Solutions and Proofs: Optimizing Portfolios

Size: px
Start display at page:

Download "Solutions and Proofs: Optimizing Portfolios"

Transcription

1 Solutions and Proofs: Optimizing Portfolios An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan

2 Covariance Proof: Cov(X, Y) = E [XY Y E [X] XE [Y] + E [X] E [Y]] = E [XY] E [Y] E [X] E [X] E [Y] + E [X] E [Y] = E [XY] E [X] E [Y]

3 Properties of Covariance (1 of 2) Proof: Let X, Y, and Z be random variables, then Cov (X + Y, Z) = E [(X + Y)Z] E [X + Y]E [Z] = E [XZ] + E [YZ] E [X] E [Z] E [Y]E [Z] = E [XZ] E [X] E [Z] + E [YZ] E [Y]E [Z] = Cov (X, Z) + Cov(Y, Z)

4 Properties of Covariance (2 of 2) I Proof: Let {X 1, X 2,..., X k, X k+1 } be random variables. Cov ( k+1 ) X i, Y 1 ( k ) = Cov X i, Y 1 + Cov(X k+1, Y 1 ) = = k Cov (X i, Y 1 ) + Cov(X k+1, Y 1 ) k+1 Cov(X i, Y 1 ) Therefore by induction we may show that the result is true for any finite, integer value of n and m = 1.

5 Properties of Covariance (2 of 2) II When m is an integer larger than 1 we can argue that m Cov X i, = m Cov X i, Y j j=1 = = = j=1 Y j m Cov Y j, X i j=1 j=1 j=1 m Cov ( ) Y j, X i m Cov ( ) X i, Y j.

6 Properties of Covariance (2 of 2) III Proof: Let Y = n X i, then Var(Y) = Cov(Y, Y) ( ) Var X i = Cov X i, = = = j=1 j=1 X j Cov ( ) X i, X j Cov(X i, X i ) + Var(X i ) + Cov ( ) X i, X j j i Cov ( ) X i, X j j i

7 Properties of the Correlation Proof: Cov(X, Y) = Cov (X, ax + b) = E [X(aX + b)] E [X] E [ax + b] [ ] = E ax 2 + bx) E [X] (ae [X] + b) [ = ae X 2] + be [X] ae [X] E [X] be [X] ( = a E [X 2] E [X] 2) = avar (X) avar(x) ρ(x, Y) = Var (X) a 2 Var(X) = a a

8 Schwarz Inequality I Proof: If a and b are real numbers then the following two inequalities hold: [ 0 E (ax + by) 2] [ = a 2 E X 2] + 2abE [XY] + b 2 E [Y 2] [ 0 E (ax by) 2] [ = a 2 E X 2] 2abE [XY] + b 2 E [Y 2] If we let a 2 = E [ Y 2] and b 2 = E [ X 2] then the first inequality above yields [ 2E X 2] E [ 0 2E [ Y 2] 2 E [ X 2] E [ Y 2] X 2] E [ Y 2] + 2 E [ Y 2] E [ X 2] E [XY] E [ Y 2] E [ X 2] E [XY] E [XY].

9 Schwarz Inequality II Similarly the second inequality produces E [XY] E [ X 2] E [ Y 2]. Therefore, since E [ X 2] E [ Y 2] E [XY] E [ X 2] E [ Y 2] [ (E [XY]) 2 E X 2] [ E Y 2].

10 Range of the Correlation Proof: (Cov (X, Y)) 2 = (E [(X E [X])(Y E [Y])]) 2 [ E (X E [X]) 2] E [(Y E [Y]) 2] = Var(X) Var(Y) Thus Cov(X, Y) Var(X) Var(Y), which is equivalent to the inequality, 1 Cov (X, Y) Var (X) Var (Y) 1 1 ρ(x, Y) 1.

