)} 2 u 2 = D 2 h + o p h ) u T Ĉβ)u = u T T Cβ)u + u Ĉβ) Cβ)}u D 1 h u 2 Ĉβ) Cβ)}u 2 D 1 h Ĉβ) Cβ)} 2 u 2 = D 1 h + o p h ). u T Ĉβ)u D 4 h in proaility for some positive constant D 3, D 4 <. And so D 1 4 h u T Ĉβ) 1 u D 1 3 h 1 proves the result. in proaility. This 47

48 The result in Lemma 2 can e generalized to any vector valued random function with almost surely ounded L 2 norm and positive definite second moment operator. Therefore, we have the following corollary. Corollary 1. Let Q i t) e a d q -dimensional vector valued random function with ounded L 2 norm, and let v e an aritrary d q -dimensional vector. Let Γ Q v) e the second moment operator generated y v T Q i ), i.e., Γ Q v)φt) = E< v T Q i, φ > v T Q i t)}. Assume Γ Q v) is strictly positive definite. We define the matrix C Q v) to e a d γ d γ matrix with its k, l) element E B rk t)v T Q i t)dt B rl t)v T Q i t)dt}, and ĈQv) to e a d γ d γ matrix with its k, l) element n 1 B rk t)v T Q i t)dt B rl t)v T Q i t)dt. Let u e a d γ -dimensional vector with u 2 = 1. Then there are positive constants D 5, D 6, D 7, D 8 such that and in proaility. And D 5 h u T C Q v)u D 6 h, D 1 6 h 1 u T C 1 Q v)u D 1 5 h 1, D 7 h u T Ĉ Q v)u D 8 h, D 1 8 h 1 u T Ĉ 1 Q v)u D 1 7 h 1, ĈQv) C Q v) 2 o p h n h 1)/2 ). The proof of Corollary 1 follows the same arguments as those in the proof of Lemma 2 hence is omitted. 48

EVALUATIONS OF EXPECTED GENERALIZED ORDER STATISTICS IN VARIOUS SCALE UNITS

EVALUATIONS OF EXPECTED GENERALIZED ORDER STATISTICS IN VARIOUS SCALE UNITS APPLICATIONES MATHEMATICAE 9,3 (), pp. 85 95 Erhard Cramer (Oldenurg) Udo Kamps (Oldenurg) Tomasz Rychlik (Toruń) EVALUATIONS OF EXPECTED GENERALIZED ORDER STATISTICS IN VARIOUS SCALE UNITS Astract. We

More information

A converse Gaussian Poincare-type inequality for convex functions

A converse Gaussian Poincare-type inequality for convex functions Statistics & Proaility Letters 44 999 28 290 www.elsevier.nl/locate/stapro A converse Gaussian Poincare-type inequality for convex functions S.G. Bokov a;, C. Houdre ; ;2 a Department of Mathematics, Syktyvkar

More information

Upper Bounds for Stern s Diatomic Sequence and Related Sequences

Upper Bounds for Stern s Diatomic Sequence and Related Sequences Upper Bounds for Stern s Diatomic Sequence and Related Sequences Colin Defant Department of Mathematics University of Florida, U.S.A. cdefant@ufl.edu Sumitted: Jun 18, 01; Accepted: Oct, 016; Pulished:

More information

Real option valuation for reserve capacity

Real option valuation for reserve capacity Real option valuation for reserve capacity MORIARTY, JM; Palczewski, J doi:10.1016/j.ejor.2016.07.003 For additional information aout this pulication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/13838

More information

On variable bandwidth kernel density estimation

On variable bandwidth kernel density estimation JSM 04 - Section on Nonparametric Statistics On variable bandwidth kernel density estimation Janet Nakarmi Hailin Sang Abstract In this paper we study the ideal variable bandwidth kernel estimator introduced

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech

Math 6455 Nov 1, Differential Geometry I Fall 2006, Georgia Tech Math 6455 Nov 1, 26 1 Differential Geometry I Fall 26, Georgia Tech Lecture Notes 14 Connections Suppose that we have a vector field X on a Riemannian manifold M. How can we measure how much X is changing

