Roberto Artuso. Polygonal billiards: spectrum and transport. Madrid, Dynamics Days, june 3, 2013

Size: px
Start display at page:

Download "Roberto Artuso. Polygonal billiards: spectrum and transport. Madrid, Dynamics Days, june 3, 2013"

Transcription

1 Roberto Artuso Polygonal billiards: spectrum and transport Madrid, Dynamics Days, june 3, 2013 XXXIII Dynamics Days Europe - Madrid XXXIII Dynamics Days Europe 3-7 June 2013 Center for Biomedical Technology Madrid Spain Welcome Scientific Scope Invited Speakers Minisymposia Contributed Talks and Posters Welcome The Conference We invite you to join us at the 33rd edition of Dynamics Days Europe, a major international conference with a long-standing tradition in nonlinear dynamics. This 33rd event will be hosted by the Center for Biomedical Technology and will take place in Campus de Montegancedo, Madrid, Spain.

2 Collaborators L. Rebuzzini, I. Guarneri, G. Casati (Como) D. Alonso (La Laguna)

3 Chaotic hyperbolic billiard Chaotic elliptic billiard

4 In polygonal billiards there is no exponential instability, and even investigation of basic ergodic properties is difficult (and profound) Gutkin 86, 96, 03, 12

5 J. Smillie: Finally the fact that rational billiards are more complicated than integrable systems and yet not fully chaotic has led physicists to consider them as test cases for questions relating quantum dynamics to classical dynamics. C.P. Dettmann, E.D.G. Cohen: In addition, the precise role played by microscopic chaos as represented by the Lyapunov exponents and macroscopic chaos, as embodied by the randomly placed scatterers for the existence of a diffusion process and the value of the diffusion coefficient, remains open. A similar but more complicated situation obtains when diffusion of momentum (viscosity) or energy (heat conduction) and other transport processes are considered. B A

6 Rational vs Irrational If angles are not rationally connected to π, few rigorous results, but for a highly counteintuitive theorem, (Vorobets, 97) For rational triangles ergodicity is ruled out by the fact that one trajectory has a finite set of outgoing angles: the dynamics is foliated into a set of directional dynamics The theorem! Directional dynamics is ergodic for almost all initial angles, but never mixing! (Kerckhoff, Masur and Smillie 86)

7 Square annulus Foliation into directional dynamics, associated to the initial angle, 0 3 is the sweeping L 1 7 angle, through which transport is L 2 studied 4 8 O 6 2 RA, Guarneri, 5 Rebuzzini, 00; Rebuzzini, RA, 11 and in preparation (s,-ϕ) (s,ϕ) 1

8 Different classes, according to whether L 1 /L 2 and tan(φ0) are rational or not: we will just consider the irrational case Let T denote the discrete Birkhoff dynamics: globally it cannot be ergodic, since one the initial outgoing angle φ 0 is selected, only a few (3) other outgoing angles can be generated along a trajectory: this leads to introducing a foliation Tφ and this will be the dynamics whose ergodic properties are investigated Directional dynamics is almost always (w.r.t. the initial angle) ergodic and never mixing This might anticipate a weak mixing as a maximal ergodic property, and non-trivial spectral features of the Koopman operator

9 Spectral ergodic theory Koopman operator on square integrable functions (Uf)(x) =f(tx) Ergodicity means that the only proper eigenvalue is 1 If, in the complement of constant functions, the spectrum is absolutely continuous, the system is mixing C f (n) = Z d (z)f(t n z)f(z) = Z 2 0 dµ f (!)e i!n

10 Weak mixing vs mixing Directional dynamics is not mixing -> no correlation decay: but might be weakly mixing: Decay of integrated correlations ruled out by a fractal exponent of the spectral measure: D 2 D 2 from fractal analysis of the spectral measure Ketzmerick, Petschel & Geisel 92, Holschneider 94, RA, Guarneri, Rebuzzini 00

