A coherent picture for water at extreme negative pressure

Size: px
Start display at page:

Download "A coherent picture for water at extreme negative pressure"

Transcription

1 A coherent picture for water at extreme negative pressure Mouna El Mekki Azouzi 1, Claire Ramboz 2, Jean-François Lenain 3 and Frédéric Caupin 1 1 Laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon 1 et CNRS, Institut Universitaire de France, 43 boulevard du 11 novembre 1918, Villeurbanne, France 2 Institut des Sciences de la Terre d Orléans, UMR 6113 CNRS/Universités Orléans-Tours, 1A rue de la Férollerie, Orléans Cedex, France 3 GRESE (Groupe de Recherche Eau-Sol-Environnement), Université de Limoges FST, 123 Avenue A. Thomas, Limoges 87060, France Materials and methods The quartz sample studied was synthesized in a previous study 1 following the thermal crack sealing method 2 using a internally-heated apparatus at 750 MPa and 530 C during 13 days. This fragment of quartz is around 450 µm-thick, 2 mm-wide and 1 mm 3 - volume, contains several thousand inclusions in the µm 3 volume range. For this study, we chose in the sample the water fluid inclusion that has the highest value of negative pressure around 120 MPa. It is located 80 µm from one crystal surface, and it is 20 µm-long and 4 µm-wide tube, with a volume of 570 µm 3 (Fig. 1). The quartz fragment was placed on a heating-cooling stage (Linkam THMS 600) mounted on a microscope (Olympus BHS). Phase changes in the inclusions were observed with a x50 longworking distance objective (Olympus). The temperature cycles of the stage are controlled using 1

2 a computer program. Phase changes are recorded using a black and white camera with a CMOS 2/3 sensor, 1280 x 1024 pixels 2 (Marlin) at a rate of 13 fps. Generation of negative pressure To explain the procedure, we refer to Fig. 1 of the main text, starting with a bi-phasic fluid inclusion, first containing liquid and vapour (a). Upon warming along the liquid vapour-equilibrium (a-b), the bubble disappears at the homogenization temperature T h (b), from which the liquid density is obtained using the known equation of state 3. For the inclusion studied, T h = C and = kg m 3. Then, upon isochoric cooling, the bubble does not reappear and the liquid is stretched (b-c), until cavitation occurs at T cav (c), bringing back the system to equilibrium (a). Cavitation statistics In a preliminary study, an inclusion nucleating around 84 MPa was selected, and statistics were measured by repeating step-like cooling cycles down to several predefined temperatures, as in Ref. 4. An issue with step-like cooling is the finite slope of the step: for large metastability, nucleation may occur during pre-cooling, before the desired temperature is reached. Therefore, in the present study, we have chosen to repeat ramp-like cooling cycles: the temperature decreases linearly with time, at a constant cooling rate r. We have studied a single inclusion at three cooling rates, r = 2, 5 and 10 K min 1, measuring 61, 33, and 60 values of T cav, respectively. For a given r, the N r values of T cav were sorted in ascending order to give a list (T i ) 1 i Nr. The survival probability was deduced as Σ(T i ) = (i 1/2)/N r. 2

3 Nucleation rate The nucleation rate is Γ = Γ 0 exp [ E b /(k B T )], where Γ 0 is a prefactor, and E b is the free energy barrier that has to be overcome. We take Γ 0 = N A 2σ/(πm) 5, 6, where N A is Avogadro s constant, m the mass of one molecule, and σ is the surface tension of water. There is some uncertainty in the value of the prefactor Γ 0, but, because of the exponential in the rate, changes by several orders of magnitude affect the results only marginally. In the present experiment, the rate Γ ranges from to m 3 s 1. Calculation of the free energy barrier to nucleation The survival probability Σ is related to the nucleation rate by a reasoning analogous to that used to describe the collisions and mean free path in a gas. For an inclusion of volume V to survive until time t + dt, it must have survived until time t, and no nucleation must have occurred during the time interval dt: Σ(t + dt) = Σ(t) (1 ΓV dt). (1) This gives a differential equation for Σ. We integrate it from the time t h (or temperature T 0 ) at which the cooling starts, with Σ(t h ) = 1. Using the above expression for Γ, and noting that T = T h r(t t h ), we have: t ln Σ = = 1 r [ E ] b(t ) dt (2) k B T (t ) [ Γ 0 (T )V exp E ] b(t ) dt. (3) k B T t h Γ 0 (t )V exp T0 T Because E b /(k B T ) appears in an exponential, we can safely replace t h and T h by infinity, and Γ 0 (T ) by its value at T = 328 K, a reference temperature in the middle of the experimental range of T cav. The choice of T does not affect the conclusions of the study. 3