More information

Smoothing the Nelson-Aalen Estimtor Biostat 277 presentation Chi-hong Tseng

Smoothing the Nelson-Aalen Estimtor Biostat 277 presentation Chi-hong Tseng Smoothing the Nelson-Aalen Estimtor Biostat 277 presentation Chi-hong seng Reference: 1. Andersen, Borgan, Gill, and Keiding (1993). Statistical Model Based on Counting Processes, Springer-Verlag, p.229-255

More information

1 Systems of Differential Equations

1 Systems of Differential Equations March, 20 7- Systems of Differential Equations Let U e an open suset of R n, I e an open interval in R and : I R n R n e a function from I R n to R n The equation ẋ = ft, x is called a first order ordinary

More information

(Part 1) High-dimensional statistics May / 41

(Part 1) High-dimensional statistics May / 41 Theory for the Lasso Recall the linear model Y i = p j=1 β j X (j) i + ɛ i, i = 1,..., n, or, in matrix notation, Y = Xβ + ɛ, To simplify, we assume that the design X is fixed, and that ɛ is N (0, σ 2

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Sample Solutions from the Student Solution Manual

Sample Solutions from the Student Solution Manual 1 Sample Solutions from the Student Solution Manual 1213 If all the entries are, then the matrix is certainly not invertile; if you multiply the matrix y anything, you get the matrix, not the identity

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

6 Inner Product and Hilbert Spaces

6 Inner Product and Hilbert Spaces 6 Inner Product and Hilbert Spaces 6. Motivation Of the different p-norms on R n, p = 2 is special. This is because the 2-norm (λ, λ 2,..., λ n ) 2 = λ 2 + λ2 2 + + λ2 n comes from the an inner product

More information

A Second Course in Elementary Differential Equations

A Second Course in Elementary Differential Equations A Second Course in Elementary Differential Equations Marcel B Finan Arkansas Tech University c All Rights Reserved August 3, 23 Contents 28 Calculus of Matrix-Valued Functions of a Real Variable 4 29 nth

More information

On Universality of Blow-up Profile for L 2 critical nonlinear Schrödinger Equation

On Universality of Blow-up Profile for L 2 critical nonlinear Schrödinger Equation On Universality of Blow-up Profile for L critical nonlinear Schrödinger Equation Frank Merle,, Pierre Raphael Université de Cergy Pontoise Institut Universitaire de France Astract We consider finite time

More information

Stable Process. 2. Multivariate Stable Distributions. July, 2006

Stable Process. 2. Multivariate Stable Distributions. July, 2006 Stable Process 2. Multivariate Stable Distributions July, 2006 1. Stable random vectors. 2. Characteristic functions. 3. Strictly stable and symmetric stable random vectors. 4. Sub-Gaussian random vectors.

More information

Homework 3 Solutions(Part 2) Due Friday Sept. 8

Homework 3 Solutions(Part 2) Due Friday Sept. 8 MATH 315 Differential Equations (Fall 017) Homework 3 Solutions(Part ) Due Frida Sept. 8 Part : These will e graded in detail. Be sure to start each of these prolems on a new sheet of paper, summarize

More information

Functional Analysis F3/F4/NVP (2005) Homework assignment 2

Functional Analysis F3/F4/NVP (2005) Homework assignment 2 Functional Analysis F3/F4/NVP (25) Homework assignment 2 All students should solve the following problems:. Section 2.7: Problem 8. 2. Let x (t) = t 2 e t/2, x 2 (t) = te t/2 and x 3 (t) = e t/2. Orthonormalize

More information

Explicit constructions of quasi-monte Carlo rules for the numerical integration of high dimensional periodic functions

Explicit constructions of quasi-monte Carlo rules for the numerical integration of high dimensional periodic functions Explicit constructions of quasi-monte Carlo rules for the numerical integration of high dimensional periodic functions By J. Dick at Sydney Astract In this paper we give first explicit constructions of

