New trends in Air Traffic Complexity

Size: px
Start display at page:

Download "New trends in Air Traffic Complexity"

Transcription

1 New trends in Air Traffic Complexity D. Delahaye and S. Puechmorel Applied Math Laboratory, ENAC March 8, 2010 D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

2 Agenda Why complexity metrics are needed? Dynamical system modeling of aircraft trajectories How a complexity map is built? Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

3 Agenda Why complexity metrics are needed? Dynamical system modeling of aircraft trajectories How a complexity map is built? Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

4 Why complexity metrics are needed? Airspace design Airspace comparison (US-Europe) Evaluation of Airspace Organisation Schemes Implementation of flexible use of airspace policies D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

5 Why complexity metrics are needed? Airspace design Airspace comparison (US-Europe) Evaluation of Airspace Organisation Schemes Implementation of flexible use of airspace policies 4D contract framework 4D Trajectory design. Forecasting of potentially hazardous traffic situations. Automated Conflict Solver enhancement (robustness of the solution). D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

6 Complexity vs Workload Workload Related to cognitive processes for human controllers. Easy/Hard forecasting of conflict occurence. Monitoring is a non negligible part of the workload. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

7 Complexity vs Workload Workload Related to cognitive processes for human controllers. Easy/Hard forecasting of conflict occurence. Monitoring is a non negligible part of the workload. Complexity Related to traffic structure. Measure of intrinsic disorder of a set of trajectories. Increases with : Sensitivity to uncertainties. Interdependance of conflicts. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

8 Intrinsic part of complexity Sensitivity Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction. Depending on the situation, prediction error can grow exponentially fast! In such a case, the situation is complex because nearly impossible to forecast. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

9 Intrinsic part of complexity Sensitivity Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction. Depending on the situation, prediction error can grow exponentially fast! In such a case, the situation is complex because nearly impossible to forecast. Interdependance Solving a conflict may induce other ones. Even in conflict-less situations, interactions between trajectories can rise the perceived level of complexity. Complexity is related to mixing behaviour. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

10 Sensitivity-interdependance No Sensitivity No conflict Easy situation Hight sensitivity Potential conflicts without interaction between solutions Hight sensitivity Potential conflicts with interactions between solutions Hard situation D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

11 Agenda Why complexity metrics are needed? Dynamical system modeling of aircraft trajectories How a complexity map is built? Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

12 Linear Dynamical System Modeling The key idea is to model the set of aircraft trajectories by a linear dynamical system which is defined by the following equation : X = A X + B where X is the state vector of the system : x X = y z Matrix A and vector B are the parameters of the model. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

13 Regression of a Linear Dynamical System V 1 X 1 X 2 V 2 X 3 V 3 D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

14 Regression of a Linear Dynamical System D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

15 Regression of a Linear Dynamical System D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

16 Regression of a Linear Dynamical System Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations.suppose that N obervations are given : Positions : x i X i = y i z i and speeds : V i = vx i vy i vz i D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

17 Regression of a Linear Dynamical System Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations.suppose that N obervations are given : Positions : x i X i = y i z i and speeds : V i = vx i vy i vz i A LMS precedure is applied in order to extract the matrix A and the vector B. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

18 Properties of the matrix A When real part of the eigenvalues of matrix A is positive, the system is in expansion mode and when they are negative, the system is in contraction mode. Furthermore, the imaginary part of such eigenvalues are related with curl intensity of the field. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

19 Properties of the matrix A Imaginary axis full curl Organized Traffic convergence Real Axis divergence full curl D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

20 Linear Dynamical System Modeling : An example 1 v d v v 3 D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

21 Linear Dynamical System Modeling : An example Situation 1 Parallel trajectories (relative speed=0) Situation 2 Situation 3 Situation 4 Convergent Divergent Round about trajectories trajectories trajectories (relative speed=0) y y y y 2 v 2 2 d v v 2 v 1 v 90 x 1 v x v x v 1 1 x d v 3 3 v 3 3 v v Position of the eigenvalues of matrix A in the complex coordinate system eigenvalues Imaginary Imaginary Imaginary Imaginary Real 1 1 Real 1 1 Real 1 1 Real unit v/d D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