4 We then use a second order temperature expansion: which leads to: E b (T ) k B T = E ( ) b(t ) T + ξ k B T T ( ) 2 T 2 κ T 1, (4) ( r ln Σ = Γ 0 (T ) V exp E ) { [ ( )]} b(t ) π T k B T 2κ e ξ2 ξ κ T 2κ 1 erf + 2κ 2 T 1 (5) where erf stands for the error function. A first order expansion (κ = 0) would give a straight line in Fig. 2, inset. As the data exhibit a curvature, the experiment is able to capture a finite κ. The parameters E b (T )/(k B T ), ξ and κ are obtained by taking the collapsed data from the three data sets (Fig. 2, inset), and fitting simultaneously ln( r ln Σ) as a function of T using Eq. 5. The main plot in Fig 2 also shows that these parameters gives Σ in good agreement with each data set taken separately. However, because the experiment involves a finite number of ramps, the parameters obtained from the fit are subject to statistical errors. Statistical errors To evaluate the errors on the parameters, we have simulated the experimental procedure, generating a list of random values of T cav that follows the survival law given by Eq. 5. The 1024 simulated data sets thus obtained were fitted as above. The results are given in Table 1. Classical nucleation theory CNT assumes the cavitation nucleus to be a sphere of radius R filled with vapour and separated from the liquid by an infinitely thin boundary 6. The competition between volume and surface energy results in a free energy barrier: E CNT b = 16π 3 σ 3 (P sat P liq ) 2, (6) 4

5 Table 1: Best fit parameters of the data using Eq. 5. To estimate the statistical errors, 1024 simulations of the experiment have been performed, with the best fit parameters to the experiment as input. They were in turn fitted using Eq. 5 which yield a distributions of parameter values. As these distributions are not always gaussian, in addition to their mean and std. dev., we also give the median and inter-quartile range (IQR); half of the distribution lies within 1 IQR of the median. There is a bias in κ, but it is smaller than the large error bar and will be ignored. The bias in T min, the temperature of the minimum of E b /(k B T ), due to extreme negative fluctuations, is reduced by taking the median instead of the mean, and will also be ignored. The IQRs are taken for error bars in the analysis. Experiment Simulations Parameter Mean Std. dev. Median IQR E b (T )/(k B T ) ξ κ std dev. of fit residuals T min

6 where σ is the liquid-vapour bulk surface tension, P sat the saturated vapour pressure, and P liq the pressure of the metastable liquid. The free energy barrier is reached for a critical radius R c = 2σ/(P sat P liq ). Along the isochore followed in the experiment, using the tabulated σ 7, we find E CNT b > 74 k B T, which yields a rate Γ < m 3 s 1, negligible when compared to the experimental Γ: nucleation should never occur! Tolman length correction Using Eq. 2 of the main text and the equations of CNT, one finds that by including a Tolman length δ, the CNT results are changed as follows: R c = 2σ P sat P liq + 2δ, (7) σ(r c ) = σ + δ (P sat P liq ), (8) E b = 16π ( σ δ (P ) 3 sat P liq ). 3 (P sat P liq ) 2 σ (9) We have used the last equation to fit the experimental data for E b with a constant δ, which gives δ = nm. Shift between T min and T LDM E b /(k B T ) reaches a minimum at T min not only because the isochore reaches a maximum negative pressure at T LDM, but also because the temperature variation of σ 3 /T (Eq. 6). T min is thus the solution of: T 2 P P sat ( ) P = 3 T dσ T σ dt 1 (10) We use the IAPWS EoS to compute the left hand side, and the tabulated surface tension data 7 to compute the right hand side; solving for T min gives T min = T LDM K = K. Interestingly, the shift T min T LDM remains identical if one multiplies sigma by a constant factor, because dσ/σ 6

