Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as

Size: px
Start display at page:

Download "Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as"

Transcription

1 MAHALANOBIS DISTANCE Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as d E (x, y) = (x 1 y 1 ) 2 + +(x p y p ) 2 = (x y) t (x y) and d E (x, 0) = x 2 = norm of x. x x2 p = x t x is the euclidian It follows immediately that all points with the same distance of the origin x 2 = c satisfy x x2 p = c2 which is the equation of a spheroid. This means that all components of an observation x contribute equally to the euclidian distance of x from the center. However in statistics we prefer a distance that for each of the components (the variables) takes the variability of that variable into accountwhen determining its distance from the center. Components with high variability should receive less weight than components with low variability. This can be obtained by rescaling the components Denote u =( x 1,..., x p )andv =( y 1,..., y p ) s 1 s p s 1 s p then define the distance between x and y as d(x, y) =d E (u, v) = ( x 1 y 1 ) s 2 + +( x p y p ) 1 s 2 = (x y) t D 1 (x y) p where D =diag(s 2 1,...,s2 p ). Now the norm of x equals x = d(x, 0) = d E (u, 0) = u 2 = ( x 1 ) s 2 + +( x p ) 1 s 2 = x t D 1 x p

2 and all points with the same distance of the origin x = c satisfy ( x 1 s 1 ) 2 + +( x p s p ) 2 = c 2 which is the equation of an ellipsoid centered at the origin with principal axes equal to the coordinate axes. Finally, we also want to take the correlation between variables into account when computing statistical distances. Correlation means that there are associations between the variables. Therefore, we want the axes of ellipsoid to reflect this correlation. This is obtained by allowing the axes of the ellipsoid at constant distance to rotate. This yields the following general form for the statistical distance of two points Def. The statistical distance or Mahalanobis distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p- dimensional space R p is defined as d S (x, y) = (x y) t S 1 (x y) and d S (x, 0) = x S = x t S 1 x is the norm of x. 2 Points with the same distance of the origin x S = c satisfy x t S 1 x = c 2 which is the general equation of an ellipsoid centered at the origin. In general the center of the observations will differ from the origin and we will be interested in the distance of an observation from its center x given by d S (x, x) = (x x) t S 1 (x x).

3 3 Result 1. Consider any three p-dimensional observations x, y and z of a p-dimensional random variable X =(x 1,...,X p ) t. The Mahalanobis distance satisfies the following properties d S (x, y) =d S (y, x) d S (x, y) > 0ifx y d S (x, y) =0ifx = y d S (x, y) d S (x, z)+d S (z, y) (triangle inequality)

4 MATRIX ALGEBRA Def. A p-dimensional square matrix Q is orthogonal if QQ t = Q t Q = I p or equivalently Q t = Q 1 This implies that the rows of Q have unit norms and are orthogonal. The columns have the same property. Def. A p-dimensional square matrix A has an eigenvalue λ with corresponding eigenvector x 0if Ax = λx If the eigenvector x is normalized, which means that x =1, then we will denote the normalized eigenvector by e. Result 1. A symmetric p-dimensional square matrix A has p pairs of eigenvalues and eigenvectors (λ 1,e 1 ),...,(λ p,e p ). The eigenvectors can be chosen to be normalized (e t 1 e 1 = = e t pe p = 1) and orthogonal (e t i e j =0ifi j). If all eigenvalues are different, then the eigenvectors are unique.

5 2 Result 2. Spectral decomposition The spectral decompositon of a p-dimensional symmetric square matrix A is given by A = λ 1 e 1 e t λ pe p e t p where (λ 1,e 1 ),...,(λ p,e p ) are the eigenvalue/normalized eigenvector pairs of A. Example Consider the symmetric matrix A = From the characteristic equation A λi 3 = 0 we obtain the eigenvalues λ 1 =9,λ 2 =9,andλ 3 = 18 The corresponding normalized eigenvectors are solutions of the equations Ae i = λ i e i for i =1, 2, 3. For example, with e 3 =(e 13,e 23,e 33 ) t the equation Ae 3 = λ 3 e 3 gives 13e 13 4e 23 +2e 33 = 18e 13 4e e = 18e 23 2e 13 2e e 33 = 18e 33 Solving this system of equations yields the normalized eigenvector e 3 =(2/3, 2/3, 1/3). For the other eigenvalue λ 1 = λ 2 =9the corresponding eigenvectors are not unique. An orthogonal pair is given by e 1 =(1/ 2, 1/ 2, 0) t and e 2 =(1/ 18, 1/ 18, 4/ 18). With these solutions it can now easily be verified that A = λ 1 e 1 e t 1 + λ 2e 2 e t 2 + λ 3e 3 e t 3 Def. A symmetric p p matrix A is called nonnegative definite if 0 x t Ax for all x R p. A is called positive definite if 0 <x t Ax for all x 0.

