Particle detection and interactions

Size: px
Start display at page:

Download "Particle detection and interactions"

Transcription

1 Particle detection and interactions Física de Partículas ( lecture) - October 202 Fernando Barão barao@lip.pt Departamento de Física IST - Instituto Superior Técnico Fernando Barao, Dep. de Física(IST) -- Particle interactions and detection Fernando Barao, Dep. de Física(IST) -2- Particle interactions and detection

2 How to make experiments for detecting particles : two examples neutrinos and cosmic rays Fernando Barao, Dep. de Física(IST) -3- Particle interactions and detection neutrinos are messengers from cosmological sources indication of hadronic acceleration at sources accelerated hadrons interact with matter producing charged pions which in turn decay to ν s Neutrino detection insensitive to intergalactic/interstellar magnetic fields very small cross section SuperK Fernando Barao, Dep. de Física(IST) -4- Particle interactions and detection

3 ICECUBE : detecting HE ν s on ice Cerenkov radiation is emitted in ice by the products of the neutrino interaction : the hadronic cascade or the lepton ICECUBE is sensitive to neutrinos from sub-tev to multi-pev energies ν s interact weakly with the medium nucleus : ν + N Z 0 ν + X ν + N W ± l + X νl 0.7 (E ν /T ev ) 0.7 E ν 0 GeV 0 TeV νl light interactions : λ abs 00 m λ sca 25 m Fernando Barao, Dep. de Física(IST) -5- Particle interactions and detection CRs detection on space cosmic rays (mostly protons) detection on space is feasible up to TeV s energies cosmic ray flux decreases steeply with energy (Φ E 2.7 ) a key issue on their detection is its identification (γ, p, p, e ±, he,...) a detector on space capabilities : fast trigger events (event rate depends on geomagnetic detector position) electric charge velocity rigidity (Rig = pc ) and energy Ze carried by satellites (ISS) or balloons Explorer-I (958) carried the st CR detector (Geiger counter) Van Allen belts discovered Cosmic Ray Fluxes (m -2 sr - s - GeV - ) antiprotons antideuterons galactic γ extragalactic γ e- e Kinetic Energy (GeV/nucleon) Explorer-I p He C Fe Rate (acc=0.25 m 2 ) Hz GeV Fernando Barao, Dep. de Física(IST) -6- Particle interactions and detection

4 CRs space detectors AMS detector BESS detector Fernando Barao, Dep. de Física(IST) -7- Particle interactions and detection Cinemática relativista Fernando Barao, Dep. de Física(IST) -8- Particle interactions and detection

5 Relativistic mechanics Total Energy E = γmc 2 = mc2 β 2 Linear Momentum p = γm v = m v β 2 Kinetic Energy [GeV] [GeV/c] T = E mc 2 = (γ )mc 2 Lorentz factor γ = + T mc 2 γ = E mc 2 γ 2 = β 2 β = γβ = γ 2 p m c = ( E m) 2 [GeV] Relação entre p e E E 2 = (pc) 2 + (mc 2 ) 2 p E = γm v γmc 2 Natural Units = v c = β Energy [ev] [C]. [V] [ev] [J] Masses m e 0.5 MeV/c 2 m µ MeV/c 2 m π MeV/c 2 m p MeV/c 2 Fernando Barao, Dep. de Física(IST) -9- Particle interactions and detection Particle interactions with matter Fernando Barao, Dep. de Física(IST) -0- Particle interactions and detection

6 cross-section Particle interactions : outline mean pathlength interaction probability particle detection charged particle interactions energy loss : classical approach energy loss : Bethe-Bloch formula the measurement of the energy loss in the AMS experiment energy loss : electron case particle Range multiple scattering photon interactions Fernando Barao, Dep. de Física(IST) -- Particle interactions and detection Interaction rate : cross section (σ) A secção eficaz de um processo físico : traduz a possibilidade de ocorrência do processo o seu cálculo é possível, conhecendo as leis de interacção entre as partículas possui unidades de área ( barn = 0 28 m 2 ) A taxa de interacções (R int ) depende de : taxa de partículas incidentes R inc = Φ A [/sec] Φ fluxo de partículas incidentes [m 2.s ] A área de incidência do feixe [m 2 ] densidade de partículas-alvo por unidade de área n target = n x [/m 2 ] n densidade de partículas-alvo [m 3 ] x espessura do alvo [m]...e obviamente da secção eficaz σ R int = Φ A σ n x Fernando Barao, Dep. de Física(IST) -2- Particle interactions and detection

7 Interaction probability A probabilidade que uma partícula tem de interagir por unidade de comprimento do material atravessado, depende de : p = n σ n densidade de alvos [/m 3 ] σ secção eficaz [m 2 ] A densidade de alvos de um material qualquer depende de : ρ densidade do material [gr/cm 3 ] A massa de uma mole [gr] n = N A ρ A }{{} nb of moles per cm 3 N A número de Avogadro [/mole] Fernando Barao, Dep. de Física(IST) -3- Particle interactions and detection Interaction prob in a distance x Suponhamos um feixe de N partículas a atravessar um material de densidade ρ [gr/cm 3 ], no qual a probabilidade de interacção por unidade de comprimento é p = N A ρ A σ N O número de partículas sobreviventes após terem percorrido uma distância : N(x + ) = N(x) p N {z } Como N(x + ) N(x) + dn, tem-se : dn = p N Integrando : R N dn N 0 N N = N 0 e p l = R l 0 p, obtém-se : p = N A ρ A σ N = N 0 e p l P int = e p l A probabilidade de a partícula não interagir após percorrer uma distância l é então : Pint = e p l Fernando Barao, Dep. de Física(IST) -4- Particle interactions and detection

8 Mean freepath (λ int ) O livre percurso médio de uma partícula define-se como sendo o valor médio da distância percorrida pela partícula sem que tenha sofrido qualquer interacção : λ int = 0 0 x P int (x) P int (x) λ int = p p = λ int P int = e x λ int Como a probabilidade de uma partícula não interagir ao atravessar uma distância x de material é P int (x) = e p x, vem : λ int = = 0 0 x e p x e p x [ ] x p e p x [ p e p x ] 0 p e p x = p Fernando Barao, Dep. de Física(IST) -5- Particle interactions and detection Neutrino cross section and detection high energy neutrinos (E > 0 2 ev cross section ν l + N l + anything σ CC (νn) /cm 2 ( Eν GeV ) 0.4 interaction length in water : λ(@t ev ) = p int = A 0 2 cm σρn A σn A Fernando Barao, Dep. de Física(IST) -6- Particle interactions and detection

