The prioritising exclusion process

Size: px
Start display at page:

Download "The prioritising exclusion process"

Transcription

1 The prioritising exclusion process Jan de Gier University of Melbourne GGI workshop, Firenze 2014 With Caley Finn Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

2 Motivation The accumulating priority queue (APQ, Kleinrock 1964) Queueing Syst (2014) 77: DOI /s Waiting time distributions in the accumulating priority queue David A. Stanford Peter Taylor Ilze Ziedins Received: 31 December 2011 / Revised: 30 July 2013 / Published online: 7 December 2013 The Author(s) This article is published with open access at Springerlink.com Abstract We are interested in queues in which customers of different classes arrive to a service facility, and where performance targets are specified for each class. The manager of such a queue has the task of implementing a queueing discipline that results in the performance targets for all classes being met simultaneously. For the case where the performance targets are specified in terms of ratios of mean waiting times, as long Jan de Gier (University of ago Melbourne) as the 1960s, Kleinrock The suggested prioritising a queueing exclusiondiscipline process to ensure that the targets 17 June / 27

3 APQ The accumulating priority queue (APQ): M/M/1 queue (arrival and service rate) with two classes of customers High and low priority customers (triage in emergency) Customers deterministically acquire priority High priority do so at a faster rate Customers are ordered according to their priority Hence they overtake deterministically Change accumulation rates to achieve service waiting times performance levels Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

4 Waiting time performance levels Queueing Syst (2014) 77: Table 1 CTAS key performance indicators Category Classification Access Performance level (%) 1 Resuscitation Immediate 98 2 Emergency 15 min 95 3 Urgent 30 min 90 4 Less urgent 60 min 85 5 Not urgent 120 min 80 of patients whose waiting times before accessing treatment should not exceed the stipulated standard. For example, as is depicted in Table 1, the Canadian Triage and Acuity Scale (CTAS) [4] formulates five priority classifications for assessment in an emergency department, each with its own time standard and compliance target for the proportion of that class s patients that need to meet that standard. The Australasian Triage Scale [3], on which CTAS is based, likewise, has five priority classes, but with different compliance targets. Elective patients awaiting surgery or treatment are also categorized into priorities with compliance targets; we cite as particular examples hip and knee replacement priority scoring in Canada [2] and New Zealand [7], and coronary artery bypass graft surgery in New Zealand [15]. Curtis et al. [6] gavean overview of prioritisation in Australia, as well as a discussion of the Clinical Priority Assessment Criteria (CPAC) tools used in New Zealand and the Western Canada Waiting List Project (WCWL) in Canada. A variant of the accumulating priority mechanism has been considered previously by healthcare modellers in a simulation of emergency care. Hay et al. [9] proposed Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

5 Goals APQ has fluctuating length Stochastic scheduling mechanism? Mapping to exclusion process Goals: Stat-phys: Find a solvable particle hopping model with fluctuating length Queueing: What can we say using physics methods Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

6 Prioritising exclusion The prioritising exclusion process (PEP) λ 1 p μ λ 2 n Low and high arrivals with rate λ 1 and λ 2 High overtakes low with rate p Service rate µ Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

7 M/M/1 queue The PEP is related to the simple M/M/1 queue. The total arrival rate of customers to the PEP is λ = λ 1 + λ 2, and the service rate is µ. Both these rates are independent of the internal arrangement of the queue, and the prioritising parameter p. If we are interested only in the total length of the queue, we can treat the system as a M/M/1 queue with arrival rate λ and service rate µ. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

8 M/M/1 queue The state of a M/M/1 queue is characterised by the probability distribution P n of a queue of lenght n: d P 0 = µp 1 λp 0 d t d P n = λp n 1 + µp n+1 (µ + λ)p n, n > 0. d t The stationary length distribution of the M/M/1 queue (and hence for the PEP) is ( P n = 1 λ ) ( ) n λ, µ µ when λ < µ (arrival rate less than service rate) The expected queue length is finite, given by n = λ µ λ. We will call this the bounded phase of the PEP. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

9 M/M/1 queue At p = 0, the PEP reduces exactly to a M/M/1 queue. Customers are high priority with probability λ 1 /λ or low priority with probability λ 2 /λ. But as there is no overtaking, the probability of high or low at any site is the same as at arrival. For p = 0, in the bounded phase, P(τ n... τ 1 ) = P n ( λ1 λ ) h ( ) l λ2. λ where h = n τ i, l = n h. i=1 Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

10 Unbounded phase When λ > µ, the system is unstable and the expected queue length grows as n (λ µ)t. In the late time limit, we can treat the queue as infinite in length. We call this the unbounded phase of the PEP Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