22 Linear Model limitations Give a global tendency of the traffic situation. Do not fit exactly with all traffic situations. Non Linear Extension D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

23 Non Linear Extension in Space X = f ( X ) Optimization problem f? such that : and i=n mine = V i f ( X i ) 2 i=1 min f ( x) 2 d x with f = R 3 2 f x x 2 2 f y x 2 2 f z x f x y f y y f z y f x z f y z f z z 2 D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

24 Non Linear Extension in Space Exact Solution (Amodei) with and f ( X N ) = Φ( X X i ). a i + A. X + B 2 6 Q = 4 i=1 Φ( X X i ) = Q( X X i 3 ) xx yy + 2 zz xx yy + 2 zz xx yy + 2 zz D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

25 Non Linear Extension in Space and time X = f ( X, t) Optimization problem We are looking for f such that : and i=n mine = k=k i=1 k=1 V i (t k ) f ( X i, t k ) 2 min f ( x) 2 + f R 3 t t 2 d xdt D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

26 Non Linear Extension in Space and time Exact Solution (Puechmorel and Delahaye) with f ( X, t) = N i=1 k=1 K Φ( X (t) X i (t k ), t t k ). a i,k + A. X + B Φ(r, t) = diag ( σ r. π.erf [ ]) r σ θ. t D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

27 Non Linear Extension in Space and time Gradient close form with Φ(r, t) x = (α β).x α = 2.σ r 2.π. 1.e 2 + θ. t β = Φ(r, t) r 2 r = x 2 + y 2 + z 2 r 2 σ 2.(2+θ. t ) D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

28 Agenda Why complexity metrics are needed? Dynamical system modeling of aircraft trajectories How a complexity map is built? Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

29 Characterization of sensitivity How fast two neighboring dynnamical system trajectories diverge? Let γ(t, s), t : [a, b], s V be a family of trajectories of the dynamical system in the neighborood V of a given point s 0. We assume that the nominal trajectory is t γ(t, s 0 ). A perturbed trajectory is t γ(t, s) with s V. Divergence to nominal trajectory with respect to time is thus γ(t, s 0 ) γ(t, s) = D(t, s). D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

30 Characterization of sensitivity How fast two neighboring dynnamical system trajectories diverge? Let γ(t, s), t : [a, b], s V be a family of trajectories of the dynamical system in the neighborood V of a given point s 0. We assume that the nominal trajectory is t γ(t, s 0 ). A perturbed trajectory is t γ(t, s) with s V. Divergence to nominal trajectory with respect to time is thus γ(t, s 0 ) γ(t, s) = D(t, s). Computing D(t, s) Main idea : when t γ(t, s) is the solution of a differential equation with initial condition γ(0, s) = s, it is possible to show that D itself satisfies a differential equation. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

31 local behaviour of trajectories V s0 s D(t,s) γ (t,s ) 0 γ (t,s) D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

32 Local behaviour of trajectories The variational equation I The value of D(t, s) is the result of a cumulative process. Assume that γ(t, s) is defined to be a flow : γ(t, s) t = F (t, γ(t, s)) γ(0, s) = s with F a smooth vector field. Given a nonimal trajectory γ(t, s 0 ), then divergence of nearby trajectories can be found up to order one in s s 0 by solving : D(t, s) t = DF (t, γ(t, s 0 )).D(t, s) D(0, s) = s s 0 with DF the jacobian matrix of F (with respect to s). D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

33 Lyapunov exponents The variational equation II Since the previous equation is linear, it can be described by a matrix M(t) that obeys : dm(t) dt = DF (t, γ(t, s 0 )).M(t) M(0) = Id This equation is called the variational equation of the flow. The variational equation describes in some sense a linear dynamical system tangent to the original one. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

