6 Inner Product and Hilbert Spaces

Size: px
Start display at page:

Download "6 Inner Product and Hilbert Spaces"

Transcription

1 6 Inner Product and Hilbert Spaces 6. Motivation Of the different p-norms on R n, p = 2 is special. This is because the 2-norm (λ, λ 2,..., λ n ) 2 = λ 2 + λ λ2 n comes from the an inner product (λ, λ 2,..., λ n ), (µ, µ 2,..., µ n ) = λ µ + λ 2 µ λ n µ n Thus, one can represent x 2 = x, x. It should also be noted that x y x, y = 6.2 Definition () An inner product on a vector space V over R is a mapping, : V V R with the properties: (i) positive definiteness x, x x V x, x x = (ii) symmetry x, y = y, x x, y V (iii) bilinearity αx + βy, z = α x, z + β y, z α, β R, x, y V It should be noted that it can be shown that x, x = x = as follows: x, x = x = by positive-definiteness, = x, = x, = by bilinearity And so x = x, x = Also, one can find a general form of αa + βb, γc + δd as follows: αa + βb, γc + δd = α a, γc + δd + β b, γc + δd by bilinearity = α γc + δd, a + β γc + δd, b by symmetry = α (γ c, a + δ d, a ) + β (γ c, b + δ d, b ) by bilinearity = αγ a, c + αδ a, d + βγ b, c + βδ b, d by symmetry

2 (2) Given an inner product on V, we define a norm x = x, x To prove that this is a norm, we must verify: (i) Positive definiteness This holds by the positive definiteness of the inner product (ii) Linearity with respect to scalar multiplication λx = λx, λx = λ 2 x, x = λ x, x = λ x (iii) The triangle inequality This proof shall be left until we prove the Cauchy-Schwarz-Buniakowsky inequality 6.3 Examples λ R, x V () The vector space R n with inner product (λ,..., λ n ), (µ,..., µ n ) = λ µ + + λ n µ n Proof: (x = (λ, λ 2,..., λ n ), y = (µ, µ 2,..., µ n ), z = (ν, ν 2,..., ν n )) (i) Positive definiteness x, x = (λ, λ 2,..., λ n ), (λ, λ 2,..., λ n ) = λ 2 + λ λ2 n Furthermore, it is clear that x, x = if and only if λ = λ 2 = = λ n = x = (ii) Symmetry (iii) Bilinearity x, y = λ i µ i = i= µ i λ i = y, x x, y R n i= αx + βy, z = (αλ + βµ,..., αλ n + βµ n ), (ν, ν 2,..., ν n ) = (αλ i + βµ i )(ν i ) = (αλ i ν i ) + (βµ i ν i ) = α i= (λ i ν i ) + β i= i= (µ i ν i ) i= i= = α x, z + β y, z α, β R, x, y, z R n (2) The vector space C([, ], R) of continuous functions f : [, ] R with inner product f, g = f(t)g(t)dt Proof: 2

3 (i) Positive definiteness (ii) Symmetry f, g = f, f = (iii) Bilinearity f(t)g(t)dt = αf + βg, h = f(t) 2 dt = = α dt = f C([, ], R) g(t)f(t)dt = g, f f, g C([, ], R) (αf + βg)(t)h(t)dt (αf(t)h(t) + βg(t)h(t))dt f(t)h(t)dt + β = α f, h + β g, h g(t)h(t)dt It is also interesting to note that the norm defined by this inner product is not the sup-norm, f = sup f(t) t [,] but the 2-norm, f 2 = ( f, f = ) f(t) 2 2 dt (3) The vector space R 3 with inner product, A defined by x, y A = xay T x, y R where A = Proof: (i) Positive definiteness We note that for a Hermitian matrix (symmetric in the real case), the condition xax T > x R 3 is satisfied if and only if A is positive definite (by definition of positive definite matrices). Recalling that an n n-matrix is positive definite if and only if its n eigenvalues are positive, it is simple to confirm that χ A (x) = x 3 9x 2 + 2x 3, and a quick check reveals that χ A (λ) = for three values of λ >. As a result, we can confirm that, A is positivedefinite. 3