7 is involved in Eq. 10. In the experiment, the nucleation statistics yield T min = ± 4.3 K. This value, which does not involve the use of any EoS, is consistent with that derived from CNT using the isochore from the IAPWS EoS (with or without the Tolman length correction). Nucleation theorem The results for E b /(k B T ) can also be analysed using the nucleation theorem 8. Without assuming any specific microscopic model for nucleation, it relates the properties of the critical nucleus to the variation of the free energy barrier. For an isothermal experiment, this theorem yields directly the excess number n c of molecules in the critical nucleus: ( ) Eb µ liq T = n c, (11) where µ liq is the chemical potential of the metastable liquid. For cavitation, the critical bubble involves a region where less molecules are present, and n c is negative. The version of the nucleation theorem for an experiment following an isochoric path is more complex, involving also the excess entropy S c of the critical nucleus: ( ) Eb µ liq ( ) T = n c S c µ liq. (12) Introducing v liq and s liq the volume and entropy per particle in the liquid, respectively, we write n c = V c /v liq and S c = n c s liq + S prof, the sum of the entropy loss due to the missing molecules, and the entropy gain due to the inhomogeneous profile of the nucleus. The temperature derivative of E b is the quantity directly accessible to the experiment (Eq. 4). Using the Gibbs- Duhem relation, Eq. 12 can be transformed into: ( ) ( ) Eb P = V c S prof. (13) T T 7

8 This gives a lower bound on V c : V c ( ) T P ( ) Eb T. (14) CNT can be used as a guide to get a reasonable estimate for V c. Within CNT, as vap liq, we have the following relations: V c = 4 3 πr c 3 < 0 and S prof = 4πR c 2 dσ dt > 0, (15) and the ratio of the first to second terms in Eq. 13 using the extrapolation of the EoS measured at positive pressure 3 is roughly 2. Assuming the same ratio for the experiment, V c is around twice the value of the lower bound. 1. Shmulovich, K. I., Mercury, L., Thiéry, R., Ramboz, C. & El Mekki, M. Experimental superheating of water and aqueous solutions. Geochimica et Cosmochimica Acta 73, (2009). 2. Bodnar, R. & Sterner, S. Synthetic fluid inclusions in natural quartz. II. Application to PVT studies. Geochimica et Cosmochimica Acta 49, (1985). 3. IAPWS. Revised release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use (International Association for the Properties of Water and Steam, 2009); available via Rev.pdf. 8

9 4. Takahashi, M., Izawa, E., Etou, J. & Ohtani, T. Kinetic characteristic of bubble nucleation in superheated water using fluid inclusions. Journal of the Physical Society of Japan 71, (2002). 5. Blander, M. & Katz, J. Bubble nucleation in liquids. AIChE Journal 21, (1975). 6. Debenedetti, P. G. Metastable liquids (Princeton University Press, 1996). 7. IAPWS. Release on the surface tension of ordinary water substance (International Association for the Properties of Water and Steam, 1994); available via 8. Oxtoby, D. W. & Kashchiev, D. A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation. The Journal of Chemical Physics 100, (1994). 9

Supplemental Material for Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation

Supplemental Material for Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation Supplemental Material for Curvature-dependence of the liquid-vapor surface tension beyond the Tolman approximation Nicolas Bruot and Frédéric Caupin Institut Lumière Matière, UMR536 Université Claude Bernard

More information

The expansion coefficient of liquid helium 3 and the shape of its stability limit

The expansion coefficient of liquid helium 3 and the shape of its stability limit The expansion coefficient of liquid helium 3 and the shape of its stability limit Frédéric Caupin, Sébastien Balibar and Humphrey J. Maris Laboratoire de Physique Statistique de l Ecole Normale Supérieure

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: hermodynamics and Kinetics Notes for Lecture 14 I. HE CLAEYRON EQUAION he Clapeyron attempts to answer the question of what the shape of a two-phase coexistence line is. In the - plane,

More information

Nucleation in a Fermi liquid at negative pressure

Nucleation in a Fermi liquid at negative pressure Nucleation in a Fermi liquid at negative pressure Frédéric Caupin, Sébastien Balibar and Humphrey J. Maris Laboratoire de Physique Statistique de l Ecole Normale Supérieure associé aux Universités Paris

More information

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties)

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties) Chemical Potential Combining the First and Second Laws for a closed system, Considering (extensive properties) du = TdS pdv Hence For an open system, that is, one that can gain or lose mass, U will also

More information

6 Physical transformations of pure substances

6 Physical transformations of pure substances 6 Physical transformations of pure substances E6.b E6.2b E6.3b E6.4b Solutions to exercises Discussion questions Refer to Fig. 6.8. The white lines represent the regions of superheating and supercooling.

