Appendix lecture 9: Extra terms.

Size: px
Start display at page:

Download "Appendix lecture 9: Extra terms."

Transcription

1 Appendi lecture 9: Etra terms The Hyperolic method has een used to prove that d n = log + 2γ + O /2 n This can e used within the Convolution Method to prove Theorem There eists a constant C such that n X 2 ωn = ζ 2 X log X + C X + O X /2 log X Solution Recall that 2 ω = d µ 2 so n X 2 ωn = a X µ 2 a = a X µ 2 a X/a d X a log X a + 2γ X a + O Recall that µ 2 a is non-zero only if a = m 2, say Thus X /2 a 2 ωn = X µ m m log X 2 m + 2γ X /2 X 2 m + O 2 m 2 n X m 2 X 2 The error here is O X /2 = O X /2 log X m m X /2 For the first term we use a trick seen earlier for dealing with the logarithm: m 2 X µ m X m 2 log X m 2 = X m 2 X µ m m 2 X m 2 dt X t = X m 2 t µ m dt m 2 t 3 In this integrand the sum converges asolutely so we complete it to infinity,

2 m 2 t µ m m 2 = = m= µ m m 2 µ m = m 2 ζ 2 + O m 2 m>t /2 m>t /2 + ε t, 4 ζ 2 where ε t = O /t /2 Inserted into 3 this gives m 2 X µ m X m 2 log X m 2 = X X Since ε t = O /t /2 the integral dt ζ 2 + ε t t = X log X +X ζ 2 ε t dt t converges and so is a constant we will denote y C 0 Then X Hence ε t dt t = C 0 m 2 X X X ε t dt t ε t dt t = C dt 0 + O = C X t 3/2 0 + O X /2 µ m X m 2 log X m 2 = X log X ζ 2 + C 0 X + O X /2 The result 4 with t = X /2 will deal with the remaining term in 2 to give 2 ωn = n X ζ 2 X log X + C 0X + O X / γ X ζ 2 + O X /2 +O X /2 log X 2

3 This gives the stated result with C = C 0 + 2γ ζ 2 Question Generalise the previous result and prove that there eists a constant D k such that n d µ k n = ζ k log + D k + O /2 for k 3 So there is no log term in the error when k 3, and in fact the log in the error of Theorem can e removed y the use of the Hyperolic method Solution Start as aove µ k a d n d µ k n = a = a µ k a /a a log a + 2γ a + O /2 = µ m m log k m + 2γ /2 k m + O k m k m k For the first term we proceed as a 5 µ m m log = k m k m k = dt ζ k + ε k t t ζ k log + ε k t dt t, where ε k t /t /k Because the integral converges it can e completed to C k = ε k t dt t, 3

4 say, with an error Hence m k ε k t dt t dt t 2 /k /k µ m m log k m = k ζ k log + C k + O, /k The second term in 5 is 2γ µ m m k m /k = 2γ ζ k + O /k k While the error in 5 is O /2 m k/2 m /k The sum here converges since k 3, and so is ounded y a constant Comining these three results we get the stated result with D k = C k + 2γ ζ k 4

5 Appendi lecture 9: Additional terms for n d n 2 Let g n = d n 2 where d is the divisor function In Prolem Sheet 4 we have g = µ 2 = d Q 2 Can the Hyperolic Method e used to improve previous results on n d n2? To do so need to first prove two lemmas Lemma 2 There eists a constant C d say for which d a a = 2 log2 U + 2γ log U + C d + O Proof By Partial Summation and, U /2 d a a = U = U d a + U a t d a dt t 2 U log U + 2γ U + O U /2 U + t log t + 2γ t + ε t dt t 2 where ε t t /2 This gives the stated result with C d = 2γ + ε t dt t 2 Lemma 3 There eists a constant C Q say, for which Q 2 = ζ 2 log V + C Q + O V /2 Proof By Partial Summation and the sums of square-free numers 5

6 Q 2 = V = V Q 2 + V t ζ 2 V + O V /2 V + Q 2 dt t 2 dt ζ 2 t + ε t t 2 where ε t t /2 This gives the stated result with C d = ζ 2 + ε t dt t 2 Theorem 4 There eist constants c and c 2 such that n d n 2 = 2ζ 2 log2 + c log + c 2 + O 3/4 log Proof With U and V to e chosen, the Hyperolic method gives n X d n 2 = n X d Q 2 n = and By the Lemmas aove, d a Q 2 X/a Q 2 = a X/ d a = d a Q 2 Q 2 + X/a d a Q 2 d a ζ 2 a + O Q 2 log + 2γ + O a a X/ d a /2, 6 /2 7 6