9 Particle interactions with matter Detecção de partículas a detecção das partículas neutras (fotões) ou carregadas (electrões, muões, protões) faz-se através da sua interacção com a matéria. as partículas carregadas interagem essencialmente através de mecanismos de ionização e excitação do átomo. No caso das partículas relativistas a perda de energia por radiação de Bremsstrahlung também tem que ser considerada. os fotões interagem com a matéria, produzindo partículas carregadas, através dos mecanismos efeito fotoeléctrico, efeito de Compton e produção de pares. Fernando Barao, Dep. de Física(IST) -7- Particle interactions and detection Charged particle energy loss (/) Colisões inelásticas com o átomo A passagem de uma partícula carregada por um meio material é caracterizada por uma perda de energia ( ), devido essencialmente às colisões inelásticas com os electrões atómicos do meio. Ocorre assim uma excitação do átomo ou mesmo a sua ionização. Apesar da quantidade de energia transferida em cada colisão ser pequena, o grande número de colisões existentes leva à perda de energia. Dispersão elástica pelo núcleo Muito pouca energia transferida devido à diferença de massas núcleo-partícula incidente. Desvio da partícula da trajectória inicial (multiple scattering) Bremsstrahlung Electrões deflectidos no campo eléctrico do núcleo ( a = d v ), radiam. dt Radiação de Cerenkov Ondas de choque electromag. criadas quando a velocidade da partícula é maior que a da luz no meio (v = c n ) Radiação de Transição Emissão de radiação electromagnética quando partículas altamente relativistas atravessam materiais dieléctricos diferentes. Fernando Barao, Dep. de Física(IST) -8- Particle interactions and detection

10 : classical approx - Bohr formula Vejamos o que se passa na interacção de uma partícula pesada de massa m, carga ze e velocidade v com um electrão atómico que se encontra à distância b da trajectória da partícula. Assume-se o electrão como livre e inicialmente em repouso e a partícula pesada incidente não sofre desvio. Momento linear transferido para o electrão p = Z + Z F dt = e E dt Do campo eléctrico aplicado, pode-se considerar somente a componente transversa E e tendo como dt = v : p = e v Z + E Tendo em conta o fluxo do campo eléctrico transverso : p = z e 2 2 π ε 0 v b M Ze v E v e e E Fluxo do campo E Pela lei de Gauss tem-se : R E d S = z e ε 0 R E 2πb = z e ε 0 R E = b z e 2 π ε 0 b Fernando Barao, Dep. de Física(IST) -9- Particle interactions and detection : energy transfer ( E) The incident charged particle (ze) can interact with both nuclei and electrons of the atoms The transfered energy to the bound particle (mass, m and charge, Z) «: E = p2 2 2 m = 2 z 2 Z 2 e 4 4πε 0 m c 2 b 2 β 2 = (m e c 2 ) 2 2 z 2 Z 2 re 2 m c 2 β 2 b A large contribution to the energy transfer from close interactions is espected from the dependence, E b 2 The ratio of the energy transfered to electrons (m = m e ) and nucleus (m = A m p ) : E(e) E(n) = 2 Z m p 4000 m e Z atomic electrons are responsible for most of the energy loss The classical electron radius is obtained by looking into the equivalence of the relativistic energy (E = m e c 2 ) and the electron electrostatic energy (U e ). Calculating the electrostatic energy stored by a uniform charged sphere of radius r e : work to bring dq to a sphere charged with q : dw = φdq = q 4πε 0 r dq with, q = ρ 4 3 πr3, dq = ρ4πr 2 dr dw = 4 π ρ 3 ε 2 r 4 dr 0 sphere electrostatic energy (e = ρ4/3πre 3) : U E = 4 3 π ε 0 ρ 2 R r e 0 r4 dr = 3 5 e 2 4πε 0 r e classical electron radius : m e c 2 = e2 r 4πε 0 r e = e 2 e 4πε 0 mc 2 Fernando Barao, Dep. de Física(IST) -20- Particle interactions and detection

11 : classical approach (Bohr) Energia transferida para o electrão E = p2 = 2 m e 2 m e z e 2 2 π ε 0 v b «2 Para se obter a energia total perdida pela partícula, temos que ter em conta o número total de electrões existentes na região de parâmetro de impacto relevante. Energia perdida pela partícula para os electrões do meio (b) = n e 2 π b db E = Integrando no parâmetro de impacto db : = `z e π ε 2 0 n e m v 2 ln bmax b min `z e π ε 2 0 «n e m e v 2 db b Número de electrões Numa coroa cilíndrica infinitesimal de espessura db, onde a densidade de electrões é n e, tem-se : x db d n e = n e 2 π b db Fernando Barao, Dep. de Física(IST) -2- Particle interactions and detection : classical approach (Bohr) Limites do parâmetro de impacto Para se estabelecer os limites dos parâmetros de impacto, isto é, as distâncias mínimas e máximas de interacção entre a partícula incidente e o electrão, devem-se ter em conta alguns argumentos físicos. b min b e T O parâmetro de impacto mínimo é estabelecido pelo comprimento de onda de De Broglie do electrão, b min λ = h p = h γ m v b max O parâmetro de impacto máximo : assume-se a interacção entre o campo eléctrico da partícula incidente e um electrão livre. No entanto : os electrões encontram-se ligados aos átomos, possuindo uma dada frequência orbital associada (ν) a aproximação do electrão livre pode ser feita se o tempo de colisão for pequeno quando comparado com o período T = ν do electrão ; o tempo de interacção é dado por : t int b γ v t int < T b max γv ν Fernando Barao, Dep. de Física(IST) -22- Particle interactions and detection

12 : classical approach (Bohr) Substituindo os limites dos parâmetros de impacto : = `z e π ε 2 0 n e γ 2 m e v 2 ln m v 2 «h ν As frequências dos electrões que interagem com a partícula variam, tomando-se portanto um valor médio para a sua energia < I >= h ν, = `z e π ε 2 0 n e γ 2 m e v 2 ln m v 2 «< I > Existe uma dependência da densidade electrónica do meio atravessado n e ; observar-se-ão então variações grandes de energia perdida para diferentes meios. No entanto, tendo em conta que : n e = ρ A N A Z n e ρ = Z A N A c te pode-se definir a variável espessura : t = ρ x [g.cm 2 ] dt = `z e π ε 2 0 N A Z γ 2 m e v 2 A ln m v 2 «< I > [MeV.cm 2.g ] Fernando Barao, Dep. de Física(IST) -23- Particle interactions and detection Quantum treatment of the energy loss Bethe and Bloch in the early 930s treated the energy loss problem taking into account Quantum Mechanics principles : energy transfer to atomic electrons occur in discrete amounts wave nature of particles atomic collisions classified according to momentum transfer to the atomic electron. Classicaly, to large impact parameters correspond low momentum transfers and vice-versa the energy loss by the traversing particle due to the atomic electrons interactions : dσ w dw dw n e }{{} prob energy loss in every collision, w electron density, n e = Z ρ A N A Fernando Barao, Dep. de Física(IST) -24- Particle interactions and detection