4 5 x y 5 Figure : A plot of χ A (x) (ii) Symmetry We begin by noting that (xa) T = A T x T (iii) Bilinearity x, y A = xay T = x ( ya T ) T = x (ya) T A = A T = (ya) x T = yax T = y, x A αx + βy, z A = (αx + βy) Az T = αxaz T + βyaz T = α x, z A + β y, z A Noting that this proof is actually quite general, we can draw the conclusion that, A defines an inner product on R n if and only if A is an n n symmetric matrix with n positive eigenvalues. We know that for the standard dot product on R n, it is the case that x, y = x y cos θ, where θ is the angle between the vectors x and y. Thus, x, y = x y cos θ x y. One can prove that this is true of all inner product spaces. 4

5 6.4 The Cauchy-Schwarz-Buniakowsky Inequality Let, be an inner product on a vector space V. Then we have x, y x y x, y V and equality holds if and only if x and y are co-linear (that is y = or x = αy for some α R). Proof If x =, then x, y = y, y = y, y =, and so the proof is complete (as x = x = ). Similarly, if y =, then x, y = x, x = x, x =. Thus we can assume that x, y. Consider x ty V for t R. x ty, x ty = x, x t x, y t y, x +t 2 y, y = x 2 2t x, y +t 2 y 2 Since t was arbitrary, we can choose what we want it to be. So let t = ± x y, which is always defined and non-zero, since x, y. Substituting this into the above, we have ±2 x x, y 2 x 2 y ±2 x, y 2 x y x, y x y For equality to hold, we neet x ty = by positive definiteness. x = ty, and so x and y are co-linear. Thus 6.5 Corollary We can now prove that the norm defined by the inner product is in fact a norm, by proving the triangle inequality. So let, be an inner product on a vector space V. Then x = x, x is a norm on V. Proof All that remains is to verify the triangle inequality. x + y 2 = x + y, x + y = x, x + x, y + y, x + y, y = x, x + y, y + 2 x, y x 2 + y x y by (6.4) = ( x + y ) 2 x, y V but x, and f(x) = x 2 is monotonically increasing for x, so x + y x + y x, y V This completes the proof that =, is a norm. 5

6 6.6 Corollary Let V be an inner product space with an induced norm. Then, : V V R is continuous, that is if lim n x n = x and lim n y n = y, then lim n x n, y n = x, y. Proof x n, y n x, y = x n, y n x, y n + x, y n x, y x n, y n x, y n + x, y n x, y = x n x, y n + x, y n y x n x y n + x y n y ( { }) But lim y ε n = y, so ε > N N so that n N, y n y < min n 2 x, ε (because x is constant, and thus so is 2 x ). Since y n y <, we know that y n < y + n N. Likewise, by a similar calculation as above, we know that ε >, n M, x n x < ε 2( y +), since y is again constant. Thus, we can say that n max {N, M} { } ε ε x n, y n x, y < ( y + ) + x min 2( y + ) 2 x, < ε 2 + ε 2 = ε Thus, ε > ( N N such that x n, y n x, y < ε). proof that, is continuous. This completes the 6.7 Results () Since f, g = f(t)g(t)dt is an inner product on (C([, ], R), (6.4) gives us that ( ) ( f(t)g(t)dt f(t) 2 2 ) dt g(t) 2 2 dt f, g (C([, ], R) ( (2) (6.6) implies that f 2 = f(t)2 dt defines a norm on (C([, ], R). This is not the sup-norm, and is not equivalent to the sup-norm. We do have that f 2 2 = f(t) 2 dt sup t [,] ) 2 f(t) 2 dt = sup f(t) 2 = f 2 t [,] However, the other direction ( f c f 2 ) is not true. Consider f n (t) = t n, f n (C([, ], R) n N. We note that f n () =, f n (t) = n N. Thus f n = n N f n 2 = t 2n dt = 2n + t2n+ t= t= = 2n + 6

7 So assume c such that f c f 2 n N. Then we merely need to choose n > c 2, and c f n 2 = c 2n + < c 2n < c 2c < = f n Thus 2 is weaker than, that is a sequence which converges with respect to the norm will always converge with respect to the norm 2, but the converse is not necessarily true. (3) This last point brings up the question of completeness with respect to the 2-norm. Consider the sequence of functions {f n } n N, where t 2 n f n (t) = nt n n < t < 2 2 t If this function is to converge, it must converge to the function t.6.8 Figure 2: A plot of f 2 (t), f 5 (t), and f 5 (t) f(t) = { t < 2 t 2 But this function is clearly not continuous, and so is not an element of C([, ], R). Assume n m without loss of generality. (i) We first verify that this example does not cause a problem for the sup-norm. f n f m = sup f n (t) f m (t) t [,] = sup t [,] = n m t 2 n nt n n < t 2 m (n m)t n m 2 2 m < t < 2 2 t 7