7 Errors The first error, in 6 is, y partial summation /2 d a = /2 d a + a /2 U /2 2 U a t d a dt t 3/2 /2 U U log U + U t log t dt /2 2 t 3/2 /2 U /2 log U The second error, in 7 is, again y partial summation, /2 Q 2 = /2 Q /2 V /2 2 + V Q 2 dt 2 t 3/2 t /2 V V + V t dt /2 2 t 3/2 /2 V /2 The idea would e to equate these errors, which means demanding U = V Since UV = this means that U = V = /2, when the two errors aove are 3/4 log An error will also arise from the first term in 6, d a = ζ 2 a ζ 2 2 log2 U + 2γ log U + C d ut this is only O 3/4 + O, U /2 7

8 The first term in 7 is Q 2 log = Q 2 log V + log V = log V = log V Q 2 V + t ζ 2 log V + C Q + O Q 2 dt t V /2 8 where η t /t /2 The integral here equals where 2ζ 2 log2 V + C Q log V + D + O D = V dt + ζ 2 log t + C Q + η t t η t dt t, 9 V /2 The errors in 8 and 9 are O log /V /V /2 and O /V /2 which are 3/4 log The second term in 7 is 2γ Q 2 and the error is again 3/4 = 2γ Finally, the last term in the Hyperolic Method is ζ 2 log V + C Q + O, V /2 d a Q 2 = U log U + 2γ U + O U /2 ζ 2 V + O V /2 The error from this is O U /2 V + UV /2 log U which is O 3/4 log y the choice of U and V 8

9 Main Terms The main terms are scattered throughout the aove epressions The main terms will not depend on the choice of U and V, the reason for introducing U and V are that good choices for them will give a good ound on the error term Terms with two logarithms: ζ 2 2 log2 U + log V = 2ζ 2 ζ 2 log V + 2ζ 2 log2 V log 2 U + 2 log V log V + log2 V = log 2 U + 2 log U log V + log 2 V since UV = 2ζ 2 = 2ζ 2 log U + log V 2 = = 2ζ 2 log2 Terms with one logarithm: log UV 2 2ζ 2 ζ 2 2γ log U + C Q log V + C Q log V + 2γ log V U log U ζ 2 ζ 2 V = ζ 2 2γ log U + log V + C Q = ζ 2 2γ log UV + C Q log V V 2γ = + C Q log ζ 2 log V + log V log V U ζ 2 log V + log U ζ 2 9

10 Terms with no logarithm: = C d ζ 2 + D + 2γ C 2γ Q + UV ζ 2 Cd ζ 2 + D + 2γ C 2γ Q + ζ 2 0

11 Appendi Level 9: The Improvement of n d 3 n If we attempted to improve d 3 n = 2 log2 + O log, n y using the improved estimate for n d n from in the Convolution Method, we would get d 3 n = m log m + 2γ /2 m + O m n m The error term here is /2 m m/2 We can get a far smaller error y using the Hyperolic Method Lemma 5 There eists a constant C 2 such that log n n = log 2 log2 + C 2 + O n Proof Writing the logarithm as an integral an interchanging the summation and integration gives log n n = n dt n n t = dt t n Split this sum as n t<n n = n n n t n t<n

12 Then dt t Since t<n n = = n dt n t log + γ + O n t dt n t dt t dt log t + γ + ε t, t = log 2 log2 + O ε t dt t + where ε t /t, ε t dt t the result follows with ε t dt t dt t 2, C 2 = ε t dt t Lemma 6 There eists a constant C d such that n X d n n Solution Left to student Theorem 7 = 2 log2 X + 2γ log X + C d + O d 3 n = 2 X log2 X + 3γ X log X n X X /2 + C d + C 2 + 2γ 2 3γ + X + O X 2/3 log X 2

13 Proof With U and V to e chosen, the Hyperolic method gives d 3 n = d n = d a + d a 0 n X n X X/a a X/ d a The first term on the right hand side equals [ ] X d a a = X d a a + O d a a + O d a = X = X 2 log2 U + 2γ log U + C d + O U /2 +O U log U, 2 having used Lemma 6 The second term on the right hand side of 0 equals d a = X X log X + 2γ X /2 + O a X/ = X log X/ y + 2γ X + O X /2 /2 3

14 So a X/ d a = X log X log + 2γ X + O X /2 V /2 = X log X log V + γ + O V log V X 2 log2 V + C 2 + O V + 2γ X The errors from these two terms in 0 are log V + γ + O +O X /2 V /2 XU /2, U log U, XV and X /2 V / V We attempt to minimise these errors y choosing U and V to equalise them So try XV = X /2 V /2, ie V = X /3 Yet UV = X so this means U = X 2/3 It can e checked that all errors are then X 2/3 log X With this choice of U and V the term in is d a = U log U + 2γ U + O U /2 V + O 6 The error here is O U log U + U /2 V which is again X 2/3 log X given the choice of U and V 4