More information

Spiking problem in monotone regression : penalized residual sum of squares

Spiking problem in monotone regression : penalized residual sum of squares Spiking prolem in monotone regression : penalized residual sum of squares Jayanta Kumar Pal 12 SAMSI, NC 27606, U.S.A. Astract We consider the estimation of a monotone regression at its end-point, where

More information

Functional Analysis (2006) Homework assignment 2

Functional Analysis (2006) Homework assignment 2 Functional Analysis (26) Homework assignment 2 All students should solve the following problems: 1. Define T : C[, 1] C[, 1] by (T x)(t) = t x(s) ds. Prove that this is a bounded linear operator, and compute

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

arxiv: v3 [math.st] 10 Dec 2018

arxiv: v3 [math.st] 10 Dec 2018 Moving Block and Tapered Block Bootstrap for Functional Time Series with an Application to the K-Sample Mean Prolem arxiv:7.0070v3 [math.st] 0 Dec 208 Dimitrios PILAVAKIS, Efstathios PAPARODITIS and Theofanis

More information

Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 8, No. 1/2016. The space l (X) Namita Das

Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 8, No. 1/2016. The space l (X) Namita Das ISSN 2066-6594 Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 8, No. 1/2016 The space l (X) Namita Das Astract In this paper we have shown that the space c n n 0 cannot e complemented in l n n and c 0 (H)

More information

4 Sums of Independent Random Variables

4 Sums of Independent Random Variables 4 Sums of Independent Random Variables Standing Assumptions: Assume throughout this section that (,F,P) is a fixed probability space and that X 1, X 2, X 3,... are independent real-valued random variables

More information

A Note on the Central Limit Theorem for a Class of Linear Systems 1

A Note on the Central Limit Theorem for a Class of Linear Systems 1 A Note on the Central Limit Theorem for a Class of Linear Systems 1 Contents Yukio Nagahata Department of Mathematics, Graduate School of Engineering Science Osaka University, Toyonaka 560-8531, Japan.

More information

I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A)

I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A) I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A) UNIVERSITÉ CATHOLIQUE DE LOUVAIN D I S C U S S I O N P A P E R 2011/2 ESTIMATION

More information

An Approximation Criterion for Essential Self-adjointness of Dirichlet Operators on Certain Banach Spaces

An Approximation Criterion for Essential Self-adjointness of Dirichlet Operators on Certain Banach Spaces Potential Analysis 13: 49 421, 2. 2 Kluwer Academic Pulishers. Printed in the Netherlands. 49 An Approximation Criterion for Essential Self-adjointness of Dirichlet Operators on Certain Banach Spaces HONGWEI

More information

Generalized Method of Moments (GMM) Estimation

Generalized Method of Moments (GMM) Estimation Econometrics 2 Fall 2004 Generalized Method of Moments (GMM) Estimation Heino Bohn Nielsen of29 Outline of the Lecture () Introduction. (2) Moment conditions and methods of moments (MM) estimation. Ordinary

More information

Vector Spaces. EXAMPLE: Let R n be the set of all n 1 matrices. x 1 x 2. x n

Vector Spaces. EXAMPLE: Let R n be the set of all n 1 matrices. x 1 x 2. x n Vector Spaces DEFINITION: A vector space is a nonempty set V of ojects, called vectors, on which are defined two operations, called addition and multiplication y scalars (real numers), suject to the following

More information

ASYMPTOTIC STATISTICAL EQUIVALENCE FOR SCALAR ERGODIC DIFFUSIONS. 1. Introduction

ASYMPTOTIC STATISTICAL EQUIVALENCE FOR SCALAR ERGODIC DIFFUSIONS. 1. Introduction ASYMPTOTIC STATISTICAL EQUIVALENCE FO SCALA EGODIC DIFFUSIONS ANAK DALALYAN AND MAKUS EISS Astract. For scalar diffusion models with unknown drift function asymptotic equivalence in the sense of Le Cam

More information

Goodness-of-fit tests for the cure rate in a mixture cure model

Goodness-of-fit tests for the cure rate in a mixture cure model Biometrika (217), 13, 1, pp. 1 7 Printed in Great Britain Advance Access publication on 31 July 216 Goodness-of-fit tests for the cure rate in a mixture cure model BY U.U. MÜLLER Department of Statistics,