11 Notation Specify both the site, i, and the lattice length, n: τ i n = P(queue length is n, and site i is occupied). Correlation functions, number from right to left: τ in τ i2... τ i1 n, n i n >... i 2 > i 1 1. Examples of stationary rate equations are 0 = λ 1 P 0 + µ τ 2 2 (λ + µ) τ 1 1, 0 = λ τ 1 n 1 + µ τ 2 n+1 + p τ 2 (1 τ 1 ) n (λ + µ) τ 1 n, n > 1. These couple between different lenghts. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

12 Unbounded queue; Reference frames For any fixed configuration τ n... τ 1, lim t P(τn... τ 1) = 0, The service frame is fixed at the right hand end of the lattice: P serv(τ m... τ 1 ; n) = P(τ n... τ m+1 τ m... τ 1 ). τ n,...,τ m+1 =0,1 The arrival frame probability is defined by P arr(τ 1... τ m; n) = τ m+1,...,τ n=0,1 P(τ 1... τ mτ m+1... τ n). In the t limit, the expected lattice length is infinite, and thus we are interested in the n limits P serv(τ m... τ 1 ) = lim n P serv(τ m... τ 1 ; n), P arr(τ 1... τ m) = lim n P arr(τ 1... τ m; n). Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

13 Domain wall ansatz Consider a general but finite section of length m, with a length k jam: τ m... τ k+2 01 k = τ 01 k. Assume that the conditional probability for a high at site i given a jam of length k is 1 1 i k P(τ i = 1 k) = 0 i = k + 1 α i k + 2, P(τ i =1 n,k) 1 α n k+1 k Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

14 Domain wall ansatz The probability of the finite segment τ = τ m... τ 1 is P serv(τ 01 k ) = P(... τ m+1 τ m... τ k+2 01 k ) where h = τ,...,τ m+1 =0,1 = α h (1 α) l P jam(k). m τ i, l = m h k 1, i=k+2 and P jam(k) is the probability of a length k jam. The jam probabilities are normalised such that P jam(k) = 1. k=0 Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

15 Service frame The stationary rate equation for the k-jam configuration with k 1 is ( 0 = µp serv τ 01 k+1) ) ) + µp serv (τ 01 k 0 + pτ mp serv (0τ 01 k (m+1,m) + m i=k+2 p(1 τ i )τ i 1 P serv ( τ 01 k (i,i 1) ) + pp serv ( τ 101 k 1) µp serv(τ 01 k ) m pτ i (1 τ i 1 )P serv(τ 01 k ) p(1 τ m)p serv(1τ 01 k ). i=k+2 Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

16 Service frame Substituting the domain wall ansatz, the terms representing hopping combine and telescope to ( m ) m p (1 τ i )τ i 1 τ i (1 τ i 1 ) α h (1 α) l P jam(k) i=k+2 i=k+2 = pτ mα h (1 α) l P jam(k). The factor α h (1 α) l is common to all terms in the rate equation. Cancelling, and simplifying leaves 0 = pαp jam(k 1) + µp jam(k + 1) + µ(1 α)α k P jam(0) (µ + pα)p jam(k). No approximation has been made. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

17 Service frame With boundary condition this implies the recursion with solution The normalisation condition fixes P jam(k) = pα µ Pjam(k 1) + αk P jam(0), k 1. ( ) k p pα µ µα k P jam(k) = P jam(0). p µ P jam(0) = (1 α)(1 pα µ ), subject to the constraint No growing jam. pα < µ. What is α? Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

18 Arrival frame The value of α can be determined by considering the arrival frame. One obtains: 0 = λα(1 α) + pα 2 (1 α) pτ 1 α(1 α) + τ 1 λ 1 (1 α) + (1 τ 1 )λ 2 α, which for both τ 1 = 0 and τ 1 = 1 reduces to pα 2 (p + λ)α + λ 1 = 0. The physical solution is the smallest root of this quadratic. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

19 Density profile The density at site i in the service frame, τ i, is computed from the domain wall solution as τ i = α i 2 k=0 Pjam(k) + k=i Pjam(k) ) i = α + (1 α). ( pα µ Τ i i Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

20 Conserved current The bulk equations can be written where d d t τ i = J (i+1) J, (i) J (1) = µ τ 1, J (i) = µ τ i + p τ i (1 τ i 1 ). Stationary current: J = pα(1 α) + µα Low priority customers leave the queue at rate µ J = (µ pα)(1 α). For pα > µ, the jam becomes unbounded, and low priority customers will no longer be served. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