15 The main terms from 2, 3 and 5 are X 2 log2 U + 2γ log U + C d + X log X log V + γ 7 X 2 log2 V + C 2 + 2γ X log V + γ V U log U + 2γ U = X 2 log2 U + log X log V 2 log2 V +X 2γ log U + γ log X + 2γ log V log U +X C d + C 2 + 2γ γ + 2γ, having used UV = X Note that these main terms should not depend on the choice of U and V, the mean value n X d 3 n will have the same main terms however they are calculated What we are doing in this method is not to calculate eactly the error for our result on this mean value ut to ound this error So a clever choice of U and V will give a etter ound on the error To check that the main terms do not depend on the choice of U and V consider first terms with two logarithms, dropping the X factor, 2 log2 U + log X log V 2 log2 V = 2 log2 U + log UV log V 2 log2 V = 2 log2 U + log U + log V log V 2 log2 V = 2 log2 U + log U log V + 2 log2 V = log U + log V 2 2 = 2 log2 UV = 2 log2 X 5

16 Also, for term with one logarithm again dropping the X factor 2γ log U + γ log X + 2γ log V log U = 2γ log U + log V + γ log X = 3γ log X All this comines to give the result quoted Note though that now we have justified the claim that it does matter what the choice is for U and V you will always get the same main terms, you can go ack to 7 and choose, say, U = and V = X when we get = X 2 log2 U + log X log V 2 log2 V +X 2γ log U + γ log X + 2γ log V log U +X C d + C 2 + 2γ γ + 2γ = X log X log X 2 log2 X + X γ log X + 2γ log X +X C d + C 2 + 2γ γ + 2γ = 2 X log2 X + 3γ X log X + X C d + C 2 + 2γ γ + 2γ 6

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S2: separate summed terms. S7: sum of k2^(k-1)

Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S2: separate summed terms. S7: sum of k2^(k-1) Summation Formulas Let > 0, let A, B, and C e constants, and let f and g e any functions. Then: k Cf ( k) C k S: factor out constant f ( k) k ( f ( k) ± g( k)) k S: separate summed terms f ( k) ± k g(

More information

Logarithms. For example:

Logarithms. For example: Math Review Summation Formulas Let >, let A, B, and C e constants, and let f and g e any functions. Then: f C Cf ) ) S: factor out constant ± ± g f g f ) ) )) ) S: separate summed terms C C ) 6 ) ) Computer

More information

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1. Problem Sheet 3. From Theorem 3. we have ζ (s) = + s s {u} u+sdu, (45) valid for Res > 0. i) Deduce that for Res >. [u] ζ (s) = s u +sdu ote the integral contains [u] in place of {u}. ii) Deduce that for

More information

Summation Formulas. Math Review. Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S1: factor out constant

Summation Formulas. Math Review. Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S1: factor out constant Computer Science Dept Va Tech August 005 005 McQuain WD Summation Formulas Let > 0, let A, B, and C e constants, and let f and g e any functions. Then: f C Cf ) ) S: factor out constant g f g f ) ) ))

More information

INTRODUCTORY LECTURES COURSE NOTES, One method, which in practice is quite effective is due to Abel. We start by taking S(x) = a n

INTRODUCTORY LECTURES COURSE NOTES, One method, which in practice is quite effective is due to Abel. We start by taking S(x) = a n INTRODUCTORY LECTURES COURSE NOTES, 205 STEVE LESTER AND ZEÉV RUDNICK. Partial summation Often we will evaluate sums of the form a n fn) a n C f : Z C. One method, which in ractice is quite effective is

More information

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

211 Real Analysis. f (x) = x2 1. x 1. x 2 1 Part. Limits of functions. Introduction 2 Real Analysis Eample. What happens to f : R \ {} R, given by f () = 2,, as gets close to? If we substitute = we get f () = 0 which is undefined. Instead we 0 might

More information

Most results in this section are stated without proof.

Most results in this section are stated without proof. Leture 8 Level 4 v2 he Expliit formula. Most results in this setion are stated without proof. Reall that we have shown that ζ (s has only one pole, a simple one at s =. It has trivial zeros at the negative

More information

x y x 2 2 x y x x y x U x y x y

x y x 2 2 x y x x y x U x y x y Lecture 7 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for hapter 4 4: 8 Solution: We want to learn about the analyticity properties of the function

More information

Taylor Series and Asymptotic Expansions

Taylor Series and Asymptotic Expansions Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

The Hilbert transform

The Hilbert transform The Hilbert transform Definition and properties ecall the distribution pv(, defined by pv(/(ϕ := lim ɛ ɛ ϕ( d. The Hilbert transform is defined via the convolution with pv(/, namely (Hf( := π lim f( t

More information

Harmonic sets and the harmonic prime number theorem

Harmonic sets and the harmonic prime number theorem Harmonic sets and the harmonic prime number theorem Version: 9th September 2004 Kevin A. Broughan and Rory J. Casey University of Waikato, Hamilton, New Zealand E-mail: kab@waikato.ac.nz We restrict primes

More information

CHAPTER 5. Linear Operators, Span, Linear Independence, Basis Sets, and Dimension