34 Lyapunov exponents Lyapunov exponents Let U t (t)σ(t)v (t) = M(t) be the SVD decomposition of M(t). The Lyapunov exponents are mean values of the logarithms of the diagonal elements of Σ(t): κ(s) = 1 T T 0 log(σ ii (t))dt Σ ii (t) 1 D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

35 Summary Based on trajectories observations, a 4D non linear dynamical system model is buit. The associated 4D vector field is then computed on a cube of airspace. Lyapunov exponents are computed on each point of the cube in order to built a complexity map. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

36 Interpretation of Lyapunov exponents Given an initial point, the Lyapunov exponents and the associated SVD decomposition provide us with a decomposition of space in principal directions and corresponding convergence/divergence rate. It is a localized version of the complexity based on linear systems. D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

37 Agenda Why complexity metrics are needed? Dynamical system modeling of aircraft trajectories How a complexity map is built? Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

38 Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

39 Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

40 Results D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

41 Conclusion An intrinsic trajectories complexity metric has been developped. This metric can be computed as a map. Give the areas of airspace where the traffic is organized and the ones where there is desorder D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

42 Current work Parallel computation by the mean of Local linear Model V i ( X i, t i ) = f ( X, t) + f ( X, t) (t i t) + t f ( X, t) + f ( X, t) X ( X i X )+ min a, b,c O( t i t + X i X ) = a + b(t i t) + C.( X i X ) + O( t i t + X i X ) N V i ( X i, t i ) a + b(t i t) + C.( X i X ) 2.ψ(t i t, X i X ) i=1 Robustness improvement by taking into account uncertainties on time position of aircraft on their trajectories D. Delahaye and S. Puechmorel (Applied Math Laboratory, New trends ENAC) in Air Traffic Complexity March 8, / 36

Complexity Metrics. ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010.

Complexity Metrics. ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010. Complexity Metrics ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010 Outline Introduction and motivation The notion of air traffic complexity Relevant characteristics

More information

Addendum: Lyapunov Exponent Calculation

Addendum: Lyapunov Exponent Calculation Addendum: Lyapunov Exponent Calculation Experiment CP-Ly Equations of Motion The system phase u is written in vector notation as θ u = (1) φ The equation of motion can be expressed compactly using the

More information

Enabling Advanced Automation Tools to manage Trajectory Prediction Uncertainty

Enabling Advanced Automation Tools to manage Trajectory Prediction Uncertainty Engineering, Test & Technology Boeing Research & Technology Enabling Advanced Automation Tools to manage Trajectory Prediction Uncertainty ART 12 - Automation Enrique Casado (BR&T-E) enrique.casado@boeing.com

More information

Going with the flow: A study of Lagrangian derivatives

Going with the flow: A study of Lagrangian derivatives 1 Going with the flow: A study of Lagrangian derivatives Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc/ 12 February

More information

The First Fundamental Form

The First Fundamental Form The First Fundamental Form Outline 1. Bilinear Forms Let V be a vector space. A bilinear form on V is a function V V R that is linear in each variable separately. That is,, is bilinear if αu + β v, w αu,

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

Learning Air Traffic Controller Workload. from Past Sector Operations

Learning Air Traffic Controller Workload. from Past Sector Operations Learning Air Traffic Controller Workload from Past Sector Operations David Gianazza 1 Outline Introduction Background Model and methods Results Conclusion 2 ATC complexity Introduction Simple Complex 3

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

Practice Problems for Final Exam

Practice Problems for Final Exam Math 1280 Spring 2016 Practice Problems for Final Exam Part 2 (Sections 6.6, 6.7, 6.8, and chapter 7) S o l u t i o n s 1. Show that the given system has a nonlinear center at the origin. ẋ = 9y 5y 5,