8 So, given ε = 4, and any N N, one can choose n = N, and m = 2N, giving f n f m = 2. So this is not a Cauchy sequence with respect to the sup-norm, and will thus not converge. (ii) We now show that this sequence does converge (and in fact does converge to f) with respect to the 2-norm. 6.8 Definition f n f 2 2 = f n (t) f(t) 2 dt = 2 2 n = 3n = 3n ( nt n 2 + ) 2 dt [ ( nt n 2 + ) 3 ] t= 2 t= 2 n So given ε >, we can take N > 3ε 2, and find that for every n N, f n f 2 < ε Thus, proving that the sequence {f n } n N converges to f, and that C([, ], R) is not complete under the 2-norm. An inner product space that is complete with respect to the induced norm is called a Hilbert Space. 8

Hilbert Spaces. Contents

Hilbert Spaces. Contents Hilbert Spaces Contents 1 Introducing Hilbert Spaces 1 1.1 Basic definitions........................... 1 1.2 Results about norms and inner products.............. 3 1.3 Banach and Hilbert spaces......................

More information

CHAPTER II HILBERT SPACES

CHAPTER II HILBERT SPACES CHAPTER II HILBERT SPACES 2.1 Geometry of Hilbert Spaces Definition 2.1.1. Let X be a complex linear space. An inner product on X is a function, : X X C which satisfies the following axioms : 1. y, x =

More information

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India CHAPTER 9 BY Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India E-mail : mantusaha.bu@gmail.com Introduction and Objectives In the preceding chapters, we discussed normed

More information

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3 (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. (a) Define d : V V + {0} by d(x, y) = 1 ξ j η j 2 j 1 + ξ j η j. Show that

More information

INNER PRODUCT SPACE. Definition 1

INNER PRODUCT SPACE. Definition 1 INNER PRODUCT SPACE Definition 1 Suppose u, v and w are all vectors in vector space V and c is any scalar. An inner product space on the vectors space V is a function that associates with each pair of

More information

Inner product spaces. Layers of structure:

Inner product spaces. Layers of structure: Inner product spaces Layers of structure: vector space normed linear space inner product space The abstract definition of an inner product, which we will see very shortly, is simple (and by itself is pretty

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Part 1a: Inner product, Orthogonality, Vector/Matrix norm

Part 1a: Inner product, Orthogonality, Vector/Matrix norm Part 1a: Inner product, Orthogonality, Vector/Matrix norm September 19, 2018 Numerical Linear Algebra Part 1a September 19, 2018 1 / 16 1. Inner product on a linear space V over the number field F A map,

More information

Section 7.5 Inner Product Spaces

Section 7.5 Inner Product Spaces Section 7.5 Inner Product Spaces With the dot product defined in Chapter 6, we were able to study the following properties of vectors in R n. ) Length or norm of a vector u. ( u = p u u ) 2) Distance of

More information

Linear Algebra Review

Linear Algebra Review January 29, 2013 Table of contents Metrics Metric Given a space X, then d : X X R + 0 and z in X if: d(x, y) = 0 is equivalent to x = y d(x, y) = d(y, x) d(x, y) d(x, z) + d(z, y) is a metric is for all

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

Another consequence of the Cauchy Schwarz inequality is the continuity of the inner product.

Another consequence of the Cauchy Schwarz inequality is the continuity of the inner product. . Inner product spaces 1 Theorem.1 (Cauchy Schwarz inequality). If X is an inner product space then x,y x y. (.) Proof. First note that 0 u v v u = u v u v Re u,v. (.3) Therefore, Re u,v u v (.) for all

More information

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set.