CHAPTER 5. Linear Operators, Span, Linear Independence, Basis Sets, and Dimension A SERIES OF CLASS NOTES TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS LINEAR CLASS NOTES: A COLLECTION OF HANDOUTS FOR REVIEW AND PREVIEW OF LINEAR THEORY

More information

Abel Summation MOP 2007, Black Group

Abel Summation MOP 2007, Black Group Abel Summation MOP 007, Blac Group Zachary Abel June 5, 007 This lecture focuses on the Abel Summation formula, which is most often useful as a way to tae advantage of unusual given conditions such as

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Administrivia. Matrinomials Lectures 1+2 O Outline 1/15/2018

Administrivia. Matrinomials Lectures 1+2 O Outline 1/15/2018 Administrivia Syllabus and other course information posted on the internet: links on blackboard & at www.dankalman.net. Check assignment sheet for reading assignments and eercises. Be sure to read about

More information

Lecture 3: September 10

Lecture 3: September 10 CS294 Markov Chain Monte Carlo: Foundations & Applications Fall 2009 Lecture 3: September 10 Lecturer: Prof. Alistair Sinclair Scribes: Andrew H. Chan, Piyush Srivastava Disclaimer: These notes have not

More information

Lecture 6 January 15, 2014

Lecture 6 January 15, 2014 Advanced Graph Algorithms Jan-Apr 2014 Lecture 6 January 15, 2014 Lecturer: Saket Sourah Scrie: Prafullkumar P Tale 1 Overview In the last lecture we defined simple tree decomposition and stated that for

More information

Intermediate Algebra Section 9.3 Logarithmic Functions

Intermediate Algebra Section 9.3 Logarithmic Functions Intermediate Algebra Section 9.3 Logarithmic Functions We have studied inverse functions, learning when they eist and how to find them. If we look at the graph of the eponential function, f ( ) = a, where

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Mathematical Tripos Part III Michaelmas 2017 Distribution Theory & Applications, Example sheet 1 (answers) Dr A.C.L. Ashton

Mathematical Tripos Part III Michaelmas 2017 Distribution Theory & Applications, Example sheet 1 (answers) Dr A.C.L. Ashton Mathematical Tripos Part III Michaelmas 7 Distribution Theory & Applications, Eample sheet (answers) Dr A.C.L. Ashton Comments and corrections to acla@damtp.cam.ac.uk.. Construct a non-zero element of

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

The Final Exam is comprehensive but identifying the topics covered by it should be simple.

The Final Exam is comprehensive but identifying the topics covered by it should be simple. Math 10 Final Eam Study Guide The Final Eam is comprehensive ut identifying the topics covered y it should e simple. Use the previous eams as your primary reviewing tool! This document is to help provide

More information

Problem Sheet 1. 1) Use Theorem 1.1 to prove that. 1 p loglogx 1

Problem Sheet 1. 1) Use Theorem 1.1 to prove that. 1 p loglogx 1 Problem Sheet ) Use Theorem. to prove that p loglog for all real 3. This is a version of Theorem. with the integer N replaced by the real. Hint Given 3 let N = [], the largest integer. Then, importantly,

More information

1 Caveats of Parallel Algorithms

1 Caveats of Parallel Algorithms CME 323: Distriuted Algorithms and Optimization, Spring 2015 http://stanford.edu/ reza/dao. Instructor: Reza Zadeh, Matroid and Stanford. Lecture 1, 9/26/2015. Scried y Suhas Suresha, Pin Pin, Andreas

More information

Homework 3 Solutions(Part 2) Due Friday Sept. 8

Homework 3 Solutions(Part 2) Due Friday Sept. 8 MATH 315 Differential Equations (Fall 017) Homework 3 Solutions(Part ) Due Frida Sept. 8 Part : These will e graded in detail. Be sure to start each of these prolems on a new sheet of paper, summarize

More information

AP Calculus Prep Session Handout. Integral Defined Functions

AP Calculus Prep Session Handout. Integral Defined Functions AP Calculus Prep Session Handout A continuous, differentiable function can be epressed as a definite integral if it is difficult or impossible to determine the antiderivative of a function using known

More information

dw 2 3(w) x 4 x 4 =L x 3 x 1 =0 x 2 El #1 El #2 El #3 Potential energy of element 3: Total potential energy Potential energy of element 1:

dw 2 3(w) x 4 x 4 =L x 3 x 1 =0 x 2 El #1 El #2 El #3 Potential energy of element 3: Total potential energy Potential energy of element 1: MAE 44 & CIV 44 Introduction to Finite Elements Reading assignment: ecture notes, ogan. Summary: Pro. Suvranu De Finite element ormulation or D elasticity using the Rayleigh-Ritz Principle Stiness matri

More information

A remark on a conjecture of Chowla

A remark on a conjecture of Chowla J. Ramanujan Math. Soc. 33, No.2 (2018) 111 123 A remark on a conjecture of Chowla M. Ram Murty 1 and Akshaa Vatwani 2 1 Department of Mathematics, Queen s University, Kingston, Ontario K7L 3N6, Canada