More information

The Caterpillar -SSA approach to time series analysis and its automatization

The Caterpillar -SSA approach to time series analysis and its automatization The Caterpillar -SSA approach to time series analysis and its automatization Th.Alexandrov,.Golyandina theo@pdmi.ras.ru, nina@ng1174.spb.edu St.Petersburg State University Caterpillar -SSA and its automatization

More information

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li Summary for Vector alculus and omplex alculus (Math 321) By Lei Li 1 Vector alculus 1.1 Parametrization urves, surfaces, or volumes can be parametrized. Below, I ll talk about 3D case. Suppose we use e

More information

4 Film Extension of the Dynamics: Slowness as Stability

4 Film Extension of the Dynamics: Slowness as Stability 4 Film Extension of the Dynamics: Slowness as Stability 4.1 Equation for the Film Motion One of the difficulties in the problem of reducing the description is caused by the fact that there exists no commonly

More information

LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.

LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital. G GG Y G 9 Y- Y 77 8 Q / x -! -} 77 - - # - - - - 0 G? x? x - - V - x - -? : : - q -8 : : - 8 - q x V - - - )?- X - - 87 X - ::! x - - -- - - x -- - - - )0 0 0 7 - - 0 q - V -

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt Surface x(u, v) and curve α(t) on it given by u(t) & v(t). α du dv (t) x u dt + x v dt ( ds dt )2 Surface x(u, v)

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

THE I Establiifrad June, 1893

THE I Establiifrad June, 1893 89 : 8 Y Y 2 96 6 - - : - 2 q - 26 6 - - q 2 2 2 4 6 4«4 ' V () 8 () 6 64-4 '2" () 6 ( ) * 'V ( 4 ) 94-4 q ( / ) K ( x- 6% j 9*V 2'%" 222 27 q - - K 79-29 - K x 2 2 j - -% K 4% 2% 6% ' K - 2 47 x - - j

More information

Half of Final Exam Name: Practice Problems October 28, 2014

Half of Final Exam Name: Practice Problems October 28, 2014 Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

More information

Verified High-Order Optimal Control in Space Flight Dynamics

Verified High-Order Optimal Control in Space Flight Dynamics Verified High-Order Optimal Control in Space Flight Dynamics R. Armellin, P. Di Lizia, F. Bernelli-Zazzera K. Makino and M. Berz Fourth International Workshop on Taylor Methods Boca Raton, December 16

More information

Math 240 Calculus III

Math 240 Calculus III Line Math 114 Calculus III Summer 2013, Session II Monday, July 1, 2013 Agenda Line 1.,, and 2. Line vector Line Definition Let f : X R 3 R be a differentiable scalar function on a region of 3-dimensional

More information

Math 207 Honors Calculus III Final Exam Solutions

Math 207 Honors Calculus III Final Exam Solutions Math 207 Honors Calculus III Final Exam Solutions PART I. Problem 1. A particle moves in the 3-dimensional space so that its velocity v(t) and acceleration a(t) satisfy v(0) = 3j and v(t) a(t) = t 3 for

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Lyapunov Stability - I Hanz Richter Mechanical Engineering Department Cleveland State University Definition of Stability - Lyapunov Sense Lyapunov

More information

County Council Named for Kent

County Council Named for Kent \ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V

More information

A Case Study of Non-linear Dynamics of Human-Flow Behavior in Terminal Airspace

A Case Study of Non-linear Dynamics of Human-Flow Behavior in Terminal Airspace A Case Study of Non-linear Dynamics of Human-Flow Behavior in Terminal Airspace Lei Yang a,b, Suwan Yin a,b, Minghua Hu a,b, Yan Xu c a Nanjing University of Aeronautics and Astronautics b National Lab

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

The Caterpillar -SSA approach: automatic trend extraction and other applications. Theodore Alexandrov

The Caterpillar -SSA approach: automatic trend extraction and other applications. Theodore Alexandrov The Caterpillar -SSA approach: automatic trend extraction and other applications Theodore Alexandrov theo@pdmi.ras.ru St.Petersburg State University, Russia Bremen University, 28 Feb 2006 AutoSSA: http://www.pdmi.ras.ru/