13 : a fórmula de Bethe-Bloch O cálculo da perda de energia pela mecânica quântica foi realizado por Bethe e Bloch. ρ dt = 2 π N A r 2 e m e c 2 }{{} MeV cm 2.g Z A z 2 β 2 [ ln ( 2 me γ 2 v 2 ) T max I 2 ] 2β 2 δ r e Raio clássico do electrão (r e = cm) r e = e 2 4 π ε 0 mec 2 m e Massa do electrão (m e = 0.5 MeV/c 2 ) N A Número de Avogadro (N a = mol ) ρ Densidade do meio material atravessado z Z Carga eléctrica da partícula incidente Número atómico do meio material A Número de massa do meio material I Energia média de excitação ( I Z = Z [ev ] (Z<3) Z.9 [ev ] (Z>=3) β Velocidade da partícula incidente (β = v c ) γ Factor de Lorentz (γ = p β 2 ) δ T max Correcção de densidade Energia máxima transferida na colisão T max 2 m e c 2 β 2 γ 2 (M >> m e ) Fernando Barao, Dep. de Física(IST) -25- Particle interactions and detection : a correcção de densidade (δ) A partícula incidente no material polariza os átomos e desta forma os electrões mais afastados vêem um campo eléctrico menor. A correcção de densidade δ é aplicada para se ter em conta o facto de os electrões mais distantes contribuirem então menos para a perda de energia. 8 >< δ = >: 0 X < X X + C + a (X X) m X 0 < X < X X + C X > X Material I [ev] -C a m X X 0 Plástico Cintilador Ar Água (H2O) Chumbo (Pb) Ferro (fe) Alumínio (Al) B X = log (βγ) = 0 q C β 2 A Fernando Barao, Dep. de Física(IST) -26- Particle interactions and detection

14 Perda de energia do muão (µ) no Cobre Fernando Barao, Dep. de Física(IST) -27- Particle interactions and detection : dependência na energia A perda de energia de uma partícula carregada mostra uma dependência com a velocidade que varia para diferentes regiões de velocidade. Para muito baixas velocidades (β < 0.05), a fórmula de Bethe-Bloch deixa de se verificar. Neste domínio em que a velocidade da partícula é comparável à velocidade dos electrões atómicos, a partícula atrai electrões diminuindo a sua carga efectiva e desta forma a perda de energia diminui. Para velocidades da partícula na região β [0.05, 0.] a perda de energia é dominada pelo factor /β 2, diminuindo até um valor mínimo obtido em β 0.96 ou γβ 3.5 ; este valor de mínimo é conhecido como minimum ionizing value. A dependência da perda de energia β 2 M E identificação de partículas nesta região de velocidades. Para velocidades acima do região de relativistic rise. na massa é usada para a mínimo, o termo ln(γβ) domina, dando origem à Fernando Barao, Dep. de Física(IST) -28- Particle interactions and detection

15 Energy loss dt β 5/3 dt min 2 MeV.cm 2 /g A perda de energia por colisões atómicas só depende da velocidade da partícula incidente A perda de energia mínima acontece para γβ 3.5 (minimium ionizing particle) Fernando Barao, Dep. de Física(IST) -29- Particle interactions and detection : desenvolvimento e aproximações Desenvolvendo : ln 2me γ 2 v 2 T max I 2 = ln 2me c 2 γ 2 v 2 T max I c 2 = ln 2me c 2 + ln γ 2 v 2 I I c 2 e tendo em conta que para massas M >> m e : T max 2m e c 2 β 2 γ 2, vem : ln 2me γ 2 v 2 T max I 2 = ln 2me c 2 I + 2 ln (γβ) + ln 2me c 2 A perda energia vem então expressa como : ρ Z i β 2 z h2 2 ln 2 me c ln (γβ) β A I 2 δ 2 {z} 0.5 Ou numa aproximação mais grosseira : ρ β 5/3 I + 2 ln (γβ) = 2 ln z2 h ln [MeV.cm 2.g ] 2 me c 2 I i + ln Tmax I 2me c 2 I [MeV.cm 2.g ] + 4 ln (γβ) Silicium Z=4 ρ = 2.33 gr/cm 3 0 / Silicium f(x) f2(x) / Silicium -f2(x)/f(x) β 2 = + 2 γβ gamma*beta gamma*beta Fernando Barao, Dep. de Física(IST) -30- Particle interactions and detection

16 δ rays : knock-on electrons charged particles passing through matter can transfer large energies to electrons electrons are emitted with and angle wrt charged particle direction : cos θ = T e T max p e p max T max = 2m ec 2 β 2 γ 2 transfered energy to electron : T = 2 m ec 2 β z ( 2 r eb ) 2 b 2 = 2 m ec 2 2 β 2 +2γ m e M + ( m e z 2 r 2 e T M ) 2 2bdb dt T 2 what is the differential distribution of δ-rays in terms of their energy T? the number of electrons within an impact paremeter [b, b + db] and per unit of acrossed length () : ( dn δ = n e 2πbdb = ρn Z ) A A 2π m e c 2 β rez 2 2 dt 2 T 2 dn 2 δ dt = κz 2 2 β 2 ( Z A ) F (T ) T 2 F (T ) κ = MeV/gr/cm 2 Fernando Barao, Dep. de Física(IST) -3- Particle interactions and detection Matiere traversee dans AMS Plan du TOF : cm d epaisseur (scintillateur) ; ρ =.20gr/cm 3 d =.20 =.20 [gr/cm 2 ] Radiateur aerogel : 2.5 cm d epaisseur ; ρ = 0.20gr/cm 3 d = = 0.50 [gr/cm 2 ] Radiateur NaF : 0.5 cm d epaisseur ; ρ = 2.56gr/cm 3 d = =.28 [gr/cm 2 ] Fernando Barao, Dep. de Física(IST) -32- Particle interactions and detection