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Testing equality of autocovariance operators for functional time series

Testing equality of autocovariance operators for functional time series Testing equality of autocovariance operators for functional time series Dimitrios PILAVAKIS, Efstathios PAPARODITIS and Theofanis SAPATIAS Department of Mathematics and Statistics, University of Cyprus,

More information

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1 MATH 85: COMPLEX ANALYSIS FALL 2009/0 PROBLEM SET 9 SOLUTIONS. Consider the functions defined y g a (z) = eiπz/2 e iπz/2 + Show that g a maps the set to D(0, ) while g maps the set and g (z) = eπz/2 e

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 2 November 6 November Deadline to hand in the homeworks: your exercise class on week 9 November 13 November Exercises (1) Let X be the following space of piecewise

More information

1. Bounded linear maps. A linear map T : E F of real Banach

1. Bounded linear maps. A linear map T : E F of real Banach DIFFERENTIABLE MAPS 1. Bounded linear maps. A linear map T : E F of real Banach spaces E, F is bounded if M > 0 so that for all v E: T v M v. If v r T v C for some positive constants r, C, then T is bounded:

More information

CURRENT STATUS LINEAR REGRESSION. By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University

CURRENT STATUS LINEAR REGRESSION. By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University CURRENT STATUS LINEAR REGRESSION By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University We construct n-consistent and asymptotically normal estimates for the finite

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

Riemannian geometry of surfaces

Riemannian geometry of surfaces Riemannian geometry of surfaces In this note, we will learn how to make sense of the concepts of differential geometry on a surface M, which is not necessarily situated in R 3. This intrinsic approach

More information

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2 Least squares: Mathematical theory Below we provide the "vector space" formulation, and solution, of the least squares prolem. While not strictly necessary until we ring in the machinery of matrix algera,

More information

Lecture Notes 15 Prediction Chapters 13, 22, 20.4.

Lecture Notes 15 Prediction Chapters 13, 22, 20.4. Lecture Notes 15 Prediction Chapters 13, 22, 20.4. 1 Introduction Prediction is covered in detail in 36-707, 36-701, 36-715, 10/36-702. Here, we will just give an introduction. We observe training data

More information

Z i Q ij Z j. J(x, φ; U) = X T φ(t ) 2 h + where h k k, H(t) k k and R(t) r r are nonnegative definite matrices (R(t) is uniformly in t nonsingular).

Z i Q ij Z j. J(x, φ; U) = X T φ(t ) 2 h + where h k k, H(t) k k and R(t) r r are nonnegative definite matrices (R(t) is uniformly in t nonsingular). 2. LINEAR QUADRATIC DETERMINISTIC PROBLEM Notations: For a vector Z, Z = Z, Z is the Euclidean norm here Z, Z = i Z2 i is the inner product; For a vector Z and nonnegative definite matrix Q, Z Q = Z, QZ

More information

Exponential stability of families of linear delay systems

Exponential stability of families of linear delay systems Exponential stability of families of linear delay systems F. Wirth Zentrum für Technomathematik Universität Bremen 28334 Bremen, Germany fabian@math.uni-bremen.de Keywords: Abstract Stability, delay systems,

More information

Nonlinear Error Correction Model and Multiple-Threshold Cointegration May 23, / 31

Nonlinear Error Correction Model and Multiple-Threshold Cointegration May 23, / 31 Nonlinear Error Correction Model and Multiple-Threshold Cointegration Man Wang Dong Hua University, China Joint work with N.H.Chan May 23, 2014 Nonlinear Error Correction Model and Multiple-Threshold Cointegration

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries EC 521 MATHEMATICAL METHODS FOR ECONOMICS Lecture 1: Preliminaries Murat YILMAZ Boğaziçi University In this lecture we provide some basic facts from both Linear Algebra and Real Analysis, which are going

More information

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Additive functionals of infinite-variance moving averages Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Departments of Statistics The University of Chicago Chicago, Illinois 60637 June