6 It follows (from the spectral decomposition) that A is positive definite if and only if all eigenvalues of A are strictly positive and A is nonnegative definite if and only if all eigenvalues are greater than or equal to zero. Remark The Mahalanobis distance of a point was defined as d 2 S (x, 0) = xt S 1 x which does implies that all eigenvalues of the symmetric matrix S 1 have to be positive. From the spectral decomposition we obtain that a symmetric positive definite p-dimensional square matrix A equals p A = λ i e i e t i = P ΛP t i=1 with P =(e 1,...,e p ) a p-dimensional square matrix whose columns are the normalized eigenvectors of A and Λ = diag(λ 1,...,λ p )a p-dimensional diagonal matrix whose diagonal elements are the eigenvalues of A. NotethatP is an orthogonal matrix. It follows that p A 1 = P Λ 1 P t 1 = e i e t i λ i i=1 and we define the square root of A by p A 1/2 = λi e i e t i = P Λ 1/2 P t i=1 3 Result 3. The square root of a symmetric, positive definite p p matrix A has the following properties (A 1/2 ) t = A 1/2 (that is, A 1/2 is symmetric). A 1/2 A 1/2 = A. A 1/2 =(A 1/2 ) 1 = p i=1 A 1/2 A 1/2 = A 1/2 A 1/2 = I p A 1/2 A 1/2 = A 1 1 λi e i e t i = P Λ 1/2 P t

7 4 Result 4. Cauchy-Schwarz inequality Let b, d R p be two p-dimensional vectors, then we have that (b t d) 2 (b t b)(d t d) with equality if and only if there exists a constant c R such that b = cd. Result 5. Extended Cauchy-Schwarz inequality Let b, d R p be two p-dimensional vectors and B a p- dimensional positive definite matrix, then (b t d) 2 (b t Bb)(d t B 1 d) with equality if and only if there exists a constant c R such that b = cb 1 d. Proof. The result is obvious if b =0ord = 0. For other cases we use that b t d = b t B 1/2 B 1/2 d =(B 1/2 b) t (B 1/2 d) and apply the previous result to (B 1/2 b)and(b 1/2 d). Result 6. Maximization Lemma Let B be a p-dimensional positive definite matrix and d R p a p-dimensional vector, then (x t d) 2 max x 0 x t Bx = dt B 1 d with the maximum attained when there exists a constant c 0 such that x = cb 1 d Proof. From the previous result, we have that (x t d) 2 (x t Bx)(d t B 1 d)

8 5 Because x 0andB positive definite, x t Bx > 0, which yields (x t d) 2 x t Bx dt B 1 d for all x 0. From the extended Cauchy-Schwarz inequality we know that the maximum is attained for x = cb 1 d. Result 7. Maximization of Quadratic forms Let B be a p-dimensional positive definite matrix with eigenvalues λ 1 λ 2 λ p > 0 and associated normalized eigenvectors e 1,...,e p.then x t Bx max x 0 x t x min x 0 x t Bx x t x = λ 1 (attained when x = e 1 ) = λ p (attained when x = e p ) More general, x t Bx max x e 1,...e k x t x = λ k+1 (attained when x = e k+1,k =1,...,p 1) Proof. We will proof the first result. B = P ΛP t and denote y = P t x.thenx 0 implies y 0and x t Bx x t x = yt Λy y t y = p i=1 λ iy 2 i p i=1 y2 i λ 1 Now take x = e 1, then y = P t e 1 = (1, 0,...,0) t such that y t Λy/y t y = λ 1. Remark Note that since x t Bx max x 0 x t x =max x =1 xt Bx the prevoius results shows that λ 1 is the maximal value and λ p is the smallest value of the quadratic form x t Bx on the unit sphere.