11 Technical Result I Proof: E [ X(X K) +] = = = 1 x(x K) + 1 2πσ x e (ln x µ)2 /2σ 2 dx 0 1 (x K)e (ln x µ)2 /2σ 2 dx 2πσ K 1 2π (ln K µ)/σ (e σz+µ K)e σz+µ e z2 /2 dz

12 Technical Result II Make the substitution σz = ln x µ. E [ X(X K) +] = e2(µ+σ2 ) 2π Keµ+σ2 /2 2π (ln K µ)/σ (ln K µ)/σ e (z 2σ)2 /2 dz e (z σ)2 /2 dz ( ) µ ln K = e 2(µ+σ2) φ + 2σ σ ( ) µ ln K Ke µ+σ2 /2 φ + σ. σ

13 Concavity and Derivatives I Proof: If f is concave on (a, b) then by definition f satisfies λf(x) + (1 λ)f(y) f(λx + (1 λ)y) for every x, y (a, b) and every λ [0, 1]. Assume x < y. If w = λx + (1 λ)y and if 0 < λ < 1 then a < x < w < y < b. By the definition of w, (1 λ)[f(y) f(w)] λ[f(w) f(x)] 1 λ = w x y x and λ = y w y x. Substituting these expressions yields f(y) f(w) y w f(w) f(x) w x 0

14 Concavity and Derivatives II Applying the Mean Value Theorem to each of the difference quotients of implies that for some α and β satisfying with x < α < w < β < y, f (β) f (α) 0 Using the Mean Value Theorem once more proves that for some t with α < t < β which implies f (t) 0. f (t)(β α) 0

15 Jensen s Inequality (Discrete Version) Proof: Let µ = n λ ix i and note that since λ i [0, 1] for i = 1, 2,...,n and n λ i = 1, then a < µ < b. The equation of the line tangent to the graph of f at the point (µ, f(µ)) is y = f (µ)(x µ) + f(µ). Since f is concave on (a, b) then Therefore f(x i ) f (µ)(x i µ) + f(µ) for i = 1, 2,..., n. λ i f(x i ) ( [ λi f (µ)(x i µ) + f(µ) ]) = f (µ) (λ i x i λ i µ) + f(µ) ( ) = f(µ) = f λ i x i. λ i

16 Jensen s Inequality (Continuous Version) Proof: For the sake of compactness of notation let α = 1 0 φ(t) dt, and let y = f (α)(x α) + f(α), the equation of the tangent line passing through the point with coordinates (α, f(α)). Since f is concave then which implies that f(φ(t)) f (α)(φ(t) α) + f(α), 1 0 f(φ(t)) dt 1 0 [ f (α)(φ(t) α) + f(α) ] dt 1 = f(α) + f (α) (φ(t) α) dt 0 ( 1 ) = f(α) = f φ(t) dt. 0

17 Expected Utility Solution: A rational investor will select the investment with the greater expected utility. The expected utility for investment A is 1 2 u(10) u(0) = 1 2 ) ( = The expected utility for B is u(m) = M M 2 /25. Thus the investor will choose the coin flip whenever 3 > M M2 25 Thus investment A is preferable to B whenever M < $3.49.

18 Certainty Equivalent Solution: The certainty equivalent and payoffs of investment A must satisfy the following equation. C C2 25 = 1 (X X Y Y 2 ) 25 ) [ 2 ( = 1 X ( C 25 2 ) 2 + ( Y 25 2 ) 2 ] ( C = X 25 ) 2 ( + Y 25 )

19 Minimum Variance Analysis I Proof: Since the rates of return are uncorrelated, the variance of the returned wealth W is Var (W) = α 2 i σ2 i, and is subject to the constraint that 1 = n α i. Applying the technique of finding the minimum using Lagrange Multipliers yields the following system of equations. ( ) ( ) = λ α i α 2 i σ2 i α i = 1

20 Minimum Variance Analysis II These equations are equivalent to respectively: 2α i σi 2 = λ for i = 1, 2,...,n, and α i = 1. Solving for α i in the first equation and substituting into the second equation determines that λ = 2 n j=1 1. σj 2 Substituting this expression for λ into the first equation yields α i = 1 σ 2 i n j=1 1 σ 2 j for i = 1, 2,...,n.

21 Portfolio Separation Theorem Proof: Suppose x is a portfolio for which r(x) = b, then ( ) 1 1 b r(x) = r b x = 1. Thus 1 bx is a portfolio with unit expected rate of return. For the portfolio w, σ 2 (bw ) = b 2 σ 2 (w ) b 2 σ 2 ( 1 b x ) = σ 2 (x).