More information

EVALUATING PROPERTIES FOR A PURE SUBSTANCES. By Ertanto Vetra

EVALUATING PROPERTIES FOR A PURE SUBSTANCES. By Ertanto Vetra EVALUATING PROPERTIES FOR A PURE SUBSTANCES 1 By Ertanto Vetra Outlines - TV, PV, PT, PVT Diagram - Property Tables - Introduction to Enthalpy - Reference State & Reference Values - Ideal Gas Equation

More information

Density Functional Theory of the Interface between Solid and Superfluid Helium 4

Density Functional Theory of the Interface between Solid and Superfluid Helium 4 Density Functional Theory of the Interface between Solid and Superfluid Helium 4 Frédéric Caupin and Tomoki Minoguchi Laboratoire de Physique Statistique de l Ecole Normale Supérieure associé aux Universités

More information

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten The basic question is what makes the existence of a droplet thermodynamically preferable to the existence only of water vapor. We have already derived an expression for the saturation vapor pressure over

More information

Dependence of the surface tension on curvature

Dependence of the surface tension on curvature Dependence of the surface tension on curvature rigorously determined from the density profiles of nanodroplets Athens, st September M. T. Horsch,,, S. Eckelsbach, H. Hasse, G. Jackson, E. A. Müller, G.

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium Pure Substance Properties of Pure Substances & Equations of State Dr. d. Zahurul Haq Professor Department of echanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

More information

Interfaces and interfacial energy

Interfaces and interfacial energy Interfaces and interfacial energy 1/14 kinds: l/g }{{ l/l } mobile s/g s/l s/s Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter (i) 0.1 mm (naked eye visibility

More information

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium

Pure Substance. Properties of Pure Substances & Equations of State. Vapour-Liquid-Solid Phase Equilibrium Pure Substance Properties of Pure Substances & Equations of State Dr. d. Zahurul Haq Professor Department of echanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-1000, Bangladesh

More information

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8 CHEMISTRY 2000 Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 208 Dr. Susan Findlay See Exercises in Topic 8 Vapour Pressure of Pure Substances When you leave wet dishes on

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 9 Solutions 1. McQuarrie and Simon, 9-4. Paraphrase: Given expressions

More information

Reaction at the Interfaces

Reaction at the Interfaces Reaction at the Interfaces Lecture 1 On the course Physics and Chemistry of Interfaces by HansJürgen Butt, Karlheinz Graf, and Michael Kappl Wiley VCH; 2nd edition (2006) http://homes.nano.aau.dk/lg/surface2009.htm

More information

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László Phase field theory of crystal nucleation: Application to the hard-sphere and CO 2 Bjørn Kvamme Department of Physics, University of Bergen Allégaten 55, N-5007 N Bergen, Norway László Gránásy Research

More information

THE STABILITY LIMIT AND OTHER OPEN QUESTIONS ON WATER AT NEGATIVE PRESSURE

THE STABILITY LIMIT AND OTHER OPEN QUESTIONS ON WATER AT NEGATIVE PRESSURE CHAPTER 1 THE STABILITY LIMIT AND OTHER OPEN QUESTIONS ON WATER AT NEGATIVE PRESSURE Frédéric Caupin 1 and Abraham D. Stroock 2 1 Institut Lumière Matière, Université Claude Bernard Lyon 1 and Institut

More information

A kinetic theory of homogeneous bubble nucleation

A kinetic theory of homogeneous bubble nucleation JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 2 8 JANUARY 2003 A kinetic theory of homogeneous bubble nucleation Vincent K. Shen and Pablo G. Debenedetti a) Department of Chemical Engineering, Princeton

More information

Pressure Volume Temperature Relationship of Pure Fluids

Pressure Volume Temperature Relationship of Pure Fluids Pressure Volume Temperature Relationship of Pure Fluids Volumetric data of substances are needed to calculate the thermodynamic properties such as internal energy and work, from which the heat requirements

More information

MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE. Tatsuto Kimura and Shigeo Maruyama

MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE. Tatsuto Kimura and Shigeo Maruyama MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE Tatsuto Kimura and Shigeo Maruyama * Department of Mechanical Engineering, The University of Tokyo, 7-- Hongo, Bunkyo-ku, Tokyo

More information

Appendix F. Steam Tables

Appendix F. Steam Tables Appendix F Steam Tables F.1 INTERPOLATION When a value is required from a table at conditions which lie between listed values, interpolation is necessary. If M, the quantity sought, is a function of a

More information

Lecture Notes 1: Physical Equilibria Vapor Pressure

Lecture Notes 1: Physical Equilibria Vapor Pressure Lecture Notes 1: Physical Equilibria Vapor Pressure Our first exploration of equilibria will examine physical equilibria (no chemical changes) in which the only changes occurring are matter changes phases.