21 Bounded phase λ < µ In the bounded phase the domain wall ansatz breaks down at the arrival end. Define the probability of a length k jam in a length n queue P(n, k) = P(τ n... τ k+2 01 k ). (1) τ n,...,τ k+2 =0,1 Approximation Length assumption: P(n, k) = P np jam(k). The equations for P jam(k) have the same form as for P jam(k) in the unbounded case but with λ in place of µ. Pjam(k) = p ( ) pα k λα k λ Pjam(0). p λ Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

22 Density profile ( pα ) ) i τ i n = P n (α + (1 α). λ Τ i npn Τ i npn i (c) pα < λ i (d) pα > λ Triangle markers show simulation results, with points for each length connected by dashed lines. Domain wall approximation invalid for pα > λ. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

23 Aggregate density profile and current Another approximation can be derived for aggregate densities: τ i = τ i n. n=i where with stationary solution d d t τ i = J (i) ext + J(i+1,i) J (i,i 1), J (i,i 1) = µ τ i + p τ i (1 τ i 1 ). J (i,i 1) = λ 1 ( λ µ ) i 1. Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

24 Aggregate density profile τ i = ( λ µ ) i [ α + (1 α) ( pα µ ) i ], i Τ in i i Τ in i i Τ in i i Τ in i Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

25 Waiting times We can use the aggregated densities to compute the average number of customers in the queue Define N 1 = τ i n = τ i. Average waiting time of high priority customers is W 1 = 1 N 1 = 1 ( α λ ) λ 1 λ 1 µ λ + (1 α) pαλ. µ 2 pαλ i=1 n=i i= W i (i) Low density p W i (j) High density Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27 p

26 Conclusions Conclusion Queuing model with stochastic scheduling Fluctuating length Domain wall ansatz exact for the unbounded phase Two approximations for bounded phase Waiting times Outlook Full exact solution More classes of particles Waiting time distributions Fluctuations and large deviations? Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

27 Papers Exlusion processes: arxiv: Exclusion in a priority queue Jan de Gier and Caley Finn arxiv: , J. Phys. A 44 (2011) Relaxation rate of the reverse biased asymmetric exclusion process Jan de Gier, Caley Finn and Mark Sorrell Traffic modelling: arxiv: , Physica A 401 (2014), Traffic disruption and recovery in road networks Lele Zhang, Timothy M. Garoni and Jan de Gier arxiv: , Transport. Res. B: Meth. 49 (2013), 1-23 A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems Lele Zhang, Timothy M. Garoni and Jan de Gier Jan de Gier (University of Melbourne) The prioritising exclusion process 17 June / 27

Waiting time distributions in the accumulating priority queue

Waiting time distributions in the accumulating priority queue Queueing Syst (214) 77:297 33 DOI 1.17/s11134-13-9382-6 Waiting time distributions in the accumulating priority queue David A. Stanford Peter Taylor Ilze Ziedins Received: 31 December 211 / Revised: 3

More information

Dynamic Control of a Tandem Queueing System with Abandonments

Dynamic Control of a Tandem Queueing System with Abandonments Dynamic Control of a Tandem Queueing System with Abandonments Gabriel Zayas-Cabán 1 Jungui Xie 2 Linda V. Green 3 Mark E. Lewis 1 1 Cornell University Ithaca, NY 2 University of Science and Technology

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

4.7 Finite Population Source Model

4.7 Finite Population Source Model Characteristics 1. Arrival Process R independent Source All sources are identical Interarrival time is exponential with rate for each source No arrivals if all sources are in the system. OR372-Dr.Khalid

More information

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours)

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) 1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) Student Name: Alias: Instructions: 1. This exam is open-book 2. No cooperation is permitted 3. Please write down your name

More information

Queueing Theory. VK Room: M Last updated: October 17, 2013.

Queueing Theory. VK Room: M Last updated: October 17, 2013. Queueing Theory VK Room: M1.30 knightva@cf.ac.uk www.vincent-knight.com Last updated: October 17, 2013. 1 / 63 Overview Description of Queueing Processes The Single Server Markovian Queue Multi Server

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Discrete Event Simulation

Discrete Event Simulation Discrete Event Simulation Henry Z. Lo June 9, 2014 1 Motivation Suppose you were a branch manager of a bank. How many tellers should you staff to keep customers happy? With prior knowledge of how often

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines.

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. Chapter 10 Queuing Systems D. 10. 1. (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. D. 10.. (Queuing System) A ueuing system consists of 1. a user source.