More information

Lecture 12: Grover s Algorithm

Lecture 12: Grover s Algorithm CPSC 519/619: Quantum Computation John Watrous, University of Calgary Lecture 12: Grover s Algorithm March 7, 2006 We have completed our study of Shor s factoring algorithm. The asic technique ehind Shor

More information

I(n) = ( ) f g(n) = d n

I(n) = ( ) f g(n) = d n 9 Arithmetic functions Definition 91 A function f : N C is called an arithmetic function Some examles of arithmetic functions include: 1 the identity function In { 1 if n 1, 0 if n > 1; 2 the constant

More information

Divide-and-Conquer. Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, CSE 6331 Algorithms Steve Lai

Divide-and-Conquer. Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, CSE 6331 Algorithms Steve Lai Divide-and-Conquer Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, 33.4. CSE 6331 Algorithms Steve Lai Divide and Conquer Given an instance x of a prolem, the method works as follows: divide-and-conquer

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

FFT: Fast Polynomial Multiplications

FFT: Fast Polynomial Multiplications FFT: Fast Polynomial Multiplications Jie Wang University of Massachusetts Lowell Department of Computer Science J. Wang (UMass Lowell) FFT: Fast Polynomial Multiplications 1 / 20 Overview So far we have

More information

Chapter 2 Arithmetic Functions and Dirichlet Series.

Chapter 2 Arithmetic Functions and Dirichlet Series. Chater 2 Arithmetic Functions and Dirichlet Series. [4 lectures] Definition 2.1 An arithmetic function is any function f : N C. Examles 1) The divisor function d (n) (often denoted τ (n)) is the number

More information

Total energy in volume

Total energy in volume General Heat Transfer Equations (Set #3) ChE 1B Fundamental Energy Postulate time rate of change of internal +kinetic energy = rate of heat transfer + surface work transfer (viscous & other deformations)

More information

. In particular if a b then N(

. In particular if a b then N( Gaussian Integers II Let us summarise what we now about Gaussian integers so far: If a, b Z[ i], then N( ab) N( a) N( b). In particular if a b then N( a ) N( b). Let z Z[i]. If N( z ) is an integer prime,

More information

we make slices perpendicular to the x-axis. If the slices are thin enough, they resemble x cylinders or discs. The formula for the x

we make slices perpendicular to the x-axis. If the slices are thin enough, they resemble x cylinders or discs. The formula for the x Math Learning Centre Solids of Revolution When we rotate a curve around a defined ais, the -D shape created is called a solid of revolution. In the same wa that we can find the area under a curve calculating

More information

Solutions to Problem Sheet for Week 11

Solutions to Problem Sheet for Week 11 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week MATH9: Differential Calculus (Advanced) Semester, 7 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

Mathematics Functions: Logarithms

Mathematics Functions: Logarithms a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Functions: Logarithms Science and Mathematics Education Research Group Supported by UBC Teaching and

More information

Abelian Theorem for Generalized Mellin-Whittaker Transform

Abelian Theorem for Generalized Mellin-Whittaker Transform IOSR Journal of Mathematics (IOSRJM) ISSN: 2278-5728 Volume 1, Issue 4 (July-Aug 212), PP 19-23 Aelian Theorem for Generalized Mellin-Whittaker Transform A. S. Gudadhe 1, R. V. Kene 2 1, 2 (Head Department

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson, you Learn the terminology associated with polynomials Use the finite differences method to determine the degree of a polynomial

More information

Chapter 9 Regression. 9.1 Simple linear regression Linear models Least squares Predictions and residuals.

Chapter 9 Regression. 9.1 Simple linear regression Linear models Least squares Predictions and residuals. 9.1 Simple linear regression 9.1.1 Linear models Response and eplanatory variables Chapter 9 Regression With bivariate data, it is often useful to predict the value of one variable (the response variable,

More information

Conceptual Explanations: Logarithms

Conceptual Explanations: Logarithms Conceptual Eplanations: Logarithms Suppose you are a iologist investigating a population that doules every year. So if you start with 1 specimen, the population can e epressed as an eponential function:

More information

ITERATES OF THE SUM OF THE UNITARY DIVISORS OF AN INTEGER

ITERATES OF THE SUM OF THE UNITARY DIVISORS OF AN INTEGER Annales Univ. Sci. Budapest., Sect. Comp. 45 (06) 0 0 ITERATES OF THE SUM OF THE UNITARY DIVISORS OF AN INTEGER Jean-Marie De Koninck (Québec, Canada) Imre Kátai (Budapest, Hungary) Dedicated to Professor

More information

,... We would like to compare this with the sequence y n = 1 n

,... We would like to compare this with the sequence y n = 1 n Example 2.0 Let (x n ) n= be the sequence given by x n = 2, i.e. n 2, 4, 8, 6,.... We would like to compare this with the sequence = n (which we know converges to zero). We claim that 2 n n, n N. Proof.