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 10-1-2006 Homogeneous nucleation at high supersaturation

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Three states of matter: solid, liquid, gas (plasma) At low T: Solid is most stable. At high T: liquid or gas is most stable. Ex: Most

More information

Thermodynamic Properties

Thermodynamic Properties Thermodynamic Properties (TP) Thermodynamic Properties Define and articulate some of the critical language and concepts of Thermodynamics Distinguish between the universe, system, surroundings, and boundary

More information

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction EXPERIMENT 17 To Determine Avogadro s Number by Observations on Brownian Motion Introduction In 1827 Robert Brown, using a microscope, observed that very small pollen grains suspended in water appeared

More information

Ch. 19 Entropy and Free Energy: Spontaneous Change

Ch. 19 Entropy and Free Energy: Spontaneous Change Ch. 19 Entropy and Free Energy: Spontaneous Change 19-1 Spontaneity: The Meaning of Spontaneous Change 19-2 The Concept of Entropy 19-3 Evaluating Entropy and Entropy Changes 19-4 Criteria for Spontaneous

More information

TOPICAL PROBLEMS OF FLUID MECHANICS PERFORMANCE OF SIMPLE CONDENSATION MODEL IN HIGH-PRESSURES

TOPICAL PROBLEMS OF FLUID MECHANICS PERFORMANCE OF SIMPLE CONDENSATION MODEL IN HIGH-PRESSURES TOPICAL PROBLEMS OF FLUID MECHANICS 9 DOI: http://dx.doi.org/.43/tpfm.6.9 PERFORMANCE OF SIMPLE CONDENSATION MODEL IN HIGH-PRESSURES V. Hric, J. Halama Department of Technical Mathematics, Faculty of Mechanical

More information

Thermodynamic ProperDes for Fluids

Thermodynamic ProperDes for Fluids SKF2213: CHEMICAL ENGINEERING THERMODYNAMICS Thermodynamic roperdes for Fluids Mohammad Fadil Abdul Wahab ObjecDves To develop fundamental property relations (FR) of U,H,S,G,A,V,,T from 1st and 2nd Law

More information

The International Association for the Properties of Water and Steam. Kyoto, Japan September 2004

The International Association for the Properties of Water and Steam. Kyoto, Japan September 2004 IAPWS AN2-04(2016) The International Association for the Properties of Water and Steam Kyoto, Japan September 2004 Advisory Note No. 2 Roles of Various IAPWS Documents Concerning the Thermodynamic Properties

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

Thermodynamics of nuclei in thermal contact

Thermodynamics of nuclei in thermal contact Thermodynamics of nuclei in thermal contact Karl-Heinz Schmidt, Beatriz Jurado CENBG, CNRS/IN2P3, Chemin du Solarium B.P. 120, 33175 Gradignan, France Abstract: The behaviour of a di-nuclear system in

More information

A computational study of homogeneous liquid vapor nucleation in the Lennard-Jones fluid

A computational study of homogeneous liquid vapor nucleation in the Lennard-Jones fluid JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 8 22 AUGUST 1999 A computational study of homogeneous liquid vapor nucleation in the Lennard-Jones fluid Vincent K. Shen and Pablo G. Debenedetti a) Department

More information

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE Tatsuto Kimura* and Shigeo Maruyama** *Department of Mechanical Engineering, The University of Tokyo 7-- Hongo,

More information

Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene

Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene Macromolecules 2002, 35, 6985-6991 6985 Power Law of Molecular Weight of the Nucleation Rate of Folded Chain Crystals of Polyethylene Swapan K. Ghosh, Masamichi Hikosaka,*, Akihiko Toda, Shinichi Yamazaki,

More information

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order

More information

Chapter One Reviews of Thermodynamics Update on 2013/9/13

Chapter One Reviews of Thermodynamics Update on 2013/9/13 Chapter One Reviews of Thermodynamics Update on 2013/9/13 (1.1). Thermodynamic system An isolated system is a system that exchanges neither mass nor energy with its environment. An insulated rigid tank

More information

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS n * D n d Fluid z z z FIGURE 8-1. A SYSTEM IS IN EQUILIBRIUM EVEN IF THERE ARE VARIATIONS IN THE NUMBER OF MOLECULES IN A SMALL VOLUME, SO LONG AS THE PROPERTIES ARE UNIFORM ON A MACROSCOPIC SCALE 8. INTRODUCTION