More information

Introduction to Queueing Theory with Applications to Air Transportation Systems

Introduction to Queueing Theory with Applications to Air Transportation Systems Introduction to Queueing Theory with Applications to Air Transportation Systems John Shortle George Mason University February 28, 2018 Outline Why stochastic models matter M/M/1 queue Little s law Priority

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Multiserver Queueing Model subject to Single Exponential Vacation

Multiserver Queueing Model subject to Single Exponential Vacation Journal of Physics: Conference Series PAPER OPEN ACCESS Multiserver Queueing Model subject to Single Exponential Vacation To cite this article: K V Vijayashree B Janani 2018 J. Phys.: Conf. Ser. 1000 012129

More information

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Queuing Theory Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Queuing Theory STAT 870 Summer 2011 1 / 15 Purposes of Today s Lecture Describe general

More information

Derivation of Formulas by Queueing Theory

Derivation of Formulas by Queueing Theory Appendices Spectrum Requirement Planning in Wireless Communications: Model and Methodology for IMT-Advanced E dite d by H. Takagi and B. H. Walke 2008 J ohn Wiley & Sons, L td. ISBN: 978-0-470-98647-9

More information

Continuous Time Processes

Continuous Time Processes page 102 Chapter 7 Continuous Time Processes 7.1 Introduction In a continuous time stochastic process (with discrete state space), a change of state can occur at any time instant. The associated point

More information

Waiting Time Analysis of A Single Server Queue in an Out- Patient Clinic

Waiting Time Analysis of A Single Server Queue in an Out- Patient Clinic IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 3 Ver. V (May - Jun. 2015), PP 54-58 www.iosrjournals.org Waiting Time Analysis of A Single Server Queue in

More information

GI/M/1 and GI/M/m queuing systems

GI/M/1 and GI/M/m queuing systems GI/M/1 and GI/M/m queuing systems Dmitri A. Moltchanov moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2716/ OUTLINE: GI/M/1 queuing system; Methods of analysis; Imbedded Markov chain approach; Waiting

More information

The effect of probabilities of departure with time in a bank

The effect of probabilities of departure with time in a bank International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 The effect of probabilities of departure with time in a bank Kasturi Nirmala, Shahnaz Bathul Abstract This paper

More information

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks by Doo Il Choi, Charles Knessl and Charles Tier University of Illinois at Chicago 85 South

More information

Advanced Computer Networks Lecture 3. Models of Queuing

Advanced Computer Networks Lecture 3. Models of Queuing Advanced Computer Networks Lecture 3. Models of Queuing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/13 Terminology of

More information

Chapter 5: Special Types of Queuing Models

Chapter 5: Special Types of Queuing Models Chapter 5: Special Types of Queuing Models Some General Queueing Models Discouraged Arrivals Impatient Arrivals Bulk Service and Bulk Arrivals OR37-Dr.Khalid Al-Nowibet 1 5.1 General Queueing Models 1.

More information

Networks of Queues Models with Several. Classes of Customers and Exponential. Service Times

Networks of Queues Models with Several. Classes of Customers and Exponential. Service Times Applied Mathematical Sciences, Vol. 9, 2015, no. 76, 3789-3796 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.53287 Networks of Queues Models with Several Classes of Customers and Exponential

More information

Module 5: CPU Scheduling

Module 5: CPU Scheduling Module 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation 5.1 Basic Concepts Maximum CPU utilization obtained

More information

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE MULTIPLE CHOICE QUESTIONS DECISION SCIENCE 1. Decision Science approach is a. Multi-disciplinary b. Scientific c. Intuitive 2. For analyzing a problem, decision-makers should study a. Its qualitative aspects

More information

Bulk input queue M [X] /M/1 Bulk service queue M/M [Y] /1 Erlangian queue M/E k /1

Bulk input queue M [X] /M/1 Bulk service queue M/M [Y] /1 Erlangian queue M/E k /1 Advanced Markovian queues Bulk input queue M [X] /M/ Bulk service queue M/M [Y] / Erlangian queue M/E k / Bulk input queue M [X] /M/ Batch arrival, Poisson process, arrival rate λ number of customers in

More information

ON MAIN CHARACTERISTICS OF THE M/M/1/N QUEUE WITH SINGLE AND BATCH ARRIVALS AND THE QUEUE SIZE CONTROLLED BY AQM ALGORITHMS

ON MAIN CHARACTERISTICS OF THE M/M/1/N QUEUE WITH SINGLE AND BATCH ARRIVALS AND THE QUEUE SIZE CONTROLLED BY AQM ALGORITHMS K Y B E R N E T I K A V O L U M E 4 7 ( 2 0 1 1 ), N U M B E R 6, P A G E S 9 3 0 9 4 3 ON MAIN CHARACTERISTICS OF THE M/M/1/N QUEUE WITH SINGLE AND BATCH ARRIVALS AND THE QUEUE SIZE CONTROLLED BY AQM