More information

1 Hoeffding s Inequality

1 Hoeffding s Inequality Proailistic Method: Hoeffding s Inequality and Differential Privacy Lecturer: Huert Chan Date: 27 May 22 Hoeffding s Inequality. Approximate Counting y Random Sampling Suppose there is a ag containing

More information

Instrumental Variables Estimation and Weak-Identification-Robust. Inference Based on a Conditional Quantile Restriction

Instrumental Variables Estimation and Weak-Identification-Robust. Inference Based on a Conditional Quantile Restriction Instrumental Variables Estimation and Weak-Identification-Robust Inference Based on a Conditional Quantile Restriction Vadim Marmer Department of Economics University of British Columbia vadim.marmer@gmail.com

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Log-mean linear regression models for binary responses with an application to multimorbidity

Log-mean linear regression models for binary responses with an application to multimorbidity Log-mean linear regression models for inary responses with an application to multimoridity arxiv:1410.0580v3 [stat.me] 16 May 2016 Monia Lupparelli and Alerto Roverato March 30, 2016 Astract In regression

More information

Algebra II. Paulius Drungilas and Jonas Jankauskas

Algebra II. Paulius Drungilas and Jonas Jankauskas Algebra II Paulius Drungilas and Jonas Jankauskas Contents 1. Quadratic forms 3 What is quadratic form? 3 Change of variables. 3 Equivalence of quadratic forms. 4 Canonical form. 4 Normal form. 7 Positive

More information

On the large time behavior of solutions of fourth order parabolic equations and ε-entropy of their attractors

On the large time behavior of solutions of fourth order parabolic equations and ε-entropy of their attractors On the large time ehavior of solutions of fourth order paraolic equations and ε-entropy of their attractors M.A. Efendiev & L.A. Peletier Astract We study the large time ehavior of solutions of a class

More information

Nonlinear function on function additive model with multiple predictor curves. Xin Qi and Ruiyan Luo. Georgia State University

Nonlinear function on function additive model with multiple predictor curves. Xin Qi and Ruiyan Luo. Georgia State University Statistica Sinica: Supplement Nonlinear function on function additive model with multiple predictor curves Xin Qi and Ruiyan Luo Georgia State University Supplementary Material This supplementary material

More information

Minimizing properties of geodesics and convex neighborhoods

Minimizing properties of geodesics and convex neighborhoods Minimizing properties of geodesics and convex neighorhoods Seminar Riemannian Geometry Summer Semester 2015 Prof. Dr. Anna Wienhard, Dr. Gye-Seon Lee Hyukjin Bang July 10, 2015 1. Normal spheres In the

More information

Lecture 15: Quadratic approximation and the second variation formula

Lecture 15: Quadratic approximation and the second variation formula Lecture 15: Quadratic approximation and the second variation formula Symmetric ilinear forms and inner products (15.1) The associated self-adjoint operator. Let V e a finite dimensional real vector space

More information

Chapter 2 Canonical Correlation Analysis

Chapter 2 Canonical Correlation Analysis Chapter 2 Canonical Correlation Analysis Canonical correlation analysis CCA, which is a multivariate analysis method, tries to quantify the amount of linear relationships etween two sets of random variales,

More information

Logarithms. For example:

Logarithms. For example: Math Review Summation Formulas Let >, let A, B, and C e constants, and let f and g e any functions. Then: f C Cf ) ) S: factor out constant ± ± g f g f ) ) )) ) S: separate summed terms C C ) 6 ) ) Computer

More information

Summation Formulas. Math Review. Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S1: factor out constant

Summation Formulas. Math Review. Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S1: factor out constant Computer Science Dept Va Tech August 005 005 McQuain WD Summation Formulas Let > 0, let A, B, and C e constants, and let f and g e any functions. Then: f C Cf ) ) S: factor out constant g f g f ) ) ))

More information

Proofs, Tables and Figures

Proofs, Tables and Figures e-companion to Levi, Perakis and Uichanco: Data-driven Newsvendor Prolem ec Proofs, Tales and Figures In this electronic companion to the paper, we provide proofs of the theorems and lemmas. This companion

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Consider a sample of observations on a random variable Y. his generates random variables: (y 1, y 2,, y ). A random sample is a sample (y 1, y 2,, y ) where the random variables y