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 You can t see this text! Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Probability Review - Part 2 1 /

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Recall that if X 1,...,X n are random variables with finite expectations, then. The X i can be continuous or discrete or of any other type.

Recall that if X 1,...,X n are random variables with finite expectations, then. The X i can be continuous or discrete or of any other type. Expectations of Sums of Random Variables STAT/MTHE 353: 4 - More on Expectations and Variances T. Linder Queen s University Winter 017 Recall that if X 1,...,X n are random variables with finite expectations,

More information

BASICS OF PROBABILITY

BASICS OF PROBABILITY October 10, 2018 BASICS OF PROBABILITY Randomness, sample space and probability Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be predicted with certainty,

More information

1 Solving Algebraic Equations

1 Solving Algebraic Equations Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan 1 Solving Algebraic Equations This section illustrates the processes of solving linear and quadratic equations. The Geometry of Real

More information

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation)

MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) MATHEMATICS 154, SPRING 2009 PROBABILITY THEORY Outline #11 (Tail-Sum Theorem, Conditional distribution and expectation) Last modified: March 7, 2009 Reference: PRP, Sections 3.6 and 3.7. 1. Tail-Sum Theorem

More information

CSCI-6971 Lecture Notes: Probability theory

CSCI-6971 Lecture Notes: Probability theory CSCI-6971 Lecture Notes: Probability theory Kristopher R. Beevers Department of Computer Science Rensselaer Polytechnic Institute beevek@cs.rpi.edu January 31, 2006 1 Properties of probabilities Let, A,

More information

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1).

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1). Name M362K Final Exam Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. There is a table of formulae on the last page. 1. Suppose X 1,..., X 1 are independent

More information

2019 Spring MATH2060A Mathematical Analysis II 1

2019 Spring MATH2060A Mathematical Analysis II 1 2019 Spring MATH2060A Mathematical Analysis II 1 Notes 1. CONVEX FUNCTIONS First we define what a convex function is. Let f be a function on an interval I. For x < y in I, the straight line connecting

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

Tangent Plane. Linear Approximation. The Gradient

Tangent Plane. Linear Approximation. The Gradient Calculus 3 Lia Vas Tangent Plane. Linear Approximation. The Gradient The tangent plane. Let z = f(x, y) be a function of two variables with continuous partial derivatives. Recall that the vectors 1, 0,

More information

Problem Set 0 Solutions

Problem Set 0 Solutions CS446: Machine Learning Spring 2017 Problem Set 0 Solutions Handed Out: January 25 th, 2017 Handed In: NONE 1. [Probability] Assume that the probability of obtaining heads when tossing a coin is λ. a.

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Chapter 2 Some Basic Probability Concepts 2.1 Experiments, Outcomes and Random Variables A random variable is a variable whose value is unknown until it is observed. The value of a random variable results

More information

Chapter 4 continued. Chapter 4 sections

Chapter 4 continued. Chapter 4 sections Chapter 4 sections Chapter 4 continued 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP:

More information

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get 18:2 1/24/2 TOPIC. Inequalities; measures of spread. This lecture explores the implications of Jensen s inequality for g-means in general, and for harmonic, geometric, arithmetic, and related means in

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

Math 2163, Practice Exam II, Solution

Math 2163, Practice Exam II, Solution Math 63, Practice Exam II, Solution. (a) f =< f s, f t >=< s e t, s e t >, an v v = , so D v f(, ) =< ()e, e > =< 4, 4 > = 4. (b) f =< xy 3, 3x y 4y 3 > an v =< cos π, sin π >=, so

More information

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3 Math 551 Measure Theory and Functional Analysis I Homework Assignment 3 Prof. Wickerhauser Due Monday, October 12th, 215 Please do Exercises 3*, 4, 5, 6, 8*, 11*, 17, 2, 21, 22, 27*. Exercises marked with

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homework 5 1.7 Problem. f = x 2 y, y 2 x. If we solve f = 0, we can find two solutions (0, 0) and (1, 1). At (0, 0), f xx = 0, f yy = 0, f xy = and D = f xx f yy fxy 2 < 0, therefore (0, 0)

More information

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx INDEPENDENCE, COVARIANCE AND CORRELATION Independence: Intuitive idea of "Y is independent of X": The distribution of Y doesn't depend on the value of X. In terms of the conditional pdf's: "f(y x doesn't