9 6 Result 8. Singular Value Decomposition Let A be a (m k) matrix. Then there exist an m m orthogonal matrix U, ak k orthogonal matrix V and an m k matrix Λ with entries (i, i) equaltoλ i 0fori =1,...,r =min(m, k) and all other entries zero such that r A = UΛV t = λ i u i vi t. The positive constants λ i are called the singular values of A. The (λ 2 i,u i) are the eigenvalue/eigenvector pairs of AA t with λ r+1 = = λ m =0ifm>kand then v i = λ 1 i A t u i. Alternatively, (λ 2 i,v i) are the eigenvalue/eigenvector pairs of A t A with λ r+1 = = λ k =0ifk>m i=1

10 RANDOM VECTORS Suppose that X =(X 1,...,X p ) t is a p-dimensional vector of random variables, also called a random vector. Each of the components of X is a univariate random variable X j (j =1,...,p) with its own marginal distribution having expected value µ j = E[X j ] and variance σ 2 j = E[(X j µ j ) 2 ]. The expected value of X is then defined as the vector of expected values of its components, that is E[X] =(E[X 1 ],...,E[X p ]) t =(µ 1,...,µ p ) t = µ. The population covariance matrix of X is defined as Cov[X] =E[(X µ)(x µ) t ]=Σ. That is, the diagonal elements of Σ equal E[(X j µ j ) 2 ]=σj 2. The off-diagonal elements of Σ equal E[(X j µ j )(X k µ k )] = Cov(X j,x k )(j k) =σ jk, the covariance between the variables X j and X k.notethatσ jj = σj 2. The population correlation between two variables X j and X k is defined as ρ jk = σ jk σ j σ k and measures the amount of linear association between the two variables. The population correlation matrix of X is then defined as 1 ρ ρ 1p ρ ρ 2p ρ = = V 1 ΣV 1 ρ p1 ρ p with V =diag(σ 1,...,σ p ). It follows that Σ = VρV

11 2 Result 1. Linear combinations of random vectors Consider X a p-dimensional random vector and c R p then c t X is a one-dimensional random variable with E[c t X]=c t µ Var[c t X]=c t Σc In general, if C R q p then CX is a q-dimensional random vector with E[CX]=Cµ Cov[CX]=CΣC t

Basic Concepts in Matrix Algebra

Basic Concepts in Matrix Algebra Basic Concepts in Matrix Algebra An column array of p elements is called a vector of dimension p and is written as x p 1 = x 1 x 2. x p. The transpose of the column vector x p 1 is row vector x = [x 1

More information

2. Matrix Algebra and Random Vectors

2. Matrix Algebra and Random Vectors 2. Matrix Algebra and Random Vectors 2.1 Introduction Multivariate data can be conveniently display as array of numbers. In general, a rectangular array of numbers with, for instance, n rows and p columns

More information

MATRIX ALGEBRA. or x = (x 1,..., x n ) R n. y 1 y 2. x 2. x m. y m. y = cos θ 1 = x 1 L x. sin θ 1 = x 2. cos θ 2 = y 1 L y.

MATRIX ALGEBRA. or x = (x 1,..., x n ) R n. y 1 y 2. x 2. x m. y m. y = cos θ 1 = x 1 L x. sin θ 1 = x 2. cos θ 2 = y 1 L y. as Basics Vectors MATRIX ALGEBRA An array of n real numbers x, x,, x n is called a vector and it is written x = x x n or x = x,, x n R n prime operation=transposing a column to a row Basic vector operations

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters, transforms,

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak, scribe: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters,

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

STAT200C: Review of Linear Algebra

STAT200C: Review of Linear Algebra Stat200C Instructor: Zhaoxia Yu STAT200C: Review of Linear Algebra 1 Review of Linear Algebra 1.1 Vector Spaces, Rank, Trace, and Linear Equations 1.1.1 Rank and Vector Spaces Definition A vector whose

More information

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson More Linear Algebra Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

1. Introduction to Multivariate Analysis

1. Introduction to Multivariate Analysis 1. Introduction to Multivariate Analysis Isabel M. Rodrigues 1 / 44 1.1 Overview of multivariate methods and main objectives. WHY MULTIVARIATE ANALYSIS? Multivariate statistical analysis is concerned with

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

Vectors and Matrices Statistics with Vectors and Matrices

Vectors and Matrices Statistics with Vectors and Matrices Vectors and Matrices Statistics with Vectors and Matrices Lecture 3 September 7, 005 Analysis Lecture #3-9/7/005 Slide 1 of 55 Today s Lecture Vectors and Matrices (Supplement A - augmented with SAS proc