More information

LECTURE-13 : GENERALIZED CAUCHY S THEOREM

LECTURE-13 : GENERALIZED CAUCHY S THEOREM LECTURE-3 : GENERALIZED CAUCHY S THEOREM VED V. DATAR The aim of this lecture to prove a general form of Cauchy s theorem applicable to multiply connected domains. We end with computations of some real

More information

{η : η=linear combination of 1, Z 1,, Z n

{η : η=linear combination of 1, Z 1,, Z n If 3. Orthogonal projection. Conditional expectation in the wide sense Let (X n n be a sequence of random variables with EX n = σ n and EX n 0. EX k X j = { σk, k = j 0, otherwise, (X n n is the sequence

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

TWO TO ONE IMAGES AND PFA

TWO TO ONE IMAGES AND PFA TWO TO ONE IMAGES AND PFA ALAN DOW Astract. We prove that all maps on N that are exactly two to one are trivial if PFA is assumed. 1. Introduction A map f : X K is precisely two to one if for each k K,

More information

Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S2: separate summed terms. S7: sum of k2^(k-1)

Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S2: separate summed terms. S7: sum of k2^(k-1) Summation Formulas Let > 0, let A, B, and C e constants, and let f and g e any functions. Then: k Cf ( k) C k S: factor out constant f ( k) k ( f ( k) ± g( k)) k S: separate summed terms f ( k) ± k g(

More information

A strong consistency proof for heteroscedasticity and autocorrelation consistent covariance matrix estimators

A strong consistency proof for heteroscedasticity and autocorrelation consistent covariance matrix estimators A strong consistency proof for heteroscedasticity and autocorrelation consistent covariance matrix estimators Robert M. de Jong Department of Economics Michigan State University 215 Marshall Hall East

More information

A Primer in Econometric Theory

A Primer in Econometric Theory A Primer in Econometric Theory Lecture 1: Vector Spaces John Stachurski Lectures by Akshay Shanker May 5, 2017 1/104 Overview Linear algebra is an important foundation for mathematics and, in particular,

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

Controllability of the linear 1D wave equation with inner moving for

Controllability of the linear 1D wave equation with inner moving for Controllability of the linear D wave equation with inner moving forces ARNAUD MÜNCH Université Blaise Pascal - Clermont-Ferrand - France Toulouse, May 7, 4 joint work with CARLOS CASTRO (Madrid) and NICOLAE

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

Fixed-b Inference for Testing Structural Change in a Time Series Regression

Fixed-b Inference for Testing Structural Change in a Time Series Regression Fixed- Inference for esting Structural Change in a ime Series Regression Cheol-Keun Cho Michigan State University imothy J. Vogelsang Michigan State University August 29, 24 Astract his paper addresses

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

SVETLANA KATOK AND ILIE UGARCOVICI (Communicated by Jens Marklof)

SVETLANA KATOK AND ILIE UGARCOVICI (Communicated by Jens Marklof) JOURNAL OF MODERN DYNAMICS VOLUME 4, NO. 4, 010, 637 691 doi: 10.3934/jmd.010.4.637 STRUCTURE OF ATTRACTORS FOR (a, )-CONTINUED FRACTION TRANSFORMATIONS SVETLANA KATOK AND ILIE UGARCOVICI (Communicated

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 22: Preliminaries for Semiparametric Inference

Introduction to Empirical Processes and Semiparametric Inference Lecture 22: Preliminaries for Semiparametric Inference Introduction to Empirical Processes and Semiparametric Inference Lecture 22: Preliminaries for Semiparametric Inference Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

University of Pavia. M Estimators. Eduardo Rossi

University of Pavia. M Estimators. Eduardo Rossi University of Pavia M Estimators Eduardo Rossi Criterion Function A basic unifying notion is that most econometric estimators are defined as the minimizers of certain functions constructed from the sample

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

The variance for partial match retrievals in k-dimensional bucket digital trees

The variance for partial match retrievals in k-dimensional bucket digital trees The variance for partial match retrievals in k-dimensional ucket digital trees Michael FUCHS Department of Applied Mathematics National Chiao Tung University January 12, 21 Astract The variance of partial