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

Explosive Properties of Water in Volcanic and Hydrothermal Systems

Explosive Properties of Water in Volcanic and Hydrothermal Systems P R E P R I N T ICPWS XV Berlin, September 8 11, 2008 Explosive Properties of Water in Volcanic and Hydrothermal Systems Régis Thiéry a and Lionel Mercury b a : Laboratoire Magmas et Volcans, UMR 6524,

More information

Evaluating properties of pure substances

Evaluating properties of pure substances Evaluating properties of pure substances Pure substance A pure substance has the same chemical composition throughout. Are the following confined in a fixed volume pure substances: Ice (single component,

More information

III. Evaluating Properties. III. Evaluating Properties

III. Evaluating Properties. III. Evaluating Properties F. Property Tables 1. What s in the tables and why specific volumes, v (m /kg) (as v, v i, v f, v g ) pressure, P (kpa) temperature, T (C) internal energy, u (kj/kg) (as u, u i, u f, u g, u ig, u fg )

More information

APPLICATION OF A MODEL FOR SOLUTION OF SHOCK WAVE PARAMETERS IN STEAM TO EVALUATION OF VALUE OF SPEED OF SOUND

APPLICATION OF A MODEL FOR SOLUTION OF SHOCK WAVE PARAMETERS IN STEAM TO EVALUATION OF VALUE OF SPEED OF SOUND Colloquium FLUID DYNAMICS 03 Institute of Thermomechanics AS CR, v.v.i., Prague, October 3-5, 03 p. APPLICATION OF A MODEL FOR SOLUTION OF SHOCK WAVE PARAMETERS IN STEAM TO EVALUATION OF VALUE OF SPEED

More information

Transition de séchage dans des nanopores et la tension de ligne de l eau

Transition de séchage dans des nanopores et la tension de ligne de l eau Transition de séchage dans des nanopores et la tension de ligne de l eau L. Guillemot, T. Biben, A. Gallarneau, G. Vigier, E. Charlaix Laboratoire LiPhy Université Joseph Fourier Laboratoire MATEIS INSA-Lyon

More information

Crystal nucleation for a model of globular proteins

Crystal nucleation for a model of globular proteins JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 17 1 MAY 2004 Crystal nucleation for a model of globular proteins Andrey Shiryayev and James D. Gunton Department of Physics, Lehigh University, Bethlehem,

More information

Chemical Engineering Thermodynamics

Chemical Engineering Thermodynamics Chemical Engineering Thermodynamics P Liquid P x 1 sat P 1 T sat T 2 T x 1 T x 1 T y 1 Liquid Vapour sat P 2 P x 1 P y 1 P y 1 Vapour sat T 1 x, y 1 1 x, y 1 1 Pradeep Ahuja Contents CHEMICAL ENGINEERING

More information

IAPWS Certified Research Need ICRN. Thermophysical Properties of Supercooled Water

IAPWS Certified Research Need ICRN. Thermophysical Properties of Supercooled Water ICRN 30 IAPWS Certified Research Need ICRN Thermophysical Properties of Supercooled Water The IAPWS Working Group Thermophysical Properties of Water and Steam and the IAPWS Subcommittee on Seawater have

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Köhler Curve Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Review of Kelvin Effect Gibbs Energy for formation of a drop G = G &'()*+, G ).'+

More information

Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence

Thermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 7 15 FEBRUARY 1999 hermodynamic expansion of nucleation free-energy barrier and size of critical nucleus near the vapor-liquid coexistence Kenichiro Koga

More information

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams.

PROBLEM 6.3. Using the appropriate table, determine the indicated property. In each case, locate the state on sketches of the T-v and T-s diagrams. PROBLEM 63 Using the appropriate table, determine the indicated property In each case, locate the state on sketches of the -v and -s diagrams (a) water at p = 040 bar, h = 147714 kj/kg K Find s, in kj/kg

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.

Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible. Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Engineering Thermodynamics

Engineering Thermodynamics David Ng Summer 2017 Contents 1 July 5, 2017 3 1.1 Thermodynamics................................ 3 2 July 7, 2017 3 2.1 Properties.................................... 3 3 July 10, 2017 4 3.1 Systems.....................................