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 011 MODULE 3 : Stochastic processes and time series Time allowed: Three Hours Candidates should answer FIVE questions. All questions carry

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Other properties of M M 1

Other properties of M M 1 Other properties of M M 1 Přemysl Bejda premyslbejda@gmail.com 2012 Contents 1 Reflected Lévy Process 2 Time dependent properties of M M 1 3 Waiting times and queue disciplines in M M 1 Contents 1 Reflected

More information

Kendall notation. PASTA theorem Basics of M/M/1 queue

Kendall notation. PASTA theorem Basics of M/M/1 queue Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue 1 History of queueing theory An old research area Started in 1909, by Agner Erlang (to model the Copenhagen

More information

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic Linear Model Predictive Control for ueueing Networks in Manufacturing and Road Traffic Yoni Nazarathy Swinburne University of Technology, Melbourne. Joint work with: Erjen Lefeber (manufacturing), Hai

More information

NATCOR: Stochastic Modelling

NATCOR: Stochastic Modelling NATCOR: Stochastic Modelling Queueing Theory II Chris Kirkbride Management Science 2017 Overview of Today s Sessions I Introduction to Queueing Modelling II Multiclass Queueing Models III Queueing Control

More information

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue.

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue. Outline Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue Batch queue Bulk input queue M [X] /M/1 Bulk service queue M/M [Y]

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS

CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS 1. Overview In this chapter we explore the models on which the HCM capacity analysis method for signalized intersections are based. While the method has

More information

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013 Networking = Plumbing TELE302 Lecture 7 Queueing Analysis: I Jeremiah Deng University of Otago 29 July 2013 Jeremiah Deng (University of Otago) TELE302 Lecture 7 29 July 2013 1 / 33 Lecture Outline Jeremiah

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem Wade Trappe Lecture Overview Network of Queues Introduction Queues in Tandem roduct Form Solutions Burke s Theorem What

More information

Slides 9: Queuing Models

Slides 9: Queuing Models Slides 9: Queuing Models Purpose Simulation is often used in the analysis of queuing models. A simple but typical queuing model is: Queuing models provide the analyst with a powerful tool for designing

More information

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 6 Queueing Models Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Simulation is often used in the analysis of queueing models. A simple but typical queueing model: Queueing

More information

Chapter 5 Traffic Flow Characteristics

Chapter 5 Traffic Flow Characteristics Chapter 5 Traffic Flow Characteristics 1 Contents 2 Introduction The Nature of Traffic Flow Approaches to Understanding Traffic Flow Parameters Connected with Traffic Flow Categories of Traffic Flow The

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

Queuing Theory. Using the Math. Management Science

Queuing Theory. Using the Math. Management Science Queuing Theory Using the Math 1 Markov Processes (Chains) A process consisting of a countable sequence of stages, that can be judged at each stage to fall into future states independent of how the process

More information

Link Models for Packet Switching

Link Models for Packet Switching Link Models for Packet Switching To begin our study of the performance of communications networks, we will study a model of a single link in a message switched network. The important feature of this model

More information

Geom/G 1,G 2 /1/1 REPAIRABLE ERLANG LOSS SYSTEM WITH CATASTROPHE AND SECOND OPTIONAL SERVICE

Geom/G 1,G 2 /1/1 REPAIRABLE ERLANG LOSS SYSTEM WITH CATASTROPHE AND SECOND OPTIONAL SERVICE J Syst Sci Complex (2011) 24: 554 564 Geom/G 1,G 2 /1/1 REPAIRABLE ERLANG LOSS SYSTEM WITH CATASTROPHE AND SECOND OPTIONAL SERVICE Yinghui TANG Miaomiao YU Cailiang LI DOI: 10.1007/s11424-011-8339-2 Received:

More information

PBW 654 Applied Statistics - I Urban Operations Research

PBW 654 Applied Statistics - I Urban Operations Research PBW 654 Applied Statistics - I Urban Operations Research Lecture 2.I Queuing Systems An Introduction Operations Research Models Deterministic Models Linear Programming Integer Programming Network Optimization

More information

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Xu Sun and Ward Whitt Department of Industrial Engineering and Operations Research, Columbia University

More information

Time Reversibility and Burke s Theorem

Time Reversibility and Burke s Theorem Queuing Analysis: Time Reversibility and Burke s Theorem Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis. Outline Time-Reversal

More information

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved.