17 AMS : Ring Imaging Cerenkov Detector Construction proximity focusing Ring Imaging Detector dual solid radiator configuration low index aerogel : n =.050, 2.5 cm thickness sodium fluoride : n =.334, 0.5 cm thickness conical reflector 85% reflectivity photomultiplier matrix 680 multipixelized (4 4) detectors spatial pixel granularity : mm 2 It provides accurate particle velocity measurement β/β 0.% for protons electric charge determination Z 0.2 albedo rejection directional sensitivity Agl NaF radiator reflector pmt matrix Fernando Barao, Dep. de Física(IST) -33- Particle interactions and detection AMS : Ring Imaging Cerenkov Detector Construction proximity focusing Ring Imaging Detector dual solid radiator configuration low index aerogel : n =.050, 2.5 cm thickness sodium fluoride : n =.334, 0.5 cm thickness conical reflector 85% reflectivity photomultiplier matrix 680 multipixelized (4 4) detectors spatial pixel granularity : mm 2 It provides accurate particle velocity measurement β/β 0.% for protons electric charge determination Z 0.2 albedo rejection directional sensitivity Agl NaF radiator reflector pmt matrix Fernando Barao, Dep. de Física(IST) -33- Particle interactions and detection

18 δ-rays charged particles passing on matter can produce energetic electrons, called δ-rays the number of δ-rays produced by a particle of charge ze and velocity β, is given by : d 2 N δ dt = κz 2 Z 2 β 2 A F (T ) T 2 where : T, kinetic energy of the electron ; I << T << T max T max 2(m e c 2 ) E M 2 (M >> me ) Z/A 0.5 κ = MeV/gr/cm 2 aerogel threshold : ««T n T A = m (γ n th ) = m.050 = 0.938GeV/n = 3.GeV/n 2(n ) 2(.050 ) for electrons :.55M ev for nuclei and considering β = : R γ A 0.077κz2.55MeV dn δ number of delta-rays/z 2 : aerogel : NaF : dt T z2 0.05z 2 [/gr/cm 2 ] delta rays start to be important from z 7 for aerogel and z 4 for NaF Fernando Barao, Dep. de Física(IST) -34- Particle interactions and detection Perda de energia no detector AMS AMS : detector instalado na Estação Espacial Internacional (ISS) desde Maio 20 Faz identificação de partículas (e, p, He,...) e caracterização em velocidade, momento linear, energia, carga eléctrica A carga eléctrica é medida pela deposição de energia em planos de silício (300 µm de espessura)» 2 < E > Z 2 β 5/3 Z 2 m p + Fernando Barao, Dep. de Física(IST) -35- Particle interactions and detection

19 Particle Range Uma dada partícula de energia E 0 e massa M penetra num meio material perdendo energia nas colisões atómicas por excitação e ionização à taxa dada pela fórmula de Bethe-Bloch. Desprezando o efeito do multiple scattering, a distância de paragem da partícula (particle range) é dada por : R = Z R 0 = Z Mc 2 E 0 + = Z E0 Mc 2 Na região de baixas velocidades, γβ 2 5 E 0 5Mc 2 E0 M pode-se usar a expressão aproximada para a perda de energia : Tendo em conta que : β 2 = M c 2 2 E = κ β 2. Vem : R = Z E0 Mc 2 " M c 2 «2 # E κ = Mc»E 0 + Mc 2 2 «2 = κ E 0 κ T 2 0 E 0 [cm] Fernando Barao, Dep. de Física(IST) -36- Particle interactions and detection Muon range on water Question Evaluate the maximal energy a muon (m µ = 05 MeV/c 2 ) can have to stop within a water reservoir h = 30 cm heigh. Take the aproximated Range equation i and have it equal to h h = he κ 0 + Mc 2 Mc 2 2 E 0 Maximal energy : T 0 = E 0 Mc 2 = h κ 2 q «+ + 4 Mc2 h k E0 R water (ρ = gr/cm 2 3 ) : κ {z } [MeV/cm] T ln m ec 2 « [MeV/cm] I 5 {z } q MeV Cosmic Ray Laboratory (IST) - Master cycle Fernando Barao, Dep. de Física(IST) -37- Particle interactions and detection

20 Energy loss : electrons and positrons Electrons and positrons lose energy by ionization (as heavier particles do) and also by radiation, due to their small mass : ( ) tot = ( ) coll + ( ) rad Radiation occurs when the incident particle accelerates under the effect of the atomic coulombian field produced by the nucleus charge (Ze) and atomic electrons (e). The electrical field contribution of the electrons to the radiating power can be neglected (e/ze) ; although, its presence can shield the nuclear charge seen by the incident particle. At high energies the radiation loss can be the prevaling mode. Fernando Barao, Dep. de Física(IST) -38- Particle interactions and detection Energy loss : e and e + ionization For electrons crossing matter, the energy loss ionization mechanism involves colllisions between identical particles. Cross-section for the scattering of a relativistic electron with kinetic energy E from a free electron acquiring a kinetic energy w (Moller) : dσ dw = 2π h e4 m e v 2 w 2 m e c 2 (2E+m e c 2 ) + w(e w) (E+mc 2 ) 2 (E w) 2 + i (E+m e c 2 ) 2 The energy loss due to collisions is obtained by integration the collision probability times the transfered energy : = R dσ w n e dw dw {z } j» 2 π N A re 2 (m e c 2 ) ρ Z A β 2 ln 2 me c 2 F (T/(m e c 2 ), depends on the electron charge sign. T m e c 2 I P int 2 (γ + 2) 3 + F ff T m e c 2 + = γ, is the electron kinetic energy expressed in terms of its mass. For relativistic electrons (β ), the obtained from above is essentially the same obtained from the heavy particle formula. Fernando Barao, Dep. de Física(IST) -39- Particle interactions and detection