More information

Nonlinear Programming Algorithms Handout

Nonlinear Programming Algorithms Handout Nonlinear Programming Algorithms Handout Michael C. Ferris Computer Sciences Department University of Wisconsin Madison, Wisconsin 5376 September 9 1 Eigenvalues The eigenvalues of a matrix A C n n are

More information

Lecture 7 Spectral methods

Lecture 7 Spectral methods CSE 291: Unsupervised learning Spring 2008 Lecture 7 Spectral methods 7.1 Linear algebra review 7.1.1 Eigenvalues and eigenvectors Definition 1. A d d matrix M has eigenvalue λ if there is a d-dimensional

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 21 Symmetric matrices An n n

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Introduction to Numerical Linear Algebra II

Introduction to Numerical Linear Algebra II Introduction to Numerical Linear Algebra II Petros Drineas These slides were prepared by Ilse Ipsen for the 2015 Gene Golub SIAM Summer School on RandNLA 1 / 49 Overview We will cover this material in

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

The Multivariate Normal Distribution. In this case according to our theorem

The Multivariate Normal Distribution. In this case according to our theorem The Multivariate Normal Distribution Defn: Z R 1 N(0, 1) iff f Z (z) = 1 2π e z2 /2. Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) T with the Z i independent and each Z i N(0, 1). In this

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Positive Definite Matrix

Positive Definite Matrix 1/29 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Positive Definite, Negative Definite, Indefinite 2/29 Pure Quadratic Function

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Best approximation in the 2-norm

Best approximation in the 2-norm Best approximation in the 2-norm Department of Mathematical Sciences, NTNU september 26th 2012 Vector space A real vector space V is a set with a 0 element and three operations: Addition: x, y V then x

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

Linear Algebra Review

Linear Algebra Review January 29, 2013 Table of contents Metrics Metric Given a space X, then d : X X R + 0 and z in X if: d(x, y) = 0 is equivalent to x = y d(x, y) = d(y, x) d(x, y) d(x, z) + d(z, y) is a metric is for all

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Notes on Linear Algebra and Matrix Theory

Notes on Linear Algebra and Matrix Theory Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a

More information

Section 3.9. Matrix Norm

Section 3.9. Matrix Norm 3.9. Matrix Norm 1 Section 3.9. Matrix Norm Note. We define several matrix norms, some similar to vector norms and some reflecting how multiplication by a matrix affects the norm of a vector. We use matrix

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information

Linear algebra for computational statistics

Linear algebra for computational statistics University of Seoul May 3, 2018 Vector and Matrix Notation Denote 2-dimensional data array (n p matrix) by X. Denote the element in the ith row and the jth column of X by x ij or (X) ij. Denote by X j

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

STA 437: Applied Multivariate Statistics

STA 437: Applied Multivariate Statistics Al Nosedal. University of Toronto. Winter 2015 1 Chapter 5. Tests on One or Two Mean Vectors If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition Chapter 5. Tests

More information

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84 Chapter 2 84 Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random variables. For instance, X = X 1 X 2.

More information

Random Vectors and Multivariate Normal Distributions

Random Vectors and Multivariate Normal Distributions Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random 75 variables. For instance, X = X 1 X 2., where each

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2 MATH 7- Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the Cauchy-Schwartz inequality

More information

Lecture 8: Linear Algebra Background

Lecture 8: Linear Algebra Background CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 8: Linear Algebra Background Lecturer: Shayan Oveis Gharan 2/1/2017 Scribe: Swati Padmanabhan Disclaimer: These notes have not been subjected

More information

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Johannes Heiny University of Aarhus Joint work with Thomas Mikosch (Copenhagen), Richard Davis (Columbia),

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Basic Calculus Review

Basic Calculus Review Basic Calculus Review Lorenzo Rosasco ISML Mod. 2 - Machine Learning Vector Spaces Functionals and Operators (Matrices) Vector Space A vector space is a set V with binary operations +: V V V and : R V

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral radius of a matrix A may be obtained using the formula ρ(a) lim

More information

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013 Multivariate Gaussian Distribution Auxiliary notes for Time Series Analysis SF2943 Spring 203 Timo Koski Department of Mathematics KTH Royal Institute of Technology, Stockholm 2 Chapter Gaussian Vectors.