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved. The objective of queuing analysis is to offer a reasonably satisfactory service to waiting customers. Unlike the other tools of OR, queuing theory is not an optimization technique. Rather, it determines

More information

Sensitivity Analysis for Discrete-Time Randomized Service Priority Queues

Sensitivity Analysis for Discrete-Time Randomized Service Priority Queues Sensitivity Analysis for Discrete-Time Randomized Service Priority Queues George Kesidis 1, Takis Konstantopoulos 2, Michael Zazanis 3 1. Elec. & Comp. Eng. Dept, University of Waterloo, Waterloo, ON,

More information

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974 LIMITS FOR QUEUES AS THE WAITING ROOM GROWS by Daniel P. Heyman Ward Whitt Bell Communications Research AT&T Bell Laboratories Red Bank, NJ 07701 Murray Hill, NJ 07974 May 11, 1988 ABSTRACT We study the

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis TCOM 50: Networking Theory & Fundamentals Lecture 6 February 9, 003 Prof. Yannis A. Korilis 6- Topics Time-Reversal of Markov Chains Reversibility Truncating a Reversible Markov Chain Burke s Theorem Queues

More information

Simulation & Modeling Event-Oriented Simulations

Simulation & Modeling Event-Oriented Simulations Simulation & Modeling Event-Oriented Simulations Outline Simulation modeling characteristics Concept of Time A DES Simulation (Computation) DES System = model + simulation execution Data Structures Program

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

A FAST MATRIX-ANALYTIC APPROXIMATION FOR THE TWO CLASS GI/G/1 NON-PREEMPTIVE PRIORITY QUEUE

A FAST MATRIX-ANALYTIC APPROXIMATION FOR THE TWO CLASS GI/G/1 NON-PREEMPTIVE PRIORITY QUEUE A FAST MATRIX-ANAYTIC APPROXIMATION FOR TE TWO CASS GI/G/ NON-PREEMPTIVE PRIORITY QUEUE Gábor orváth Department of Telecommunication Budapest University of Technology and Economics. Budapest Pf. 9., ungary

More information

Introduction to Queuing Theory. Mathematical Modelling

Introduction to Queuing Theory. Mathematical Modelling Queuing Theory, COMPSCI 742 S2C, 2014 p. 1/23 Introduction to Queuing Theory and Mathematical Modelling Computer Science 742 S2C, 2014 Nevil Brownlee, with acknowledgements to Peter Fenwick, Ulrich Speidel

More information

Elementary queueing system

Elementary queueing system Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue M/M/1 with preemptive-resume priority M/M/1 with non-preemptive priority 1 History of queueing theory An old

More information

Dynamic control of a tandem system with abandonments

Dynamic control of a tandem system with abandonments Dynamic control of a tandem system with abandonments Gabriel Zayas-Cabán 1, Jingui Xie 2, Linda V. Green 3, and Mark E. Lewis 4 1 Center for Healthcare Engineering and Patient Safety University of Michigan

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

Erlang loss bounds for OT ICU systems

Erlang loss bounds for OT ICU systems Queueing Syst (2009) 63: 253 280 DOI 10.1007/s11134-009-9149-2 Erlang loss bounds for OT ICU systems N.M. van Dijk N. Kortbeek Received: 22 December 2008 / Revised: 30 October 2009 / Published online:

More information

The Impact of Quanta on the Performance of Multi-level Time Sharing Policy under Heavy-tailed Workloads

The Impact of Quanta on the Performance of Multi-level Time Sharing Policy under Heavy-tailed Workloads The Impact of Quanta on the Performance of Multi-level Time Sharing Policy under Heavy-tailed Workloads Malith Jayasinghe 1 Zahir Tari 1 Panlop Zeephongsekul 2 1 School of Computer Science and Information

More information

Proactive Care with Degrading Class Types

Proactive Care with Degrading Class Types Proactive Care with Degrading Class Types Yue Hu (DRO, Columbia Business School) Joint work with Prof. Carri Chan (DRO, Columbia Business School) and Prof. Jing Dong (DRO, Columbia Business School) Motivation

More information

Supplementary Information: The origin of bursts and heavy tails in human dynamics

Supplementary Information: The origin of bursts and heavy tails in human dynamics Supplementary Information: The origin of bursts and heavy tails in human dynamics Albert-László Barabási Department of Physics, University of Notre Dame, IN 46556, USA (Dated: February 7, 2005) 1 Contents

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation 6.1 Basic Concepts Maximum CPU utilization obtained

More information

Modelling Complex Queuing Situations with Markov Processes

Modelling Complex Queuing Situations with Markov Processes Modelling Complex Queuing Situations with Markov Processes Jason Randal Thorne, School of IT, Charles Sturt Uni, NSW 2795, Australia Abstract This article comments upon some new developments in the field