More information

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

More information

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Eugenia Kalnay Lecture 2 Alghero, May 2008 Elements of Ensemble Forecasting

More information

Ensenada March 2008 Galaxy halos at (very) high resolution

Ensenada March 2008 Galaxy halos at (very) high resolution Ensenada March 2008 Galaxy halos at (very) high resolution Simon White & Mark Vogelsberger Max Planck Institute for Astrophysics Milky Way halo seen in DM annihilation radiation Aquarius simulation: N200

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

CHAPTER 11. A Revision. 1. The Computers and Numbers therein

CHAPTER 11. A Revision. 1. The Computers and Numbers therein CHAPTER A Revision. The Computers and Numbers therein Traditional computer science begins with a finite alphabet. By stringing elements of the alphabet one after another, one obtains strings. A set of

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

A Lagrangian approach to the kinematic dynamo

A Lagrangian approach to the kinematic dynamo 1 A Lagrangian approach to the kinematic dynamo Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc/ 5 March 2001 with Allen

More information

Contraction Based Adaptive Control of a Class of Nonlinear Systems

Contraction Based Adaptive Control of a Class of Nonlinear Systems 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 WeB4.5 Contraction Based Adaptive Control of a Class of Nonlinear Systems B. B. Sharma and I. N. Kar, Member IEEE Abstract

More information

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x

? D. 3 x 2 2 y. D Pi r ^ 2 h, r. 4 y. D 3 x ^ 3 2 y ^ 2, y, y. D 4 x 3 y 2 z ^5, z, 2, y, x. This means take partial z first then partial x PartialsandVectorCalclulus.nb? D D f, x gives the partial derivative f x. D f, x, n gives the multiple derivative n f x n. D f, x, y, differentiates f successively with respect to x, y,. D f, x, x 2, for

More information

Math 201 Handout 1. Rich Schwartz. September 6, 2006

Math 201 Handout 1. Rich Schwartz. September 6, 2006 Math 21 Handout 1 Rich Schwartz September 6, 26 The purpose of this handout is to give a proof of the basic existence and uniqueness result for ordinary differential equations. This result includes the

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017 Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem

More information

The Distribution Function

The Distribution Function The Distribution Function As we have seen before the distribution function (or phase-space density) f( x, v, t) d 3 x d 3 v gives a full description of the state of any collisionless system. Here f( x,

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Classical differential geometry of two-dimensional surfaces

Classical differential geometry of two-dimensional surfaces Classical differential geometry of two-dimensional surfaces 1 Basic definitions This section gives an overview of the basic notions of differential geometry for twodimensional surfaces. It follows mainly

More information

A Lagrangian approach to the study of the kinematic dynamo

A Lagrangian approach to the study of the kinematic dynamo 1 A Lagrangian approach to the study of the kinematic dynamo Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc/ October

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 12. Gaussian Processes Alex Smola Carnegie Mellon University http://alex.smola.org/teaching/cmu2013-10-701 10-701 The Normal Distribution http://www.gaussianprocess.org/gpml/chapters/

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Seminar on Vector Field Analysis on Surfaces

Seminar on Vector Field Analysis on Surfaces Seminar on Vector Field Analysis on Surfaces 236629 1 Last time Intro Cool stuff VFs on 2D Euclidean Domains Arrows on the plane Div, curl and all that Helmholtz decomposition 2 today Arrows on surfaces

More information

MINLP in Air Traffic Management: aircraft conflict avoidance

MINLP in Air Traffic Management: aircraft conflict avoidance MINLP in Air Traffic Management: aircraft conflict avoidance Sonia Cafieri ENAC - École Nationale de l Aviation Civile University of Toulouse France thanks to: Riadh Omheni (ENAC, Toulouse) David Rey (New