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set. Lecture # 3 Orthogonal Matrices and Matrix Norms We repeat the definition an orthogonal set and orthornormal set. Definition A set of k vectors {u, u 2,..., u k }, where each u i R n, is said to be an

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n Inner products and Norms Inner product of 2 vectors Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y 2 + + x n y n in R n Notation: (x, y) or y T x For complex vectors (x, y) = x 1 ȳ 1 + x 2

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

MATH 650. THE RADON-NIKODYM THEOREM

MATH 650. THE RADON-NIKODYM THEOREM MATH 650. THE RADON-NIKODYM THEOREM This note presents two important theorems in Measure Theory, the Lebesgue Decomposition and Radon-Nikodym Theorem. They are not treated in the textbook. 1. Closed subspaces

More information

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral radius of a matrix A may be obtained using the formula ρ(a) lim

More information

A SYNOPSIS OF HILBERT SPACE THEORY

A SYNOPSIS OF HILBERT SPACE THEORY A SYNOPSIS OF HILBERT SPACE THEORY Below is a summary of Hilbert space theory that you find in more detail in any book on functional analysis, like the one Akhiezer and Glazman, the one by Kreiszig or

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Real Analysis III. (MAT312β) Department of Mathematics University of Ruhuna. A.W.L. Pubudu Thilan

Real Analysis III. (MAT312β) Department of Mathematics University of Ruhuna. A.W.L. Pubudu Thilan Real Analysis III (MAT312β) Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Department of Mathematics University of Ruhuna Real Analysis III(MAT312β) 1/87 About course unit Course unit:

More information

Math 5520 Homework 2 Solutions

Math 5520 Homework 2 Solutions Math 552 Homework 2 Solutions March, 26. Consider the function fx) = 2x ) 3 if x, 3x ) 2 if < x 2. Determine for which k there holds f H k, 2). Find D α f for α k. Solution. We show that k = 2. The formulas

More information

General Inner Product and The Fourier Series

General Inner Product and The Fourier Series A Linear Algebra Approach Department of Mathematics University of Puget Sound 4-20-14 / Spring Semester Outline 1 2 Inner Product The inner product is an algebraic operation that takes two vectors and

More information

Projection Theorem 1

Projection Theorem 1 Projection Theorem 1 Cauchy-Schwarz Inequality Lemma. (Cauchy-Schwarz Inequality) For all x, y in an inner product space, [ xy, ] x y. Equality holds if and only if x y or y θ. Proof. If y θ, the inequality

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

a. Define a function called an inner product on pairs of points x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) in R n by

a. Define a function called an inner product on pairs of points x = (x 1, x 2,..., x n ) and y = (y 1, y 2,..., y n ) in R n by Real Analysis Homework 1 Solutions 1. Show that R n with the usual euclidean distance is a metric space. Items a-c will guide you through the proof. a. Define a function called an inner product on pairs

More information

Mathematics Department Stanford University Math 61CM/DM Inner products

Mathematics Department Stanford University Math 61CM/DM Inner products Mathematics Department Stanford University Math 61CM/DM Inner products Recall the definition of an inner product space; see Appendix A.8 of the textbook. Definition 1 An inner product space V is a vector

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Vector Spaces. Commutativity of +: u + v = v + u, u, v, V ; Associativity of +: u + (v + w) = (u + v) + w, u, v, w V ;

Vector Spaces. Commutativity of +: u + v = v + u, u, v, V ; Associativity of +: u + (v + w) = (u + v) + w, u, v, w V ; Vector Spaces A vector space is defined as a set V over a (scalar) field F, together with two binary operations, i.e., vector addition (+) and scalar multiplication ( ), satisfying the following axioms:

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

The Transpose of a Vector

The Transpose of a Vector 8 CHAPTER Vectors The Transpose of a Vector We now consider the transpose of a vector in R n, which is a row vector. For a vector u 1 u. u n the transpose is denoted by u T = [ u 1 u u n ] EXAMPLE -5 Find

More information

Archive of past papers, solutions and homeworks for. MATH 224, Linear Algebra 2, Spring 2013, Laurence Barker

Archive of past papers, solutions and homeworks for. MATH 224, Linear Algebra 2, Spring 2013, Laurence Barker Archive of past papers, solutions and homeworks for MATH 224, Linear Algebra 2, Spring 213, Laurence Barker version: 4 June 213 Source file: archfall99.tex page 2: Homeworks. page 3: Quizzes. page 4: Midterm

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Solutions for MAS277 Problems