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

M/M/3/3 AND M/M/4/4 RETRIAL QUEUES. Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara and Yutaka Takahashi

M/M/3/3 AND M/M/4/4 RETRIAL QUEUES. Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara and Yutaka Takahashi JOURNAL OF INDUSTRIAL AND doi:10.3934/imo.2009.5.431 MANAGEMENT OPTIMIZATION Volume 5, Number 3, August 2009 pp. 431 451 M/M/3/3 AND M/M/4/4 RETRIAL QUEUES Tuan Phung-Duc, Hiroyuki Masuyama, Shoi Kasahara

More information

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Yan Zhang 1 Dequan Yue 1 Wuyi Yue 2 1 College of Science, Yanshan University, Qinhuangdao 066004 PRChina 2 Department of Information

More information

Classification of Queuing Models

Classification of Queuing Models Classification of Queuing Models Generally Queuing models may be completely specified in the following symbol form:(a/b/c):(d/e)where a = Probability law for the arrival(or inter arrival)time, b = Probability

More information

Data analytics in the practice of Emergency Medicine

Data analytics in the practice of Emergency Medicine Data analytics in the practice of Emergency Medicine Devashish Das Industrial and Management Systems Engineering University of South Florida November 16, 2018 Outline Healthcare systems engineering in

More information

Quantifying Stochastic Model Errors via Robust Optimization

Quantifying Stochastic Model Errors via Robust Optimization Quantifying Stochastic Model Errors via Robust Optimization IPAM Workshop on Uncertainty Quantification for Multiscale Stochastic Systems and Applications Jan 19, 2016 Henry Lam Industrial & Operations

More information

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if 1 Queuing Theory 3. Birth-Death Process Law of Motion Flow balance equations Steady-state probabilities: c j = λ 0λ 1...λ j 1 µ 1 µ 2...µ j π 0 = 1 1+ j=1 c j, if j=1 c j is finite. π j = c j π 0 Example

More information

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts.

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts. TDDI4 Concurrent Programming, Operating Systems, and Real-time Operating Systems CPU Scheduling Overview: CPU Scheduling CPU bursts and I/O bursts Scheduling Criteria Scheduling Algorithms Multiprocessor

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

THE ISRAELI QUEUE WITH PRIORITIES

THE ISRAELI QUEUE WITH PRIORITIES Stochastic Models, 29:353 379, 203 Copyright Taylor & Francis Group, LLC ISSN: 532-6349 print/532-424 online DOI: 0.080/5326349.203.8089 THE ISRAELI QUEUE WITH PRIORITIES Nir Perel and Uri Yechiali Department

More information

Flow Equivalence and Stochastic Equivalence in G-Networks

Flow Equivalence and Stochastic Equivalence in G-Networks Flow Equivalence and Stochastic Equivalence in G-Networks Jean-Michel Fourneau Laboratoire PRISM Univ. de Versailles Saint-Quentin 45 Avenue des Etats-Unis 78000 Versailles, France jmf@prism.uvsq.fr Erol

More information

Solutions to COMP9334 Week 8 Sample Problems

Solutions to COMP9334 Week 8 Sample Problems Solutions to COMP9334 Week 8 Sample Problems Problem 1: Customers arrive at a grocery store s checkout counter according to a Poisson process with rate 1 per minute. Each customer carries a number of items

More information

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) No. of Printed Pages : 6 MMT-008 M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination 0064 December, 202 MMT-008 : PROBABILITY AND STATISTICS Time : 3 hours Maximum

More information

Queueing. Chapter Continuous Time Markov Chains 2 CHAPTER 5. QUEUEING

Queueing. Chapter Continuous Time Markov Chains 2 CHAPTER 5. QUEUEING 2 CHAPTER 5. QUEUEING Chapter 5 Queueing Systems are often modeled by automata, and discrete events are transitions from one state to another. In this chapter we want to analyze such discrete events systems.

More information

Waiting Line Models: Queuing Theory Basics. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1

Waiting Line Models: Queuing Theory Basics. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1 Waiting Line Models: Queuing Theory Basics Cuantitativos M. En C. Eduardo Bustos Farias 1 Agenda Queuing system structure Performance measures Components of queuing systems Arrival process Service process

More information

Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks. Queuing Networks. Florence Perronnin

Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks. Queuing Networks. Florence Perronnin Queuing Networks Florence Perronnin Polytech Grenoble - UGA March 23, 27 F. Perronnin (UGA) Queuing Networks March 23, 27 / 46 Outline Introduction to Queuing Networks 2 Refresher: M/M/ queue 3 Reversibility

More information

Analytical investigation on the minimum traffic delay at a two-phase. intersection considering the dynamical evolution process of queues