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Spring_#8. Thermodynamics. Youngsuk Nam

Spring_#8. Thermodynamics. Youngsuk Nam Spring_#8 Thermodynamics Youngsuk Nam ysnam1@khu.ac.krac kr Ch.7: Entropy Apply the second law of thermodynamics to processes. Define a new property called entropy to quantify the secondlaw effects. Establish

More information

2-412 PHYSICAL AND CHEMICAL DATA

2-412 PHYSICAL AND CHEMICAL DATA 2-412 PHYSICAL AND CHEMICAL DATA TABLE 2-304 Saturated Solid/Vapor Water* Volume, Enthalpy, Entropy, Temp., Pressure, ft 3 /lb Btu/lb Btu/(lb)( F) F lb/in 2 abs. Solid Vapor Solid Vapor Solid Vapor 160

More information

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces

Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Supplemental Material for Temperature-sensitive colloidal phase behavior induced by critical Casimir forces Minh Triet Dang, 1 Ana Vila Verde, 2 Van Duc Nguyen, 1 Peter G. Bolhuis, 3 and Peter Schall 1

More information

Chapter 7. Pickering Stabilisation ABSTRACT

Chapter 7. Pickering Stabilisation ABSTRACT Chapter 7 Pickering Stabilisation ABSTRACT In this chapter we investigate the interfacial properties of Pickering emulsions. Based upon findings that indicate these emulsions to be thermodynamically stable,

More information

PART ONE TWO-PHASE FLOW

PART ONE TWO-PHASE FLOW PART ONE TWO-PHASE FLOW 1 Thermodynamic and Single-Phase Flow Fundamentals 1.1 States of Matter and Phase Diagrams f Pure Substances 1.1.1 Equilibrium States Recall from thermodynamics that f a system

More information

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Liquids and Solids Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gases, Liquids and Solids Gases are compressible fluids. They have no proper volume and proper

More information

Chapter 4. Energy Analysis of Closed Systems

Chapter 4. Energy Analysis of Closed Systems Chapter 4 Energy Analysis of Closed Systems The first law of thermodynamics is an expression of the conservation of energy principle. Energy can cross the boundaries of a closed system in the form of heat

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS G7-04 The International Association for the Properties of Water and Steam Kyoto, Japan September 2004 Guideline on the Henry s Constant and Vapor-Liquid Distribution Constant for Gases in H 2 O and

More information

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE Shigeo Maruyama and Tatsuto Kimura Department of Mechanical Engineering The University of Tokyo 7-- Hongo, Bunkyo-ku, Tokyo -866,

More information

CM 3230 Thermodynamics, Fall 2016 Lecture 16

CM 3230 Thermodynamics, Fall 2016 Lecture 16 CM 3230 Thermodynamics, Fall 2016 Lecture 16 1. Joule-Thomsom Expansion - For a substance flowing adiabatically through a throttle (valve or pourous plug): in > out and negligible change in kinetic and

More information

The Clausius-Clapeyron and the Kelvin Equations

The Clausius-Clapeyron and the Kelvin Equations PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics The Clausius-Clapeyron and the Kelvin Equations by Dario B. Giaiotti and Fulvio

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 13 June 2007 Midterm Examination R. Culham This is a 2 hour, open-book examination. You are permitted to use: course text book calculator There are

More information

SteamTablesIIE: An ActiveX to Calculate the Thermodynamic Properties of Water

SteamTablesIIE: An ActiveX to Calculate the Thermodynamic Properties of Water Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 SteamTablesIIE: An ActiveX to Calculate the Thermodynamic Properties of Water Mahendra P. Verma Geotermia, Instituto de Investigaciones

More information

Chapter 5. On-line resource

Chapter 5. On-line resource Chapter 5 The water-air heterogeneous system On-line resource on-line analytical system that portrays the thermodynamic properties of water vapor and many other gases http://webbook.nist.gov/chemistry/fluid/

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS R-8 The International Association for the Properties of Water and Steam Berlin, Germany September 8 Release on the IAPWS Formulation 8 for the Viscosity of Ordinary Water Substance 8 International

More information

MAE 110A. Homework 3: Solutions 10/20/2017

MAE 110A. Homework 3: Solutions 10/20/2017 MAE 110A Homework 3: Solutions 10/20/2017 3.10: For H 2O, determine the specified property at the indicated state. Locate the state on a sketch of the T-v diagram. Given a) T 140 C, v 0.5 m 3 kg b) p 30MPa,

More information

Azaphosphatranes as Structurally Tunable Organocatalysts for Carbonate Synthesis from CO 2 and Epoxides

Azaphosphatranes as Structurally Tunable Organocatalysts for Carbonate Synthesis from CO 2 and Epoxides Azaphosphatranes as Structurally Tunable Organocatalysts for Carbonate Synthesis from CO 2 and Epoxides Bastien Chatelet, Lionel Joucla, Jean-Pierre Dutasta, Alexandre Martinez *, Kai C. Szeto and Véronique

More information

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes I. The concept of work, expansion and additional (useful) work. II. The concept of heat. III. Definition of internal energy and its molecular interpretation. I. Different forms of the first law of thermodynamics..