21 Energy loss : bremsstrahlung The strength of the electric field felt by the incident particle of mass M and charge z, depends on the amount of screening from the electrons around the nucleus. For a particle of energy E i that radiates a photon of energy κ, the effect of the screening can be parametrized in terms of : E f = E i κ, final electron energy t = 00 m ec 2 k = 00 m ec 2 E i E f Z /3 Z /3 k/e i E i ( k/e i ) The radiated power depends on the charge acceleration : dt = 2 3 e 2 c 3 a 2 The bremsstrahlung differential cross-section for a particle of energy E radiating a photon of energy κ in the field of a nucleus of charge Z is (in the limit of complete screening, t 0) : dσ dκ 5 α z 4 Z 2 re 2 ` me 2 h + ` κ 2 ` κ M E 2 κ i M ln 3 E m e 83 Z /3 The contribution of the atomic electrons can be included by replacing Z 2 Z(Z + ). The energy loss : = n a rad {z} ρ n a =N A A E Z E Mc 2 κ dσ E 0 dκ dκ {z } σ rad Fernando Barao, Dep. de Física(IST) -40- Particle interactions and detection Energy loss : critical energy (E c ) The radiative total cross-section, obtained by integrating in the photon energy range, is given for the complete screening aproximation by : σ rad 4 α Z(Z + ) z 4 re 2 ` me 2 M ln 83 M Z /3 m e and therefore the energy loss : = N A ρ rad A E σ rad E z 4 m «e 2 ρ 83 4 NA M A α M r2 e Z(Z + ) ln Z /3 m e {z } X 0 = E, where X rad X 0 is the radiation length 0 The critical energy (E c ) is the energy above which the radiation losses become dominant over the collision losses : ( ) rad ( ) col E c 600 z 2 E m e M 2 2 π z Interesting(!) : E c (µ) α (Z + ) ln 2 M [MeV] m e Z+ 83 Z /3 mec 2 ln 2 I me M «+4 ln γ mµ m e 2 Ec (e) E c (e) / X 0 (MeV) Copper X 0 = 2.86 g cm 2 E c = 9.63 MeV Rossi: Ionization per X 0 = electron energy Brems E Total Ionization Exact bremsstrahlung Brems = ionization Electron energy (MeV) Fernando Barao, Dep. de Física(IST) -4- Particle interactions and detection

22 Energy loss for electrons : bremsstrahlung The bremsstrahlung differential cross-section for an electron of energy E radiating a photon of energy κ in the field of a nucleus of charge Z or an electron is (in the limit of complete screening, t 0) : [ dσ dκ 4 α Z(Z + ) r2 e κ + ( ) κ 2 ( E 2 κ ) ] 3 E ln ( ) 83 Z /3 The energy loss : ( ) = E N rad A The critical energy : E c 600 Z+ [MeV] ( 83 ln ρ A 4 α Z(Z + ) r2 e Z }{{ /3 } X 0 The number of radiated photons above a certain photon energy κ th along a path L is : Nγ bremss = κmax ρ dσ L κ th N A }{{ A dκ dκ = L κmax [ X 0 κ th k + ] κ E 2 } 2 3 E dκ n a ) = E X 0 Fernando Barao, Dep. de Física(IST) -42- Particle interactions and detection Electrons energy loss : critical energy / X 0 (MeV) Copper X 0 = 2.86 g cm 2 E c = 9.63 MeV Rossi: Ionization per X 0 = electron energy Brems E Total Ionization Exact bremsstrahlung Brems = ionization Electron energy (MeV) E c (MeV) MeV Z +.24 Solids Gases 70 MeV Z H He Li Be B CNO Ne Fe Sn Z Fernando Barao, Dep. de Física(IST) -43- Particle interactions and detection

23 Electron energy loss : radiation length The radiation length, L 0, corresponds to the mean interaction length for the radiation process : ρ = n L a σ 0 rad = N A ρ 4 N L 0 A A α Z2 re 2 A σ rad 83 h ln X 0 = L 0 ρ 76.4 [g.cm 2 ] A Z(Z+) ln 287 Z energy loss due to radiation : Z /3 i = E X0 E = E 0 e x X 0 Total energy lost : a + E tot X 0 [cm ] where a is the collision energy loss assumed essentially energy independent. Mat. ρ (g.cm 3 ) L 0 (cm) H He Li Be B C N O Ne Al F e P b Air H 2 O Scint Fernando Barao, Dep. de Física(IST) -44- Particle interactions and detection Muon energy loss : critical energy / (MeV g cm 2 ) 000 /home/sierra/deg/de/rpp_mu_e_loss.pro 00 Thu Apr 4 3:55: H (gas) total Fe pair Fe radiative total Fe brems U total Fe total Fe nucl Fe ion Muon energy (GeV) E µc (GeV) GeV (Z +.47) Gases Solids 7980 GeV (Z ) H He Li Be B CNO Ne Fe Sn Z Fernando Barao, Dep. de Física(IST) -45- Particle interactions and detection

24 Cosmic muons flux : effect Question Evaluate the cosmic muon flux arriving at a detector under an amount h of matter (rock, Z =, A = 22, ρ = 3 gr/cm 3 ). The muon flux arriving at the earth surface follows a law : Φ 0 (E 0 ) = A E α [m 2.sr.s.GeV ] Φ0(E 0 ) Rock p µ.7 dn/dpµ [m 2 s sr (GeV/c).7 ] Detector p µ [GeV/c] Fernando Barao, Dep. de Física(IST) -46- Particle interactions and detection Books Bibliografia Reviews The Review of Particle Physics C. Amsler et al. (Particle Data Group), Physics Letters B667, (2008) Detectors for Particle Radiation K. Kleinknecht Cambridge University Press Classical Electrodynamics J.D.Jackson Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles Steven P. Ahlen Rev. Mod. Phys., Vol. 52, N. (Jan 980) Pair production and bremsstrahlung of charged leptons Yung-Su Tsai Rev. Mod. Phys., Vol. 46, N.4 (Jan 974) Fernando Barao, Dep. de Física(IST) -47- Particle interactions and detection

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω

PHYS 352. Charged Particle Interactions with Matter. Intro: Cross Section. dn s. = F dω PHYS 352 Charged Particle Interactions with Matter Intro: Cross Section cross section σ describes the probability for an interaction as an area flux F number of particles per unit area per unit time dσ

More information

Interaction of Electron and Photons with Matter

Interaction of Electron and Photons with Matter Interaction of Electron and Photons with Matter In addition to the references listed in the first lecture (of this part of the course) see also Calorimetry in High Energy Physics by Richard Wigmans. (Oxford

More information

Interaction of Particles with Matter

Interaction of Particles with Matter Chapter 10 Interaction of Particles with Matter A scattering process at an experimental particle physics facility is called an event. Stable particles emerging from an event are identified and their momenta

More information

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics Particle Detectors Summer Student Lectures 2010 Werner Riegler, CERN, werner.riegler@cern.ch History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles

More information

Heavy charged particle passage through matter

Heavy charged particle passage through matter Heavy charged particle passage through matter Peter H. Hansen University of Copenhagen Content Bohrs argument The Bethe-Bloch formula The Landau distribution Penetration range Biological effects Bohrs