More information

Here is a general Factoring Strategy that you should use to factor polynomials. 1. Always factor out the GCF(Greatest Common Factor) first.

Here is a general Factoring Strategy that you should use to factor polynomials. 1. Always factor out the GCF(Greatest Common Factor) first. 1 Algera and Trigonometry Notes on Topics that YOU should KNOW from your prerequisite courses! Here is a general Factoring Strategy that you should use to factor polynomials. 1. Always factor out the GCF(Greatest

More information

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES 13.42 READING 6: SPECTRUM OF A RANDOM PROCESS SPRING 24 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. STATIONARY AND ERGODIC RANDOM PROCESSES Given the random process y(ζ, t) we assume that the expected value

More information

Core Connections Algebra 2 Checkpoint Materials

Core Connections Algebra 2 Checkpoint Materials Core Connections Algebra 2 Note to Students (and their Teachers) Students master different skills at different speeds. No two students learn eactly the same way at the same time. At some point you will

More information

Physics 116A Solutions to Homework Set #2 Winter 2012

Physics 116A Solutions to Homework Set #2 Winter 2012 Physics 6A Solutions to Homework Set #2 Winter 22. Boas, problem. 23. Transform the series 3 n (n+ (+ n determine the interval of convergence to a power series and First we want to make the replacement

More information

The Kuhn-Tucker and Envelope Theorems

The Kuhn-Tucker and Envelope Theorems The Kuhn-Tucker and Envelope Theorems Peter Ireland EC720.01 - Math for Economists Boston College, Department of Economics Fall 2010 The Kuhn-Tucker and envelope theorems can be used to characterize the

More information

THE SERIES SUM OF DIVERGENT ALTERNATING INFINITE SERIES AND THE NATURE OF INFINITY. Peter G. Bass

THE SERIES SUM OF DIVERGENT ALTERNATING INFINITE SERIES AND THE NATURE OF INFINITY. Peter G. Bass THE SERIES SUM OF DIVERGENT ALTERNATING INFINITE SERIES AND THE NATURE OF INFINITY. Peter G. Bass PGBass M6 Ver..0.0 www.relativitydomains.com November 0 ABSTRACT. This paper presents three methods for

More information

Algebraic number theory LTCC Solutions to Problem Sheet 2

Algebraic number theory LTCC Solutions to Problem Sheet 2 Algebraic number theory LTCC 008 Solutions to Problem Sheet ) Let m be a square-free integer and K = Q m). The embeddings K C are given by σ a + b m) = a + b m and σ a + b m) = a b m. If m mod 4) then

More information

Generalized Geometric Series, The Ratio Comparison Test and Raabe s Test

Generalized Geometric Series, The Ratio Comparison Test and Raabe s Test Generalized Geometric Series The Ratio Comparison Test and Raae s Test William M. Faucette Decemer 2003 The goal of this paper is to examine the convergence of a type of infinite series in which the summands

More information

MATH39001 Generating functions. 1 Ordinary power series generating functions

MATH39001 Generating functions. 1 Ordinary power series generating functions MATH3900 Generating functions The reference for this part of the course is generatingfunctionology by Herbert Wilf. The 2nd edition is downloadable free from http://www.math.upenn. edu/~wilf/downldgf.html,

More information

10 Lorentz Group and Special Relativity

10 Lorentz Group and Special Relativity Physics 129 Lecture 16 Caltech, 02/27/18 Reference: Jones, Groups, Representations, and Physics, Chapter 10. 10 Lorentz Group and Special Relativity Special relativity says, physics laws should look the

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Taylor and Laurent Series

Taylor and Laurent Series Chapter 4 Taylor and Laurent Series 4.. Taylor Series 4... Taylor Series for Holomorphic Functions. In Real Analysis, the Taylor series of a given function f : R R is given by: f (x + f (x (x x + f (x

More information

Weak bidders prefer first-price (sealed-bid) auctions. (This holds both ex-ante, and once the bidders have learned their types)

Weak bidders prefer first-price (sealed-bid) auctions. (This holds both ex-ante, and once the bidders have learned their types) Econ 805 Advanced Micro Theory I Dan Quint Fall 2007 Lecture 9 Oct 4 2007 Last week, we egan relaxing the assumptions of the symmetric independent private values model. We examined private-value auctions

More information

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2 Least squares: Mathematical theory Below we provide the "vector space" formulation, and solution, of the least squares prolem. While not strictly necessary until we ring in the machinery of matrix algera,

More information

CURRICULUM TIDBITS FOR THE MATHEMATICS CLASSROOM

CURRICULUM TIDBITS FOR THE MATHEMATICS CLASSROOM TANTON S TAKE ON LOGARITHMS CURRICULUM TIDBITS FOR THE MATHEMATICS CLASSROOM APRIL 01 Try walking into an algera II class and writing on the oard, perhaps even in silence, the following: = Your turn! (