Solutions for MAS277 Problems Solutions for MAS77 Problems Solutions for Chapter problems: Inner product spaces 1. No. The only part that fails, however, is the condition that f, f should mean that f. If f is a non-zero function that

More information

Definitions and Properties of R N

Definitions and Properties of R N Definitions and Properties of R N R N as a set As a set R n is simply the set of all ordered n-tuples (x 1,, x N ), called vectors. We usually denote the vector (x 1,, x N ), (y 1,, y N ), by x, y, or

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Geometrical Constants and. Norm Inequalities in Banach Spaces

Geometrical Constants and. Norm Inequalities in Banach Spaces Geometrical Constants and Norm Inequalities in Banach Spaces Hiroyasu Mizuguchi Doctoral Program in Fundamental Sciences Graduate School of Science and Technology Niigata University March 013 Contents

More information

ON A CHARACTERISATION OF INNER PRODUCT SPACES

ON A CHARACTERISATION OF INNER PRODUCT SPACES Georgian Mathematical Journal Volume 8 (2001), Number 2, 231 236 ON A CHARACTERISATION OF INNER PRODUCT SPACES G. CHELIDZE Abstract. It is well known that for the Hilbert space H the minimum value of the

More information

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012

MAT 419 Lecture Notes Transcribed by Eowyn Cenek 6/1/2012 (Homework 1: Chapter 1: Exercises 1-7, 9, 11, 19, due Monday June 11th See also the course website for lectures, assignments, etc) Note: today s lecture is primarily about definitions Lots of definitions

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Topic 0: Vector spaces 0.1 Basic notation Here are some of the fundamental sets and spaces

More information

Normed & Inner Product Vector Spaces

Normed & Inner Product Vector Spaces Normed & Inner Product Vector Spaces ECE 174 Introduction to Linear & Nonlinear Optimization Ken Kreutz-Delgado ECE Department, UC San Diego Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 1 / 27 Normed

More information

Elements of Convex Optimization Theory

Elements of Convex Optimization Theory Elements of Convex Optimization Theory Costis Skiadas August 2015 This is a revised and extended version of Appendix A of Skiadas (2009), providing a self-contained overview of elements of convex optimization

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers.

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers. Chapter 3 Duality in Banach Space Modern optimization theory largely centers around the interplay of a normed vector space and its corresponding dual. The notion of duality is important for the following

More information

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32 Functional Analysis Martin Brokate Contents 1 Normed Spaces 2 2 Hilbert Spaces 2 3 The Principle of Uniform Boundedness 32 4 Extension, Reflexivity, Separation 37 5 Compact subsets of C and L p 46 6 Weak

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: ADJOINTS IN HILBERT SPACES CHRISTOPHER HEIL 1. Adjoints in Hilbert Spaces Recall that the dot product on R n is given by x y = x T y, while the dot product on C n is

More information

Euclidean Space. This is a brief review of some basic concepts that I hope will already be familiar to you.

Euclidean Space. This is a brief review of some basic concepts that I hope will already be familiar to you. Euclidean Space This is a brief review of some basic concepts that I hope will already be familiar to you. There are three sets of numbers that will be especially important to us: The set of all real numbers,

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

1 Inner Product Space

1 Inner Product Space Ch - Hilbert Space 1 4 Hilbert Space 1 Inner Product Space Let E be a complex vector space, a mapping (, ) : E E C is called an inner product on E if i) (x, x) 0 x E and (x, x) = 0 if and only if x = 0;

More information

4 Linear operators and linear functionals

4 Linear operators and linear functionals 4 Linear operators and linear functionals The next section is devoted to studying linear operators between normed spaces. Definition 4.1. Let V and W be normed spaces over a field F. We say that T : V

More information

Problem set 4, Real Analysis I, Spring, 2015.

Problem set 4, Real Analysis I, Spring, 2015. Problem set 4, Real Analysis I, Spring, 215. (18) Let f be a measurable finite-valued function on [, 1], and suppose f(x) f(y) is integrable on [, 1] [, 1]. Show that f is integrable on [, 1]. [Hint: Show

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Theorem (4.11). Let M be a closed subspace of a Hilbert space H. For any x, y E, the parallelogram law applied to x/2 and y/2 gives.