More information

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015

Neutrino detection. Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Neutrino detection Kate Scholberg, Duke University International Neutrino Summer School Sao Paulo, Brazil, August 2015 Sources of wild neutrinos The Big Bang The Atmosphere (cosmic rays) Super novae AGN's,

More information

Interactions of particles and radiation with matter

Interactions of particles and radiation with matter 1 Interactions of particles and radiation with matter When the intervals, passages, connections, weights, impulses, collisions, movement, order, and position of the atoms interchange, so also must the

More information

Ionization Energy Loss of Charged Projectiles in Matter. Steve Ahlen Boston University

Ionization Energy Loss of Charged Projectiles in Matter. Steve Ahlen Boston University Ionization Energy Loss of Charged Projectiles in Matter Steve Ahlen Boston University Almost all particle detection and measurement techniques in high energy physics are based on the energy deposited by

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry Radiative PHYS 5012 Radiation Physics and Dosimetry Mean Tuesday 24 March 2009 Radiative Mean Radiative Mean Collisions between two particles involve a projectile and a target. Types of targets: whole

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 4

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 4 Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics Lecture 4 Karsten Heeger heeger@wisc.edu Homework Homework is posted on course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

Particle-Matter Interactions

Particle-Matter Interactions Particle-Matter Interactions to best detect radiations and particles we must know how they behave inside the materials 8/30/2010 PHYS6314 Prof. Lou 1 Stable Particles Visible to a Detector Hadrons (Baryon/Meson)

More information

PHYS 571 Radiation Physics

PHYS 571 Radiation Physics PHYS 571 Radiation Physics Prof. Gocha Khelashvili http://blackboard.iit.edu login Interaction of Electrons with Matter The Plan Interactions of Electrons with Matter Energy-Loss Mechanism Collisional

More information

Particle Interactions in Detectors

Particle Interactions in Detectors Particle Interactions in Detectors Dr Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University, Uxbridge Peter.Hobson@brunel.ac.uk http://www.brunel.ac.uk/~eestprh/

More information

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1

Physics 663. Particle Physics Phenomenology. April 23, Physics 663, lecture 4 1 Physics 663 Particle Physics Phenomenology April 23, 2002 Physics 663, lecture 4 1 Detectors Interaction of Charged Particles and Radiation with Matter Ionization loss of charged particles Coulomb scattering

More information

Detectors in Nuclear Physics (48 hours)

Detectors in Nuclear Physics (48 hours) Detectors in Nuclear Physics (48 hours) Silvia Leoni, Silvia.Leoni@mi.infn.it http://www.mi.infn.it/~sleoni Complemetary material: Lectures Notes on γ-spectroscopy LAB http://www.mi.infn.it/~bracco Application

More information

Forças intermoleculares

Forças intermoleculares Introdução & Forças intermoleculares Guilherme Menegon Arantes garantes@iq.usp.br http://gaznevada.iq.usp.br Universidade de São Paulo Resumo da aula Calendário, avaliação e exercícios Website: http://gaznevada.iq.usp.br/cursos/qbq1252/

More information

PHY492: Nuclear & Particle Physics. Lecture 24. Exam 2 Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 24. Exam 2 Particle Detectors PHY492: Nuclear & Particle Physics Lecture 24 Exam 2 Particle Detectors Exam 2 April 16, 2007 Carl Bromberg - Prof. of Physics 2 Exam 2 2. Short Answer [4 pts each] a) To describe the QCD color quantum

More information

Particle Detectors. How to See the Invisible

Particle Detectors. How to See the Invisible Particle Detectors How to See the Invisible Which Subatomic Particles are Seen? Which particles live long enough to be visible in a detector? 2 Which Subatomic Particles are Seen? Protons Which particles

More information

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle Lecture 4 Particle physics processes - particles are small, light, energetic à processes described by quantum mechanics and relativity à processes are probabilistic, i.e., we cannot know the outcome of

More information

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters:

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters: Lecture 2 & 3 Particles going through matter PDG chapter 27 Kleinknecht chapters: 1.2.1 for charged particles 1.2.2 for photons 1.2.3 bremsstrahlung for electrons Collider Detectors PDG chapter 28 Kleinknecht

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

Interaction with matter

Interaction with matter Interaction with matter accelerated motion: ss = bb 2 tt2 tt = 2 ss bb vv = vv 0 bb tt = vv 0 2 ss bb EE = 1 2 mmvv2 dddd dddd = mm vv 0 2 ss bb 1 bb eeeeeeeeeeee llllllll bbbbbbbbbbbbbb dddddddddddddddd

More information

remsstrahlung 1 Bremsstrahlung

remsstrahlung 1 Bremsstrahlung remsstrahlung 1 Bremsstrahlung remsstrahlung 2 Bremsstrahlung A fast moving charged particle is decelerated in the Coulomb field of atoms. A fraction of its kinetic energy is emitted in form of real photons.

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles.

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles. Interaction Between Ionizing Radiation And Matter, Part Charged-Particles Audun Sanderud Excitation / ionization Incoming charged particle interact with atom/molecule: Ionization Excitation Ion pair created

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa16/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Electromagnetic and hadronic showers development. G. Gaudio, M. Livan The Art of Calorimetry Lecture II

Electromagnetic and hadronic showers development. G. Gaudio, M. Livan The Art of Calorimetry Lecture II Electromagnetic and hadronic showers development 1 G. Gaudio, M. Livan The Art of Calorimetry Lecture II Summary (Z dependence) Z Z 4 5 Z(Z + 1) Z Z(Z + 1) 2 A simple shower 3 Electromagnetic Showers Differences

More information

Interaction of Particles and Matter

Interaction of Particles and Matter MORE CHAPTER 11, #7 Interaction of Particles and Matter In this More section we will discuss briefly the main interactions of charged particles, neutrons, and photons with matter. Understanding these interactions

More information

- ~200 times heavier than the e GeV µ travels on average. - does not interact strongly. - does emit bremsstrahlung in

- ~200 times heavier than the e GeV µ travels on average. - does not interact strongly. - does emit bremsstrahlung in Muons M. Swartz 1 Muons: everything you ve ever wanted to know The muon was first observed in cosmic ray tracks in a cloud chamber by Carl Anderson and Seth Neddermeyer in 1937. It was eventually shown

More information

Detectors for High Energy Physics

Detectors for High Energy Physics Detectors for High Energy Physics Ingrid-Maria Gregor, DESY DESY Summer Student Program 2017 Hamburg July 26th/27th Disclaimer Particle Detectors are very complex, a lot of physics is behind the detection