More information

On the Modeling and Simulation of a Laser-Induced Caviation Bubble

On the Modeling and Simulation of a Laser-Induced Caviation Bubble 1 On the Modeling and Simulation of a Laser-Induced Caviation Bubble Ali Zein Supervisor: Prof. Dr. Gerald Warnecke Co-supervisor: Dr. Maren Hantke Institut für Analysis und Numerik Otto-von-Guericke-Universität

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

Quantum Cavitation: a comparison between superfluid helium-4 and normal liquid helium-3

Quantum Cavitation: a comparison between superfluid helium-4 and normal liquid helium-3 Quantum Cavitation: a comparison between superfluid helium-4 and normal liquid helium-3 S. Balibar, F. Caupin, P. Roche and H.J.Maris Laboratoire de Physique Statistique de l Ecole Normale Supérieure associé

More information

Chapter 12 PROPERTY RELATIONS. Department of Mechanical Engineering

Chapter 12 PROPERTY RELATIONS. Department of Mechanical Engineering Chapter 12 THERMODYNAMIC PROPERTY RELATIONS Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it Objectives Develop fundamental relations between commonly encountered thermodynamic

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

THERMODYNAMICS 1. Volumetric Properties of Pure Fluids. Department of Chemical Engineering, Semarang State University Dhoni Hartanto S.T., M.T., M.Sc.

THERMODYNAMICS 1. Volumetric Properties of Pure Fluids. Department of Chemical Engineering, Semarang State University Dhoni Hartanto S.T., M.T., M.Sc. ompany LOGO THERMODYNAMIS olumetric roperties of ure Fluids Department of hemical Engineering, Semarang State University Dhoni Hartanto S.T., M.T., M.Sc. Introduction ressure, olume, and Temperature (T)

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS R14-08(011) The International Association for the Properties of Water and Steam Plzeň, Czech Republic September 011 Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary

More information

CLUSTERING AND WATER ACTIVITY IN CONCENTRATED SUCROSE SOLUTIONS

CLUSTERING AND WATER ACTIVITY IN CONCENTRATED SUCROSE SOLUTIONS EURO FOOD S WATER CLUSTERING AND WATER ACTIVITY IN CONCENTRATED SUCROSE SOLUTIONS Jean GENOTELLE 1, Mohamed MATHLOUTHI 2,BarbaraROGE 2, Maciej STARZAK 3 1 Former Director of GTS Sèvres, France 1 Université

More information

Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice

Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice Demetris Koutsoyiannis Department of Water Resources and Environmental Engineering, School of Civil Engineering,

More information

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch

Lecturer, Department t of Mechanical Engineering, SVMIT, Bharuch Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a

More information

FIRST PUBLIC EXAMINATION SUBJECT 3: PHYSICAL CHEMISTRY

FIRST PUBLIC EXAMINATION SUBJECT 3: PHYSICAL CHEMISTRY CCHE 4273 FIRST PUBLIC EXAMINATION Trinity Term 2005 Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY Wednesday June 8 th 2005, 9:30am Time allowed: 2 ½ hours Candidates should answer

More information

S.M.A.- VIRGO. Large sapphire substrate absorption measurements for LIGO SMA. Université Claude Bernard LYON I IPNL - IN2P3 CNRS.

S.M.A.- VIRGO. Large sapphire substrate absorption measurements for LIGO SMA. Université Claude Bernard LYON I IPNL - IN2P3 CNRS. Lyon I Université SMA Large sapphire substrate absorption measurements for LIGO LIGO-C030208-00-D April 2003 Sapphire substrate from Crystal Systems Inc. Boule N AJ5, L46 S.M.A.- VIRGO 22, Boulevard Niels

More information

Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice

Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice Clausius-Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice Demetris Koutsoyiannis Department of Water Resources and Environmental Engineering, School of Civil Engineering,

More information

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of phase without change of chemical composition. In this chapter

More information

t = no of steps of length s

t = no of steps of length s s t = no of steps of length s Figure : Schematic of the path of a diffusing molecule, for example, one in a gas or a liquid. The particle is moving in steps of length s. For a molecule in a liquid the

More information