Theorem (4.11). Let M be a closed subspace of a Hilbert space H. For any x, y E, the parallelogram law applied to x/2 and y/2 gives. Math 641 Lecture #19 4.11, 4.12, 4.13 Inner Products and Linear Functionals (Continued) Theorem (4.10). Every closed, convex set E in a Hilbert space H contains a unique element of smallest norm, i.e.,

More information

Further Mathematical Methods (Linear Algebra) 2002

Further Mathematical Methods (Linear Algebra) 2002 Further Mathematical Methods (Linear Algebra) 22 Solutions For Problem Sheet 3 In this Problem Sheet, we looked at some problems on real inner product spaces. In particular, we saw that many different

More information

Inner Product and Orthogonality

Inner Product and Orthogonality Inner Product and Orthogonality P. Sam Johnson October 3, 2014 P. Sam Johnson (NITK) Inner Product and Orthogonality October 3, 2014 1 / 37 Overview In the Euclidean space R 2 and R 3 there are two concepts,

More information

SOME FUNDAMENTAL THEOREMS IN BANACH SPACES AND HILBERT SPACES

SOME FUNDAMENTAL THEOREMS IN BANACH SPACES AND HILBERT SPACES SOME FUNDAMENTAL THEOREMS IN BANACH SPACES AND HILBERT SPACES Sanjay Kumar Department of Mathematics Central University of Jammu, India sanjaykmath@gmail.com Sanjay Kumar (Central University of Jammu)

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space. University of Bergen General Functional Analysis Problems with solutions 6 ) Prove that is unique in any normed space. Solution of ) Let us suppose that there are 2 zeros and 2. Then = + 2 = 2 + = 2. 2)

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

0.1 Pointwise Convergence

0.1 Pointwise Convergence 2 General Notation 0.1 Pointwise Convergence Let {f k } k N be a sequence of functions on a set X, either complex-valued or extended real-valued. We say that f k converges pointwise to a function f if

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

Linear Normed Spaces (cont.) Inner Product Spaces

Linear Normed Spaces (cont.) Inner Product Spaces Linear Normed Spaces (cont.) Inner Product Spaces October 6, 017 Linear Normed Spaces (cont.) Theorem A normed space is a metric space with metric ρ(x,y) = x y Note: if x n x then x n x, and if {x n} is

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

10.1. The spectrum of an operator. Lemma If A < 1 then I A is invertible with bounded inverse

10.1. The spectrum of an operator. Lemma If A < 1 then I A is invertible with bounded inverse 10. Spectral theory For operators on finite dimensional vectors spaces, we can often find a basis of eigenvectors (which we use to diagonalize the matrix). If the operator is symmetric, this is always

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

Lecture 3. Econ August 12

Lecture 3. Econ August 12 Lecture 3 Econ 2001 2015 August 12 Lecture 3 Outline 1 Metric and Metric Spaces 2 Norm and Normed Spaces 3 Sequences and Subsequences 4 Convergence 5 Monotone and Bounded Sequences Announcements: - Friday

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II February 23 2017 Separation of variables Wave eq. (PDE) 2 u t (t, x) = 2 u 2 c2 (t, x), x2 c > 0 constant. Describes small vibrations in a homogeneous string. u(t, x)

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

Some Results in Generalized n-inner Product Spaces

Some Results in Generalized n-inner Product Spaces International Mathematical Forum, 4, 2009, no. 21, 1013-1020 Some Results in Generalized n-inner Product Spaces Renu Chugh and Sushma 1 Department of Mathematics M.D. University, Rohtak - 124001, India

More information

MATH 532: Linear Algebra

MATH 532: Linear Algebra MATH 532: Linear Algebra Chapter 5: Norms, Inner Products and Orthogonality Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2015 fasshauer@iit.edu MATH 532 1 Outline

More information

Intertibility and spectrum of the multiplication operator on the space of square-summable sequences

Intertibility and spectrum of the multiplication operator on the space of square-summable sequences Intertibility and spectrum of the multiplication operator on the space of square-summable sequences Objectives Establish an invertibility criterion and calculate the spectrum of the multiplication operator

More information

Functional Analysis. AMAT 617 University of Calgary Winter semester Lecturer: Gilad Gour Notes taken by Mark Girard.