More information

Uma pitada de Algoritmia

Uma pitada de Algoritmia Departamento de Matemática Universidade de Aveiro Uma pitada de Algoritmia 26/10/2002 Rosália Rodrigues 1 It has often been said that a person does not really understand something until he teaches it to

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

Detectors in Nuclear Physics (40 hours)

Detectors in Nuclear Physics (40 hours) Detectors in Nuclear Physics (40 hours) Silvia Leoni, Silvia.Leoni@mi.infn.it http://www.mi.infn.it/~sleoni Complemetary material: Lectures Notes on γ-spectroscopy LAB http://www.mi.infn.it/~bracco Application

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Cosmic Rays: I. General Phenomenology, Energy Loss, and Electromagnetic Signatures Friday, March 4, 2011

Cosmic Rays: I. General Phenomenology, Energy Loss, and Electromagnetic Signatures Friday, March 4, 2011 Cosmic Rays: I. General Phenomenology, Energy Loss, and Electromagnetic Signatures Friday, March 4, 2011 CONTENTS: 1. Introduction 2. General Phenomenology 3. Energy Loss Mechanisms A. Electromagnetic

More information

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors PHY492: Nuclear & Particle Physics Lecture 25 Particle Detectors http://pdg.lbl.gov/2006/reviews/contents_sports.html S(T ) = dt dx nz = ρa 0 Units for energy loss Minimum ionization in thin solids Z/A

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 3

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 3 Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics Lecture 3 Karsten Heeger heeger@wisc.edu Review of Last Lecture a colleague shows you this data... what type of reaction is this?

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Radiation Physics PHYS /251. Prof. Gocha Khelashvili Radiation Physics PHYS 571-051/251 Prof. Gocha Khelashvili Interaction of Radiation with Matter: Heavy Charged Particles Directly and Indirectly Ionizing Radiation Classification of Indirectly Ionizing

More information

Photons: Interactions

Photons: Interactions Photons: Interactions Photons appear in detector systems as primary photons, created in Bremsstrahlung and de-excitations Photons are also used for medical applications, both imaging and radiation treatment.

More information

Particle Physics Homework Assignment 3

Particle Physics Homework Assignment 3 Particle Physics Homework Assignment Dr. Costas Foudas January 7 Problem : The HERA accelerator collides GeV electrons with 92 GeV protons. I. Compute the centre of mass energy (total available energy

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Densidade, Pressão, Empuxo

Densidade, Pressão, Empuxo Densidade, Pressão, Empuxo Densidade densidade de massa densidade de partículas volume molar concentração Propriedade (macroscópica) característica da substância. (Mas depende da temperatura.) ρ m /V n

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Discovery of the muon and the pion Energy losses of charged particles. This is an important

More information

MATR316, Nuclear Physics, 10 cr

MATR316, Nuclear Physics, 10 cr MATR316, Nuclear Physics, 10 cr Fall 2017, Period II Pertti O. Tikkanen Lecture Notes of Tuesday, Nov. 28th and Thursday, Nov. 30th Department of Physics pertti.tikkanen@helsinki.fi 1 Interaction of radiation

More information

General Information. Muon Lifetime Update. Today s Agenda. The next steps. Reports due May 14

General Information. Muon Lifetime Update. Today s Agenda. The next steps. Reports due May 14 General Information Muon Lifetime Update The next steps Organize your results Analyze, prepare plots, fit lifetime distribution Prepare report using the Latex templates from the web site Reports due May

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

Nuclear Elastic and Inelastic Scattering of Iron Capture Gamma-Rays from Lead and Nickel*

Nuclear Elastic and Inelastic Scattering of Iron Capture Gamma-Rays from Lead and Nickel* Revista Brasileira de Física, Vol. 2, N." 3, 1972 Nuclear Elastic and Inelastic Scattering of Iron Capture Gamma-Rays from Lead and Nickel* F. G. BIANCHINI Divisão de Física Nuclear, Instituto de Energia

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Physics 3223 Solution to Assignment #5

Physics 3223 Solution to Assignment #5 Physics 3223 Solution to Assignment #5 October 20, 1999 6.1 From the Heisenberg uncertainty principle, x p h, we estimate that a typical kinetic energy of an electron in an atom would be K ( p)2 2m h 2

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

Questions 1pc = 3 ly = km

Questions 1pc = 3 ly = km Cosmic Rays Historical hints Primary Cosmic Rays: - Cosmic Ray Energy Spectrum - Composition - Origin and Propagation - The knee region and the ankle Secondary CRs: -shower development - interactions Detection:

More information

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7 Particle Identification Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7.0 Content 7.1 Methods for Particle Identification 7.2 Mass of Charged Particles

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization

Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization 22.101 Applied Nuclear Physics (Fall 2006) Lecture 14 (11/1/06) Charged-Particle Interactions: Stopping Power, Collisions and Ionization References: R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York,

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

Detector Basics I. Mark Messier Indiana University. Neutrino Summer School 2009 July 6, 2009 Fermilab, IL

Detector Basics I. Mark Messier Indiana University. Neutrino Summer School 2009 July 6, 2009 Fermilab, IL Detector Basics I Mark Messier Indiana University Neutrino Summer School 2009 July 6, 2009 Fermilab, IL 1 What do neutrinos look like? Neutrino detectors are built to detect the particles produced when

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Lecture 1. Introduction to Nuclear Science

Lecture 1. Introduction to Nuclear Science Lecture 1 Introduction to Nuclear Science Composition of atoms Atoms are composed of electrons and nuclei. The electrons are held in the atom by a Coulomb attraction between the positively charged nucleus

More information

Application of the Rayleigh-Schrodinger Perturbation Theory to the Hydrogen Atom*

Application of the Rayleigh-Schrodinger Perturbation Theory to the Hydrogen Atom* Application of the Rayleigh-Schrodinger Perturbation Theory to the Hydrogen Atom* V. C. AGUILERA-NAVARRO, W. M. KLOET and A. H. ZIMERMAN Instituto de Física Teórica, São Paulo SP Recebido em 16 de Fevereiro

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa17/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Queen s University PHYS 352

Queen s University PHYS 352 Page 1 of 5 Queen s University Faculty of Applied Science; Faculty of Arts and Science Department of Physics, Engineering Physics and Astronomy PHYS 352 Measurement, Instrumentation and Experiment Design