Analytical investigation on the minimum traffic delay at a two-phase. intersection considering the dynamical evolution process of queues Analytical investigation on the minimum traffic delay at a two-phase intersection considering the dynamical evolution process of queues Hong-Ze Zhang 1, Rui Jiang 1,2, Mao-Bin Hu 1, Bin Jia 2 1 School

More information

Stochastic Simulation Discrete simulation/event-by-event

Stochastic Simulation Discrete simulation/event-by-event Stochastic Simulation Discrete simulation/event-by-event Bo Friis Nielsen Institute of Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark Email: bfni@dtu.dk Discrete event

More information

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. Service Engineering Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. G/G/1 Queue: Virtual Waiting Time (Unfinished Work). GI/GI/1: Lindley s Equations

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

QUEUING SYSTEM. Yetunde Folajimi, PhD

QUEUING SYSTEM. Yetunde Folajimi, PhD QUEUING SYSTEM Yetunde Folajimi, PhD Part 2 Queuing Models Queueing models are constructed so that queue lengths and waiting times can be predicted They help us to understand and quantify the effect of

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Waiting time characteristics in cyclic queues

Waiting time characteristics in cyclic queues Waiting time characteristics in cyclic queues Sanne R. Smits, Ivo Adan and Ton G. de Kok April 16, 2003 Abstract In this paper we study a single-server queue with FIFO service and cyclic interarrival and

More information

Control of Fork-Join Networks in Heavy-Traffic

Control of Fork-Join Networks in Heavy-Traffic in Heavy-Traffic Asaf Zviran Based on MSc work under the guidance of Rami Atar (Technion) and Avishai Mandelbaum (Technion) Industrial Engineering and Management Technion June 2010 Introduction Network

More information

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Page 1 of 7 English Contact: Håkon Tjelmeland 48 22 18 96 EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013

More information

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES THE ROYAL STATISTICAL SOCIETY 9 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES The Society provides these solutions to assist candidates preparing

More information

Traffic Flow Theory & Simulation

Traffic Flow Theory & Simulation Traffic Flow Theory & Simulation S.P. Hoogendoorn Lecture 4 Shockwave theory Shockwave theory I: Introduction Applications of the Fundamental Diagram February 14, 2010 1 Vermelding onderdeel organisatie

More information

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia). wkc/course/part2.pdf

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia).  wkc/course/part2.pdf PART II (3) Continuous Time Markov Chains : Theory and Examples -Pure Birth Process with Constant Rates -Pure Death Process -More on Birth-and-Death Process -Statistical Equilibrium (4) Introduction to

More information

Available online at ScienceDirect. Physics Procedia 57 (2014 ) 77 81

Available online at  ScienceDirect. Physics Procedia 57 (2014 ) 77 81 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 57 (204 ) 77 8 27th Annual CSP Workshops on Recent Developments in Computer Simulation Studies in Condensed Matter Physics, CSP

More information

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems Exercises Solutions Note, that we have not formulated the answers for all the review questions. You will find the answers for many questions by reading and reflecting about the text in the book. Chapter

More information

10.2 For the system in 10.1, find the following statistics for population 1 and 2. For populations 2, find: Lq, Ls, L, Wq, Ws, W, Wq 0 and SL.

10.2 For the system in 10.1, find the following statistics for population 1 and 2. For populations 2, find: Lq, Ls, L, Wq, Ws, W, Wq 0 and SL. Bibliography Asmussen, S. (2003). Applied probability and queues (2nd ed). New York: Springer. Baccelli, F., & Bremaud, P. (2003). Elements of queueing theory: Palm martingale calculus and stochastic recurrences

More information

Robust Wait Time Estimation in the US Kidney Allocation System

Robust Wait Time Estimation in the US Kidney Allocation System Robust Wait Time Estimation in the US Kidney Allocation System CMS 2017 Phebe Vayanos (joint with Bandi and Trichakis) Epstein Department of Industrial & Systems Engineering Viterbi School of Engineering,

More information

USING DIFFERENT RESPONSE-TIME REQUIREMENTS TO SMOOTH TIME-VARYING DEMAND FOR SERVICE

USING DIFFERENT RESPONSE-TIME REQUIREMENTS TO SMOOTH TIME-VARYING DEMAND FOR SERVICE USING DIFFERENT RESPONSE-TIME REQUIREMENTS TO SMOOTH TIME-VARYING DEMAND FOR SERVICE by Ward Whitt 1 AT&T Labs September 9, 1997 Revision: November 20, 1998 Operations Research Letters 24 (1999) 1 10 1

More information