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

Lecture 38. Almost Linear Systems

Lecture 38. Almost Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 38. Almost Linear Systems April 20, 2012 Konstantin Zuev (USC) Math 245, Lecture 38 April 20, 2012 1 / 11 Agenda Stability Properties of Linear

More information

Everything You Wanted to Know About the Loss Surface but Were Afraid to Ask The Talk

Everything You Wanted to Know About the Loss Surface but Were Afraid to Ask The Talk Everything You Wanted to Know About the Loss Surface but Were Afraid to Ask The Talk Texas A&M August 21, 2018 Plan Plan 1 Linear models: Baldi-Hornik (1989) Kawaguchi-Lu (2016) Plan 1 Linear models: Baldi-Hornik

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Simulation Based Aircraft Trajectories Design for Air Traffic Management

Simulation Based Aircraft Trajectories Design for Air Traffic Management Simulation Based Aircraft Trajectories Design for Air Traffic Management N. Kantas 1 A. Lecchini-Visintini 2 J. M. Maciejowski 1 1 Cambridge University Engineering Dept., UK 2 Dept. of Engineering, University

More information

Traffic Flow Management (TFM) Weather Rerouting Decision Support. Stephen Zobell, Celesta Ball, and Joseph Sherry MITRE/CAASD, McLean, Virginia

Traffic Flow Management (TFM) Weather Rerouting Decision Support. Stephen Zobell, Celesta Ball, and Joseph Sherry MITRE/CAASD, McLean, Virginia Traffic Flow Management (TFM) Weather Rerouting Decision Support Stephen Zobell, Celesta Ball, and Joseph Sherry MITRE/CAASD, McLean, Virginia Stephen Zobell, Celesta Ball, and Joseph Sherry are Technical

More information

Econ 204 Differential Equations. 1 Existence and Uniqueness of Solutions

Econ 204 Differential Equations. 1 Existence and Uniqueness of Solutions Econ 4 Differential Equations In this supplement, we use the methods we have developed so far to study differential equations. 1 Existence and Uniqueness of Solutions Definition 1 A differential equation

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Finding the sum of a finite Geometric Series. The sum of the first 5 powers of 2 The sum of the first 5 powers of 3

Finding the sum of a finite Geometric Series. The sum of the first 5 powers of 2 The sum of the first 5 powers of 3 Section 1 3B: Series A series is the sum of a given number of terms in a sequence. For every sequence a 1, a, a 3, a 4, a 5, a 6, a 7,..., a n of real numbers there is a series that is defined as the sum

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn

Medical Visualization - Tensor Visualization. J.-Prof. Dr. Kai Lawonn Medical Visualization - Tensor Visualization J.-Prof. Dr. Kai Lawonn Lecture is partially based on the lecture by Prof. Thomas Schultz 2 What is a Tensor? A tensor is a multilinear transformation that

More information

Lie algebraic quantum control mechanism analysis

Lie algebraic quantum control mechanism analysis Lie algebraic quantum control mechanism analysis June 4, 2 Existing methods for quantum control mechanism identification do not exploit analytic features of control systems to delineate mechanism (or,

More information

Lagrangian Coherent Structures (LCS)

Lagrangian Coherent Structures (LCS) Lagrangian Coherent Structures (LCS) CDS 140b - Spring 2012 May 15, 2012 ofarrell@cds.caltech.edu A time-dependent dynamical system ẋ (t; t 0, x 0 )=v(x(t;,t 0, x 0 ),t) x(t 0 ; t 0, x 0 )=x 0 t 2 I R

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

r/lt.i Ml s. ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died. $ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL : Y J G V $ 5 V V G Y 2 25 Y 2» 5 X # VG q q q 6 6 X J 6 $3 ( 6 2 6 2 6 25 3 2 6 Y q 2 25: JJ JJ < X Q V J J Y J Q V (» Y V X Y? G # V Y J J J G J»Y ) J J / J Y Y X ({ G #? J Y ~» 9? ) < ( J VY Y J G (