More information

On Universality of Blow-up Profile for L 2 critical nonlinear Schrödinger Equation

On Universality of Blow-up Profile for L 2 critical nonlinear Schrödinger Equation On Universality of Blow-up Profile for L critical nonlinear Schrödinger Equation Frank Merle,, Pierre Raphael Université de Cergy Pontoise Institut Universitaire de France Astract We consider finite time

More information

Lecture 12 Reactions as Rare Events 3/02/2009 Notes by MIT Student (and MZB)

Lecture 12 Reactions as Rare Events 3/02/2009 Notes by MIT Student (and MZB) Lecture 1 Reactions as Rare Events 3/0/009 Notes by MIT Student (and MZB) 1. Introduction In this lecture, we ll tackle the general problem of reaction rates involving particles jumping over barriers in

More information

Georgian Mathematical Journal 1(94), No. 4, ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS

Georgian Mathematical Journal 1(94), No. 4, ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS Georgian Mathematical Journal 1(94), No. 4, 419-427 ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL DIFFERENTIAL SYSTEMS V. ŠEDA AND J. ELIAŠ Astract. For a system of functional differential equations of an

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY 5. Introduction The whole of science is nothing more than a refinement of everyday thinking. ALBERT EINSTEIN This chapter is essentially a continuation of our stu of differentiation of functions in Class

More information

Probability and Number Theory: an Overview of the Erdős-Kac Theorem

Probability and Number Theory: an Overview of the Erdős-Kac Theorem Probability and umber Theory: an Overview of the Erdős-Kac Theorem December 12, 2012 Probability and umber Theory: an Overview of the Erdős-Kac Theorem Probabilistic number theory? Pick n with n 10, 000,

More information

Exploring Lucas s Theorem. Abstract: Lucas s Theorem is used to express the remainder of the binomial coefficient of any two

Exploring Lucas s Theorem. Abstract: Lucas s Theorem is used to express the remainder of the binomial coefficient of any two Delia Ierugan Exploring Lucas s Theorem Astract: Lucas s Theorem is used to express the remainder of the inomial coefficient of any two integers m and n when divided y any prime integer p. The remainder

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

The intersection probability and its properties

The intersection probability and its properties The intersection proaility and its properties Faio Cuzzolin INRIA Rhône-Alpes 655 avenue de l Europe, 38334 Montonnot, France Faio.Cuzzolin@inrialpes.fr Astract In this paper we discuss the properties

More information

arxiv: v1 [math.nt] 24 Mar 2009

arxiv: v1 [math.nt] 24 Mar 2009 A NOTE ON THE FOURTH MOMENT OF DIRICHLET L-FUNCTIONS H. M. BUI AND D. R. HEATH-BROWN arxiv:93.48v [math.nt] 4 Mar 9 Abstract. We prove an asymptotic formula for the fourth power mean of Dirichlet L-functions

More information

MATH 225: Foundations of Higher Matheamatics. Dr. Morton. 3.4: Proof by Cases

MATH 225: Foundations of Higher Matheamatics. Dr. Morton. 3.4: Proof by Cases MATH 225: Foundations of Higher Matheamatics Dr. Morton 3.4: Proof y Cases Chapter 3 handout page 12 prolem 21: Prove that for all real values of y, the following inequality holds: 7 2y + 2 2y 5 7. You

More information

A PROBABILISTIC PROOF OF WALLIS S FORMULA FOR π. ( 1) n 2n + 1. The proof uses the fact that the derivative of arctan x is 1/(1 + x 2 ), so π/4 =

A PROBABILISTIC PROOF OF WALLIS S FORMULA FOR π. ( 1) n 2n + 1. The proof uses the fact that the derivative of arctan x is 1/(1 + x 2 ), so π/4 = A PROBABILISTIC PROOF OF WALLIS S FORMULA FOR π STEVEN J. MILLER There are many beautiful formulas for π see for example [4]). The purpose of this note is to introduce an alternate derivation of Wallis

More information

Math 3450 Homework Solutions

Math 3450 Homework Solutions Math 3450 Homework Solutions I have decided to write up all the solutions to prolems NOT assigned from the textook first. There are three more sets to write up and I am doing those now. Once I get the

More information

Hilbert s theorem 90, Dirichlet s unit theorem and Diophantine equations

Hilbert s theorem 90, Dirichlet s unit theorem and Diophantine equations Hilbert s theorem 90, Dirichlet s unit theorem and Diophantine equations B. Sury Stat-Math Unit Indian Statistical Institute 8th Mile Mysore Road Bangalore - 560 059 India. sury@isibang.ac.in Introduction

More information

Riemann Zeta Function and Prime Number Distribution

Riemann Zeta Function and Prime Number Distribution Riemann Zeta Function and Prime Number Distribution Mingrui Xu June 2, 24 Contents Introduction 2 2 Definition of zeta function and Functional Equation 2 2. Definition and Euler Product....................