More information

ORF 245 Fundamentals of Statistics Chapter 4 Great Expectations

ORF 245 Fundamentals of Statistics Chapter 4 Great Expectations ORF 245 Fundamentals of Statistics Chapter 4 Great Expectations Robert Vanderbei Fall 2014 Slides last edited on October 20, 2014 http://www.princeton.edu/ rvdb Definition The expectation of a random variable

More information

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix:

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix: Joint Distributions Joint Distributions A bivariate normal distribution generalizes the concept of normal distribution to bivariate random variables It requires a matrix formulation of quadratic forms,

More information

Partial Solutions for h4/2014s: Sampling Distributions

Partial Solutions for h4/2014s: Sampling Distributions 27 Partial Solutions for h4/24s: Sampling Distributions ( Let X and X 2 be two independent random variables, each with the same probability distribution given as follows. f(x 2 e x/2, x (a Compute the

More information

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes. Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

We introduce methods that are useful in:

We introduce methods that are useful in: Instructor: Shengyu Zhang Content Derived Distributions Covariance and Correlation Conditional Expectation and Variance Revisited Transforms Sum of a Random Number of Independent Random Variables more

More information

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised)

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised) Computational Optimization Mathematical Programming Fundamentals 1/5 (revised) If you don t know where you are going, you probably won t get there. -from some book I read in eight grade If you do get there,

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

Functions and Equations

Functions and Equations Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario Euclid eworkshop # Functions and Equations c 006 CANADIAN

More information

Mathematics 426 Robert Gross Homework 9 Answers

Mathematics 426 Robert Gross Homework 9 Answers Mathematics 4 Robert Gross Homework 9 Answers. Suppose that X is a normal random variable with mean µ and standard deviation σ. Suppose that PX > 9 PX

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as MAHALANOBIS DISTANCE Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as d E (x, y) = (x 1 y 1 ) 2 + +(x p y p ) 2

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Practice Midterm 2 Math 2153

Practice Midterm 2 Math 2153 Practice Midterm 2 Math 23. Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers. (a) ( point) If both partial derivatives f x and f y exist

More information

Introduction to Real Analysis

Introduction to Real Analysis Introduction to Real Analysis Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 Sets Sets are the basic objects of mathematics. In fact, they are so basic that

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

Multivariable Calculus and Matrix Algebra-Summer 2017

Multivariable Calculus and Matrix Algebra-Summer 2017 Multivariable Calculus and Matrix Algebra-Summer 017 Homework 4 Solutions Note that the solutions below are for the latest version of the problems posted. For those of you who worked on an earlier version

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries 1.1 Conventions and Notations Throughout the book we use the following notations for standard sets of numbers: N the set {1, 2,...} of natural numbers Z the set of integers Q the

More information

ORF 245 Fundamentals of Statistics Great Expectations

ORF 245 Fundamentals of Statistics Great Expectations ORF 245 Fundamentals of Statistics Great Expectations Robert Vanderbei Fall 2015 Slides last edited on November 16, 2015 http://www.princeton.edu/ rvdb Definition The expectation of a random variable is

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

14 Lecture 14 Local Extrema of Function

14 Lecture 14 Local Extrema of Function 14 Lecture 14 Local Extrema of Function 14.1 Taylor s Formula with Lagrangian Remainder Term Theorem 14.1. Let n N {0} and f : (a,b) R. We assume that there exists f (n+1) (x) for all x (a,b). Then for

More information

Partial Derivatives. w = f(x, y, z).

Partial Derivatives. w = f(x, y, z). Partial Derivatives 1 Functions of Several Variables So far we have focused our attention of functions of one variable. These functions model situations in which a variable depends on another independent

More information

Lecture 22: A Review of Linear Algebra and an Introduction to The Multivariate Normal Distribution

Lecture 22: A Review of Linear Algebra and an Introduction to The Multivariate Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 22: A Review of Linear Algebra and an Introduction to The Multivariate Normal Distribution Relevant

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Jointly Distributed Random Variables

Jointly Distributed Random Variables Jointly Distributed Random Variables CE 311S What if there is more than one random variable we are interested in? How should you invest the extra money from your summer internship? To simplify matters,

More information

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy. April 15, 2009 CHAPTER 4: HIGHER ORDER DERIVATIVES In this chapter D denotes an open subset of R n. 1. Introduction Definition 1.1. Given a function f : D R we define the second partial derivatives as

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

Chp 4. Expectation and Variance

Chp 4. Expectation and Variance Chp 4. Expectation and Variance 1 Expectation In this chapter, we will introduce two objectives to directly reflect the properties of a random variable or vector, which are the Expectation and Variance.