Functional Analysis. AMAT 617 University of Calgary Winter semester Lecturer: Gilad Gour Notes taken by Mark Girard. Functional Analysis AMAT 617 University of Calgary Winter semester 2014 Lecturer: Gilad Gour Notes taken by Mark Girard April 12, 2014 Contents 1 Lecture 1 4 1.1 Normed Spaces.......................................

More information

Numerical Methods for Differential Equations Mathematical and Computational Tools

Numerical Methods for Differential Equations Mathematical and Computational Tools Numerical Methods for Differential Equations Mathematical and Computational Tools Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 Part 1. Vector norms, matrix norms and logarithmic

More information

11. Spectral theory For operators on finite dimensional vectors spaces, we can often find a basis of eigenvectors (which we use to diagonalize the

11. Spectral theory For operators on finite dimensional vectors spaces, we can often find a basis of eigenvectors (which we use to diagonalize the 11. Spectral theory For operators on finite dimensional vectors spaces, we can often find a basis of eigenvectors (which we use to diagonalize the matrix). If the operator is symmetric, this is always

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall A: Inner products

Linear Algebra. Paul Yiu. Department of Mathematics Florida Atlantic University. Fall A: Inner products Linear Algebra Paul Yiu Department of Mathematics Florida Atlantic University Fall 2011 6A: Inner products In this chapter, the field F = R or C. We regard F equipped with a conjugation χ : F F. If F =

More information

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY MATH 22: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY When discussing separation of variables, we noted that at the last step we need to express the inhomogeneous initial or boundary data as

More information

SOME RESULTS ON 2-INNER PRODUCT SPACES

SOME RESULTS ON 2-INNER PRODUCT SPACES Novi Sad J. Math. Vol. 37, No. 2, 2007, 35-40 SOME RESULTS ON 2-INNER PRODUCT SPACES H. Mazaheri 1, R. Kazemi 1 Abstract. We onsider Riesz Theorem in the 2-inner product spaces and give some results in

More information

Matrix representation of a linear map

Matrix representation of a linear map Matrix representation of a linear map As before, let e i = (0,..., 0, 1, 0,..., 0) T, with 1 in the i th place and 0 elsewhere, be standard basis vectors. Given linear map f : R n R m we get n column vectors

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

(, ) : R n R n R. 1. It is bilinear, meaning it s linear in each argument: that is

(, ) : R n R n R. 1. It is bilinear, meaning it s linear in each argument: that is 17 Inner products Up until now, we have only examined the properties of vectors and matrices in R n. But normally, when we think of R n, we re really thinking of n-dimensional Euclidean space - that is,

More information

Basic Elements of Linear Algebra

Basic Elements of Linear Algebra A Basic Review of Linear Algebra Nick West nickwest@stanfordedu September 16, 2010 Part I Basic Elements of Linear Algebra Although the subject of linear algebra is much broader than just vectors and matrices,

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products.

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. Orthogonal projection Theorem 1 Let V be a subspace of R n. Then any vector x R n is uniquely represented

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Spectral Theory, with an Introduction to Operator Means. William L. Green

Spectral Theory, with an Introduction to Operator Means. William L. Green Spectral Theory, with an Introduction to Operator Means William L. Green January 30, 2008 Contents Introduction............................... 1 Hilbert Space.............................. 4 Linear Maps

More information

Boundary Value Problems and Iterative Methods for Linear Systems

Boundary Value Problems and Iterative Methods for Linear Systems Boundary Value Problems and Iterative Methods for Linear Systems 1. Equilibrium Problems 1.1. Abstract setting We want to find a displacement u V. Here V is a complete vector space with a norm v V. In

More information

Math 24 Spring 2012 Sample Homework Solutions Week 8

Math 24 Spring 2012 Sample Homework Solutions Week 8 Math 4 Spring Sample Homework Solutions Week 8 Section 5. (.) Test A M (R) for diagonalizability, and if possible find an invertible matrix Q and a diagonal matrix D such that Q AQ = D. ( ) 4 (c) A =.

More information

V. SUBSPACES AND ORTHOGONAL PROJECTION

V. SUBSPACES AND ORTHOGONAL PROJECTION V. SUBSPACES AND ORTHOGONAL PROJECTION In this chapter we will discuss the concept of subspace of Hilbert space, introduce a series of subspaces related to Haar wavelet, explore the orthogonal projection

More information