More information

Particle Accelerators

Particle Accelerators Experimental Methods of Particle Physics Particle Accelerators Andreas Streun, PSI andreas.streun@psi.ch https://ados.web.psi.ch/empp-streun Andreas Streun, PSI 1 Particle Accelerators 1. Introduction

More information

Introduction to Nuclear Reactor Physics

Introduction to Nuclear Reactor Physics Introduction to Nuclear Reactor Physics J. Frýbort, L. Heraltová Department of Nuclear Reactors 19 th October 2017 J. Frýbort, L. Heraltová (CTU in Prague) Introduction to Nuclear Reactor Physics 19 th

More information

Física do Corpo Humano

Física do Corpo Humano Física do Corpo Humano Prof. Adriano Mesquita Alencar Dep. Física Geral Instituto de Física da USP Pressão Osmótica B06 Monday, May 6, 3 Pressão Osmótica, Π = g h µ i = @G @N i T,P,N j6=i Monday, May 6,

More information

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer Cosmic Rays: A Way to Introduce Modern Physics Concepts Steve Schnetzer Rutgers CR Workshop May 19, 2007 Concepts Astrophysics Particle Physics Radiation Relativity (time dilation) Solar Physics Particle

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Interazioni delle particelle cariche. G. Battistoni INFN Milano

Interazioni delle particelle cariche. G. Battistoni INFN Milano Interazioni delle particelle cariche G. Battistoni INFN Milano Collisional de/dx of heavy charged particles A particle is heavy if m part >>m electron. The energy loss is due to collision with atomic electrons.

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Interaction theory Photons. Eirik Malinen

Interaction theory Photons. Eirik Malinen Interaction theory Photons Eirik Malinen Introduction Interaction theory Dosimetry Radiation source Ionizing radiation Atoms Ionizing radiation Matter - Photons - Charged particles - Neutrons Ionizing

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 5 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 5 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.033 October, 003 Problem Set 5 Solutions Problem A Flying Brick, Resnick & Halliday, #, page 7. (a) The length contraction factor along

More information

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers 2nd-Meeting Ionization energy loss Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers #2 -Particle Physics Experiments at High Energy Colliders John Hauptman, Kyungpook National

More information

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected Physics 111 Fall 007 Homework Solutions Week #10 Giancoli Chapter 30 Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected by the strongest physical

More information

Topic 7. Relevance to the course

Topic 7. Relevance to the course Topic 7 Cosmic Rays Relevance to the course Need to go back to the elemental abundance curve Isotopes of certain low A elements such as Li, Be and B have larger abundances on Earth than you would expect

More information

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Cosmic Ray Physics with the Alpha Magnetic Spectrometer Cosmic Ray Physics with the Alpha Magnetic Spectrometer Università di Roma La Sapienza, INFN on behalf of AMS Collaboration Outline Introduction AMS02 Spectrometer Cosmic Rays: origin & propagations: Dominant

More information

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday

Hadronic Showers. KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers KIP Journal Club: Calorimetry and Jets 2009/10/28 A.Kaplan & A.Tadday Hadronic Showers em + strong interaction with absorber similarities to em-showers, but much more complex different

More information

2 Particle Interaction with Matter

2 Particle Interaction with Matter Particle Interaction with Matter Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria (slides by Manfred Krammer) .0 Content.0 Introduction.1 Charged particles.1.1

More information

Chemistry (

Chemistry ( Question 2.1: (i) Calculate the number of electrons which will together weigh one gram. (ii) Calculate the mass and charge of one mole of electrons. Answer 2.1: (i) Mass of one electron = 9.10939 10 31

More information

Lesson 1. Introduction to Nuclear Science

Lesson 1. Introduction to Nuclear Science Lesson 1 Introduction to Nuclear Science Introduction to Nuclear Chemistry What is nuclear chemistry? What is the relation of nuclear chemistry to other parts of chemistry? Nuclear chemistry vs nuclear

More information

Interaction of Electrons with Matter and Comparison of the Obtained Results with Experimental Measurements

Interaction of Electrons with Matter and Comparison of the Obtained Results with Experimental Measurements Australian Journal of Basic and Applied Sciences, 5(): 83-80, 0 ISSN 99-878 Interaction of Electrons with Matter and Comparison of the Obtained Results with Experimental Measurements Somayeh Almasi Bigdelo,

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

Experimental Elementary Particle Physics

Experimental Elementary Particle Physics Experimental Elementary Particle Physics Cesare Bini 2016 1 Aim of these lectures Experimental Physics: define the question to nature design the experiment build the experimental apparatus run the experiment

More information

PHY 142! Assignment 11! Summer 2018

PHY 142! Assignment 11! Summer 2018 Reading: Modern Physics 1, 2 Key concepts: Bohr model of hydrogen; photoelectric effect; debroglie wavelength; uncertainty principle; nuclear decays; nuclear binding energy. 1.! Comment on these early

More information

LECTURE 18. Beam loss and beam emittance growth. Mechanisms for beam loss. Mechanisms for emittance growth and beam loss Beam lifetime:

LECTURE 18. Beam loss and beam emittance growth. Mechanisms for beam loss. Mechanisms for emittance growth and beam loss Beam lifetime: LCTUR 18 Beam loss and beam emittance growth Mechanisms for emittance growth and beam loss Beam lifetime: from residual gas interactions; Touschek effect; quantum lifetimes in electron machines; Beam lifetime

More information

Particle Acceleration

Particle Acceleration Nuclear and Particle Physics Junior Honours: Particle Physics Lecture 4: Accelerators and Detectors February 19th 2007 Particle Beams and Accelerators Particle Physics Labs Accelerators Synchrotron Radiation

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

THE AMS RICH COUNTER

THE AMS RICH COUNTER THE AMS RICH COUNTER G. BOUDOUL ISN Grenoble ISN-GRENOBLE 1 The AMS RICH collaboration: Bologna, Grenoble, Lisbon, Madrid, Maryland, Mexico 2 The AMS collaboration UNAM S.C.C. TING (MIT), PI 3 AMS Scientific

More information

Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions

Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions Neutrinos, nonzero rest mass particles, and production of high energy photons Particle interactions Previously we considered interactions from the standpoint of photons: a photon travels along, what happens

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

The next three lectures will address interactions of charged particles with matter. In today s lecture, we will talk about energy transfer through

The next three lectures will address interactions of charged particles with matter. In today s lecture, we will talk about energy transfer through The next three lectures will address interactions of charged particles with matter. In today s lecture, we will talk about energy transfer through the property known as stopping power. In the second lecture,

More information