More information

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example: Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

Notes for Math 324, Part 19

Notes for Math 324, Part 19 48 Notes for Math 324, Part 9 Chapter 9 Multivariate distributions, covariance Often, we need to consider several random variables at the same time. We have a sample space S and r.v. s X, Y,..., which

More information

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems Chapter 1 Optimality Conditions: Unconstrained Optimization 1.1 Differentiable Problems Consider the problem of minimizing the function f : R n R where f is twice continuously differentiable on R n : P

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 MA 575 Linear Models: Cedric E Ginestet, Boston University Revision: Probability and Linear Algebra Week 1, Lecture 2 1 Revision: Probability Theory 11 Random Variables A real-valued random variable is

More information

Chapter 4 : Expectation and Moments

Chapter 4 : Expectation and Moments ECE5: Analysis of Random Signals Fall 06 Chapter 4 : Expectation and Moments Dr. Salim El Rouayheb Scribe: Serge Kas Hanna, Lu Liu Expected Value of a Random Variable Definition. The expected or average

More information

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!!

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!! 1 ICM Unit 0 Algebra Rules Lesson 1 Rules of Exponents RULE EXAMPLE EXPLANANTION a m a n = a m+n A) x x 6 = B) x 4 y 8 x 3 yz = When multiplying with like bases, keep the base and add the exponents. a

More information

Midterm 1 Solutions Thursday, February 26

Midterm 1 Solutions Thursday, February 26 Math 59 Dr. DeTurck Midterm 1 Solutions Thursday, February 26 1. First note that since f() = f( + ) = f()f(), we have either f() = (in which case f(x) = f(x + ) = f(x)f() = for all x, so c = ) or else

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 0. Chapter 0 I reviewed basic properties of linear differential equations in one variable. I still need to do the theory for several variables. 0.1. linear differential

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

The Multivariate Normal Distribution. In this case according to our theorem

The Multivariate Normal Distribution. In this case according to our theorem The Multivariate Normal Distribution Defn: Z R 1 N(0, 1) iff f Z (z) = 1 2π e z2 /2. Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) T with the Z i independent and each Z i N(0, 1). In this

More information

Statistics 351 Probability I Fall 2006 (200630) Final Exam Solutions. θ α β Γ(α)Γ(β) (uv)α 1 (v uv) β 1 exp v }

Statistics 351 Probability I Fall 2006 (200630) Final Exam Solutions. θ α β Γ(α)Γ(β) (uv)α 1 (v uv) β 1 exp v } Statistics 35 Probability I Fall 6 (63 Final Exam Solutions Instructor: Michael Kozdron (a Solving for X and Y gives X UV and Y V UV, so that the Jacobian of this transformation is x x u v J y y v u v

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017

LESSON 25: LAGRANGE MULTIPLIERS OCTOBER 30, 2017 LESSON 5: LAGRANGE MULTIPLIERS OCTOBER 30, 017 Lagrange multipliers is another method of finding minima and maxima of functions of more than one variable. In fact, many of the problems from the last homework

More information

A Correction. Joel Peress INSEAD. Abstract

A Correction. Joel Peress INSEAD. Abstract Wealth, Information Acquisition and ortfolio Choice A Correction Joel eress INSEAD Abstract There is an error in my 2004 paper Wealth, Information Acquisition and ortfolio Choice. This note shows how to

More information

Lecture 4: Convex Functions, Part I February 1

Lecture 4: Convex Functions, Part I February 1 IE 521: Convex Optimization Instructor: Niao He Lecture 4: Convex Functions, Part I February 1 Spring 2017, UIUC Scribe: Shuanglong Wang Courtesy warning: These notes do not necessarily cover everything

More information

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0

FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM. F (m 2 ) + α m 2 + x 0 FUNCTIONAL ANALYSIS HAHN-BANACH THEOREM If M is a linear subspace of a normal linear space X and if F is a bounded linear functional on M then F can be extended to M + [x 0 ] without changing its norm.