More information

Part Two. Diagnostic Test

Part Two. Diagnostic Test Part Two Diagnostic Test AP Calculus AB and BC Diagnostic Tests Take a moment to gauge your readiness for the AP Calculus eam by taking either the AB diagnostic test or the BC diagnostic test, depending

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

We start with a simple result from Fourier analysis. Given a function f : [0, 1] C, we define the Fourier coefficients of f by

We start with a simple result from Fourier analysis. Given a function f : [0, 1] C, we define the Fourier coefficients of f by Chapter 9 The functional equation for the Riemann zeta function We will eventually deduce a functional equation, relating ζ(s to ζ( s. There are various methods to derive this functional equation, see

More information

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston

Review sheet Final Exam Math 140 Calculus I Fall 2015 UMass Boston Review sheet Final Eam Math Calculus I Fall 5 UMass Boston The eam is closed tetbook NO CALCULATORS OR ELECTRONIC DEVICES ARE ALLOWED DURING THE EXAM The final eam will contain problems of types similar

More information

Ch6 Addition Proofs of Theorems on permutations.

Ch6 Addition Proofs of Theorems on permutations. Ch6 Addition Proofs of Theorems on permutations. Definition Two permutations ρ and π of a set A are disjoint if every element moved by ρ is fixed by π and every element moved by π is fixed by ρ. (In other

More information

APPROXIMATIONS FOR SOME FUNCTIONS OF PRIMES

APPROXIMATIONS FOR SOME FUNCTIONS OF PRIMES APPROXIMATIONS FOR SOME FUNCTIONS OF PRIMES Fataneh Esteki B. Sc., University of Isfahan, 2002 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment

More information

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 1/1 Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 2/1 Perturbed Systems: Nonvanishing Perturbation Nominal System: Perturbed System: ẋ = f(x), f(0) = 0 ẋ

More information

LEARN ABOUT the Math

LEARN ABOUT the Math 1.5 Inverse Relations YOU WILL NEED graph paper graphing calculator GOAL Determine the equation of an inverse relation and the conditions for an inverse relation to be a function. LEARN ABOUT the Math

More information

Finding Divisors, Number of Divisors and Summation of Divisors. Jane Alam Jan

Finding Divisors, Number of Divisors and Summation of Divisors. Jane Alam Jan Finding Divisors, Number of Divisors and Summation of Divisors by Jane Alam Jan Finding Divisors If we observe the property of the numbers, we will find some interesting facts. Suppose we have a number

More information

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current Prolem Set 5 Solutions 8.04 Spring 03 March, 03 Prolem. (0 points) The Proaility Current We wish to prove that dp a = J(a, t) J(, t). () dt Since P a (t) is the proaility of finding the particle in the

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Harmonic Analysis Homework 5

Harmonic Analysis Homework 5 Harmonic Analysis Homework 5 Bruno Poggi Department of Mathematics, University of Minnesota November 4, 6 Notation Throughout, B, r is the ball of radius r with center in the understood metric space usually

More information

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material.

The incomplete gamma functions. Notes by G.J.O. Jameson. These notes incorporate the Math. Gazette article [Jam1], with some extra material. The incomplete gamma functions Notes by G.J.O. Jameson These notes incorporate the Math. Gazette article [Jam], with some etra material. Definitions and elementary properties functions: Recall the integral

More information

1 The functional equation for ζ

1 The functional equation for ζ 18.785: Analytic Number Theory, MIT, spring 27 (K.S. Kedlaya) The functional equation for the Riemann zeta function In this unit, we establish the functional equation property for the Riemann zeta function,

More information

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1 MATH 85: COMPLEX ANALYSIS FALL 2009/0 PROBLEM SET 9 SOLUTIONS. Consider the functions defined y g a (z) = eiπz/2 e iπz/2 + Show that g a maps the set to D(0, ) while g maps the set and g (z) = eπz/2 e

More information

Laplace Transform Introduction

Laplace Transform Introduction Laplace Transform Introduction In many problems, a function is transformed to another function through a relation of the type: where is a known function. Here, is called integral transform of. Thus, an

More information

The z-transform Part 2

The z-transform Part 2 http://faculty.kfupm.edu.sa/ee/muqaibel/ The z-transform Part 2 Dr. Ali Hussein Muqaibel The material to be covered in this lecture is as follows: Properties of the z-transform Linearity Initial and final

More information

Solutions to Problem Sheet 4

Solutions to Problem Sheet 4 Solutions to Problem Sheet 4 ) From Theorem 4.0 we have valid for Res > 0. i) Deduce that for Res >. ζ(s) = + s s [u] ζ(s) = s u +sdu ote the integral contains [u] in place of. ii) Deduce that for 0

More information

First Variation of a Functional

First Variation of a Functional First Variation of a Functional The derivative of a function being zero is a necessary condition for the etremum of that function in ordinary calculus. Let us now consider the equivalent of a derivative

More information