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Stat 206: Sampling theory, sample moments, mahalanobis

Stat 206: Sampling theory, sample moments, mahalanobis Stat 206: Sampling theory, sample moments, mahalanobis topology James Johndrow (adapted from Iain Johnstone s notes) 2016-11-02 Notation My notation is different from the book s. This is partly because

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

STAT 501 Assignment 1 Name Spring Written Assignment: Due Monday, January 22, in class. Please write your answers on this assignment

STAT 501 Assignment 1 Name Spring Written Assignment: Due Monday, January 22, in class. Please write your answers on this assignment STAT 5 Assignment Name Spring Reading Assignment: Johnson and Wichern, Chapter, Sections.5 and.6, Chapter, and Chapter. Review matrix operations in Chapter and Supplement A. Examine the matrix properties

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix. Quadratic forms 1. Symmetric matrices An n n matrix (a ij ) n ij=1 with entries on R is called symmetric if A T, that is, if a ij = a ji for all 1 i, j n. We denote by S n (R) the set of all n n symmetric

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Matrix Algebra, part 2

Matrix Algebra, part 2 Matrix Algebra, part 2 Ming-Ching Luoh 2005.9.12 1 / 38 Diagonalization and Spectral Decomposition of a Matrix Optimization 2 / 38 Diagonalization and Spectral Decomposition of a Matrix Also called Eigenvalues

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples

Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples Data Analysis and Manifold Learning Lecture 2: Properties of Symmetric Matrices and Examples Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Tutorials in Optimization. Richard Socher

Tutorials in Optimization. Richard Socher Tutorials in Optimization Richard Socher July 20, 2008 CONTENTS 1 Contents 1 Linear Algebra: Bilinear Form - A Simple Optimization Problem 2 1.1 Definitions........................................ 2 1.2

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix KAIST wit Lab 2012. 07. 10 남성호 Introduction The signs of the eigenvalues can be important. The signs can also be related to the minima,

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Main problem of linear algebra 2: Given

More information

8 - Continuous random vectors

8 - Continuous random vectors 8-1 Continuous random vectors S. Lall, Stanford 2011.01.25.01 8 - Continuous random vectors Mean-square deviation Mean-variance decomposition Gaussian random vectors The Gamma function The χ 2 distribution

More information

Linear Algebra & Analysis Review UW EE/AA/ME 578 Convex Optimization

Linear Algebra & Analysis Review UW EE/AA/ME 578 Convex Optimization Linear Algebra & Analysis Review UW EE/AA/ME 578 Convex Optimization January 9, 2015 1 Notation 1. Book pages without explicit citation refer to [1]. 2. R n denotes the set of real n-column vectors. 3.

More information

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution Moment Generating Function STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution T. Linder Queen s University Winter 07 Definition Let X (X,...,X n ) T be a random vector and

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................

More information

Linear Algebra: Characteristic Value Problem

Linear Algebra: Characteristic Value Problem Linear Algebra: Characteristic Value Problem . The Characteristic Value Problem Let < be the set of real numbers and { be the set of complex numbers. Given an n n real matrix A; does there exist a number

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

A Little Necessary Matrix Algebra for Doctoral Studies in Business & Economics. Matrix Algebra

A Little Necessary Matrix Algebra for Doctoral Studies in Business & Economics. Matrix Algebra A Little Necessary Matrix Algebra for Doctoral Studies in Business & Economics James J. Cochran Department of Marketing & Analysis Louisiana Tech University Jcochran@cab.latech.edu Matrix Algebra Matrix

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

Chapter 1. Matrix Algebra

Chapter 1. Matrix Algebra ST4233, Linear Models, Semester 1 2008-2009 Chapter 1. Matrix Algebra 1 Matrix and vector notation Definition 1.1 A matrix is a rectangular or square array of numbers of variables. We use uppercase boldface

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

1. Addition: To every pair of vectors x, y X corresponds an element x + y X such that the commutative and associative properties hold

1. Addition: To every pair of vectors x, y X corresponds an element x + y X such that the commutative and associative properties hold Appendix B Y Mathematical Refresher This appendix presents mathematical concepts we use in developing our main arguments in the text of this book. This appendix can be read in the order in which it appears,

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Matrix Theory. A.Holst, V.Ufnarovski

Matrix Theory. A.Holst, V.Ufnarovski Matrix Theory AHolst, VUfnarovski 55 HINTS AND ANSWERS 9 55 Hints and answers There are two different approaches In the first one write A as a block of rows and note that in B = E ij A all rows different

More information