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Georgian Mathematical Journal 1(94), No. 4, ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS

Georgian Mathematical Journal 1(94), No. 4, ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS Georgian Mathematical Journal 1(94), No. 4, 419-427 ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS V. ŠEDA AND J. ELIAŠ Astract. For a system of functional differential equations of an

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

Stochastic Equicontinuity in Nonlinear Time Series Models. Andreas Hagemann University of Notre Dame. June 10, 2013

Stochastic Equicontinuity in Nonlinear Time Series Models. Andreas Hagemann University of Notre Dame. June 10, 2013 Stochastic Equicontinuity in Nonlinear Time Series Models Andreas Hagemann University of Notre Dame June 10, 2013 In this paper I provide simple and easily verifiable conditions under which a strong form

More information

Nonlinear equations. Norms for R n. Convergence orders for iterative methods

Nonlinear equations. Norms for R n. Convergence orders for iterative methods Nonlinear equations Norms for R n Assume that X is a vector space. A norm is a mapping X R with x such that for all x, y X, α R x = = x = αx = α x x + y x + y We define the following norms on the vector

More information

7 Influence Functions

7 Influence Functions 7 Influence Functions The influence function is used to approximate the standard error of a plug-in estimator. The formal definition is as follows. 7.1 Definition. The Gâteaux derivative of T at F in the

More information

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto

Reproducing Kernel Hilbert Spaces Class 03, 15 February 2006 Andrea Caponnetto Reproducing Kernel Hilbert Spaces 9.520 Class 03, 15 February 2006 Andrea Caponnetto About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

A Note on Hilbertian Elliptically Contoured Distributions

A Note on Hilbertian Elliptically Contoured Distributions A Note on Hilbertian Elliptically Contoured Distributions Yehua Li Department of Statistics, University of Georgia, Athens, GA 30602, USA Abstract. In this paper, we discuss elliptically contoured distribution

More information

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2. ANALYSIS QUALIFYING EXAM FALL 27: SOLUTIONS Problem. Determine, with justification, the it cos(nx) n 2 x 2 dx. Solution. For an integer n >, define g n : (, ) R by Also define g : (, ) R by g(x) = g n

More information

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 71 2009 2744 2752 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A nonlinear inequality and applications N.S. Hoang A.G. Ramm

More information

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation Statistics 62: L p spaces, metrics on spaces of probabilites, and connections to estimation Moulinath Banerjee December 6, 2006 L p spaces and Hilbert spaces We first formally define L p spaces. Consider

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

Spectral representations and ergodic theorems for stationary stochastic processes

Spectral representations and ergodic theorems for stationary stochastic processes AMS 263 Stochastic Processes (Fall 2005) Instructor: Athanasios Kottas Spectral representations and ergodic theorems for stationary stochastic processes Stationary stochastic processes Theory and methods

More information

Online Supplementary Appendix B

Online Supplementary Appendix B Online Supplementary Appendix B Uniqueness of the Solution of Lemma and the Properties of λ ( K) We prove the uniqueness y the following steps: () (A8) uniquely determines q as a function of λ () (A) uniquely

More information

Estimation of Dynamic Regression Models

Estimation of Dynamic Regression Models University of Pavia 2007 Estimation of Dynamic Regression Models Eduardo Rossi University of Pavia Factorization of the density DGP: D t (x t χ t 1, d t ; Ψ) x t represent all the variables in the economy.

More information

Stein s Method and Characteristic Functions

Stein s Method and Characteristic Functions Stein s Method and Characteristic Functions Alexander Tikhomirov Komi Science Center of Ural Division of RAS, Syktyvkar, Russia; Singapore, NUS, 18-29 May 2015 Workshop New Directions in Stein s method

More information

A note on L convergence of Neumann series approximation in missing data problems

A note on L convergence of Neumann series approximation in missing data problems A note on L convergence of Neumann series approximation in missing data problems Hua Yun Chen Division of Epidemiology & Biostatistics School of Public Health University of Illinois at Chicago 1603 West

More information