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Solution of Matrix Eigenvalue Problem

Solution of Matrix Eigenvalue Problem Outlines October 12, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Standard Matrix Eigenvalue Problem Other Forms

More information

Math 273 (51) - Final

Math 273 (51) - Final Name: Id #: Math 273 (5) - Final Autumn Quarter 26 Thursday, December 8, 26-6: to 8: Instructions: Prob. Points Score possible 25 2 25 3 25 TOTAL 75 Read each problem carefully. Write legibly. Show all

More information

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 45 Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems Peter J. Hammond latest revision 2017 September

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

Lecture 14: Strain Examples. GEOS 655 Tectonic Geodesy Jeff Freymueller

Lecture 14: Strain Examples. GEOS 655 Tectonic Geodesy Jeff Freymueller Lecture 14: Strain Examples GEOS 655 Tectonic Geodesy Jeff Freymueller A Worked Example Consider this case of pure shear deformation, and two vectors dx 1 and dx 2. How do they rotate? We ll look at vector

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information

Sensitivity analysis of the differential matrix Riccati equation based on the associated linear differential system

Sensitivity analysis of the differential matrix Riccati equation based on the associated linear differential system Advances in Computational Mathematics 7 (1997) 295 31 295 Sensitivity analysis of the differential matrix Riccati equation based on the associated linear differential system Mihail Konstantinov a and Vera

More information

Qualitative Analysis of Tumor-Immune ODE System

Qualitative Analysis of Tumor-Immune ODE System of Tumor-Immune ODE System L.G. de Pillis and A.E. Radunskaya August 15, 2002 This work was supported in part by a grant from the W.M. Keck Foundation 0-0 QUALITATIVE ANALYSIS Overview 1. Simplified System

More information

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points Nonlinear Control Lecture # 2 Stability of Equilibrium Points Basic Concepts ẋ = f(x) f is locally Lipschitz over a domain D R n Suppose x D is an equilibrium point; that is, f( x) = 0 Characterize and

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Name: Student ID number:

Name: Student ID number: Math 20E Final Exam Name: Student ID number: Instructions: Answers without work may be given no credit at the grader s discretion. The test is out of 69 points, with 2 extra credit points possible. This

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables 1 A factor can be considered to be an underlying latent variable: (a) on which people differ (b) that is explained by unknown variables (c) that cannot be defined (d) that is influenced by observed variables

More information

Analytical Workload Model for Estimating En Route Sector Capacity in Convective Weather*

Analytical Workload Model for Estimating En Route Sector Capacity in Convective Weather* Analytical Workload Model for Estimating En Route Sector Capacity in Convective Weather* John Cho, Jerry Welch, and Ngaire Underhill 16 June 2011 Paper 33-1 *This work was sponsored by the Federal Aviation

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University Chemometrics Matti Hotokka Physical chemistry Åbo Akademi University Linear regression Experiment Consider spectrophotometry as an example Beer-Lamberts law: A = cå Experiment Make three known references

More information

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates

Multivariable Calculus Notes. Faraad Armwood. Fall: Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Multivariable Calculus Notes Faraad Armwood Fall: 2017 Chapter 1: Vectors, Dot Product, Cross Product, Planes, Cylindrical & Spherical Coordinates Chapter 2: Vector-Valued Functions, Tangent Vectors, Arc

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

MATH 44041/64041 Applied Dynamical Systems, 2018

MATH 44041/64041 Applied Dynamical Systems, 2018 MATH 4441/6441 Applied Dynamical Systems, 218 Answers to Assessed Coursework 1 1 Method based on series expansion of the matrix exponential Let the coefficient matrix of α the linear system be A, then

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Econ Lecture 14. Outline

Econ Lecture 14. Outline Econ 204 2010 Lecture 14 Outline 1. Differential Equations and Solutions 2. Existence and Uniqueness of Solutions 3. Autonomous Differential Equations 4. Complex Exponentials 5. Linear Differential Equations

More information