More information

Matrix Theory and Differential Equations Homework 2 Solutions, due 9/7/6

Matrix Theory and Differential Equations Homework 2 Solutions, due 9/7/6 Matrix Theory and Differential Equations Homework Solutions, due 9/7/6 Question 1 Consider the differential equation = x y +. Plot the slope field for the differential equation. In particular plot all

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

ERASMUS UNIVERSITY ROTTERDAM Information concerning the Entrance examination Mathematics level 2 for International Business Administration (IBA)

ERASMUS UNIVERSITY ROTTERDAM Information concerning the Entrance examination Mathematics level 2 for International Business Administration (IBA) ERASMUS UNIVERSITY ROTTERDAM Information concerning the Entrance examination Mathematics level 2 for International Business Administration (IBA) General information Availale time: 2.5 hours (150 minutes).

More information

Probability. Table of contents

Probability. Table of contents Probability Table of contents 1. Important definitions 2. Distributions 3. Discrete distributions 4. Continuous distributions 5. The Normal distribution 6. Multivariate random variables 7. Other continuous

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Review for the Final Exam

Review for the Final Exam Calculus 3 Lia Vas Review for the Final Exam. Sequences. Determine whether the following sequences are convergent or divergent. If they are convergent, find their limits. (a) a n = ( 2 ) n (b) a n = n+

More information

Normal Random Variables and Probability

Normal Random Variables and Probability Normal Random Variables and Probability An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2015 Discrete vs. Continuous Random Variables Think about the probability of selecting

More information

Math 118, Fall 2014 Final Exam

Math 118, Fall 2014 Final Exam Math 8, Fall 4 Final Exam True or false Please circle your choice; no explanation is necessary True There is a linear transformation T such that T e ) = e and T e ) = e Solution Since T is linear, if T

More information

Section 9.1. Expected Values of Sums

Section 9.1. Expected Values of Sums Section 9.1 Expected Values of Sums Theorem 9.1 For any set of random variables X 1,..., X n, the sum W n = X 1 + + X n has expected value E [W n ] = E [X 1 ] + E [X 2 ] + + E [X n ]. Proof: Theorem 9.1

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

PreCalculus: Semester 1 Final Exam Review

PreCalculus: Semester 1 Final Exam Review Name: Class: Date: ID: A PreCalculus: Semester 1 Final Exam Review Short Answer 1. Determine whether the relation represents a function. If it is a function, state the domain and range. 9. Find the domain

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised)

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised) Computational Optimization Convexity and Unconstrained Optimization 1/9/08 and /1(revised) Convex Sets A set S is convex if the line segment joining any two points in the set is also in the set, i.e.,

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 17-27 Review Scott Sheffield MIT 1 Outline Continuous random variables Problems motivated by coin tossing Random variable properties 2 Outline Continuous random variables Problems

More information

Wealth, Information Acquisition and Portfolio Choice: A Correction

Wealth, Information Acquisition and Portfolio Choice: A Correction Wealth, Information Acquisition and Portfolio Choice: A Correction Joel Peress INSEAD There is an error in our 2004 paper Wealth, Information Acquisition and Portfolio Choice. This note shows how to correct

More information

Bell-shaped curves, variance

Bell-shaped curves, variance November 7, 2017 Pop-in lunch on Wednesday Pop-in lunch tomorrow, November 8, at high noon. Please join our group at the Faculty Club for lunch. Means If X is a random variable with PDF equal to f (x),

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Introduction to Statistical Methods in Economics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

CONTENTS COLLEGE ALGEBRA: DR.YOU

CONTENTS COLLEGE ALGEBRA: DR.YOU 1 CONTENTS CONTENTS Textbook UNIT 1 LECTURE 1-1 REVIEW A. p. LECTURE 1- RADICALS A.10 p.9 LECTURE 1- COMPLEX NUMBERS A.7 p.17 LECTURE 1-4 BASIC FACTORS A. p.4 LECTURE 1-5. SOLVING THE EQUATIONS A.6 p.

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information