11 Weak mixing: only integrated correlations decay C int (t) = 1 t Z t 0 d C( ) 2

12 C int,c ph 2 (a) χ 1,2 0 (b) t lnδ Correlation function Integrated correlation function

13 Other models of transport Alonso, Ruiz, Vega, 02 x Jepps, Rondoni, 06 h y b y t Sanders, Larralde, 06

14 The second moment RA, Guarneri & Rebuzzini 00, Rebuzzini, RA 11 Diffusing variable (z,t) = 2 (t) = Z M d (z) Xt 1 s=0 2 (z,t) = (T s z) tx r,s=0 C (r s) and, in terms of the spectral measure 2 (t) = Z dµ ( ) sin2 ( t/2) sin 2 ( /2) which leads to the estimate in terms of, scaling index at 0 of the spectral measure 2 (t) t 2

15 variance growth ~1.8 ballistic bound

16 Strong/weak anomalous diffusion Full spectrum of transport exponents h (t) (0) q i t (q) normal (q)=q/2 ν(q) Strong anomalous diffusion: not a single scaling exponent q

17 Evidence for a single scale for the moments Rebuzzini, RA 11, 13 γ(q) 4 (a) (b) q

18 ln(σ 4 ) numerical data for the moment of order theoretical prediction in terms of the scaling exponent of the spectrum lnt

19 So.. Polygons enjoy weak ergodic properties yet they exhibit nontrivial transport They provide an example of weakly anomalous transport

Roberto Artuso. Caos e diffusione (normale e anomala)

Roberto Artuso. Caos e diffusione (normale e anomala) Roberto Artuso Caos e diffusione (normale e anomala) Lucia Cavallasca, Giampaolo Cristadoro, Predrag Cvitanović, Per Dahlqvist, Gregor Tanner Damiano Belluzzo, Fausto Borgonovi, Giulio Casati, Shmuel Fishman,

More information

How does a diffusion coefficient depend on size and position of a hole?

How does a diffusion coefficient depend on size and position of a hole? How does a diffusion coefficient depend on size and position of a hole? G. Knight O. Georgiou 2 C.P. Dettmann 3 R. Klages Queen Mary University of London, School of Mathematical Sciences 2 Max-Planck-Institut

More information

Weak chaos, infinite ergodic theory, and anomalous diffusion

Weak chaos, infinite ergodic theory, and anomalous diffusion Weak chaos, infinite ergodic theory, and anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Marseille, CCT11, 24 May 2011 Weak chaos, infinite ergodic theory,

More information

arxiv:cond-mat/ v1 29 Dec 1996

arxiv:cond-mat/ v1 29 Dec 1996 Chaotic enhancement of hydrogen atoms excitation in magnetic and microwave fields Giuliano Benenti, Giulio Casati Università di Milano, sede di Como, Via Lucini 3, 22100 Como, Italy arxiv:cond-mat/9612238v1

More information

Global theory of one-frequency Schrödinger operators

Global theory of one-frequency Schrödinger operators of one-frequency Schrödinger operators CNRS and IMPA August 21, 2012 Regularity and chaos In the study of classical dynamical systems, the main goal is the understanding of the long time behavior of observable

More information

Symplectic maps. James D. Meiss. March 4, 2008

Symplectic maps. James D. Meiss. March 4, 2008 Symplectic maps James D. Meiss March 4, 2008 First used mathematically by Hermann Weyl, the term symplectic arises from a Greek word that means twining or plaiting together. This is apt, as symplectic

More information

Ergodicity of quantum eigenfunctions in classically chaotic systems

Ergodicity of quantum eigenfunctions in classically chaotic systems Ergodicity of quantum eigenfunctions in classically chaotic systems Mar 1, 24 Alex Barnett barnett@cims.nyu.edu Courant Institute work in collaboration with Peter Sarnak, Courant/Princeton p.1 Classical

More information

The existence of Burnett coefficients in the periodic Lorentz gas

The existence of Burnett coefficients in the periodic Lorentz gas The existence of Burnett coefficients in the periodic Lorentz gas N. I. Chernov and C. P. Dettmann September 14, 2006 Abstract The linear super-burnett coefficient gives corrections to the diffusion equation

More information

Mathematical Billiards

Mathematical Billiards Mathematical Billiards U A Rozikov This Letter presents some historical notes and some very elementary notions of the mathematical theory of billiards. We give the most interesting and popular applications

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

CHAPTER 3 CHAOTIC MAPS BASED PSEUDO RANDOM NUMBER GENERATORS

CHAPTER 3 CHAOTIC MAPS BASED PSEUDO RANDOM NUMBER GENERATORS 24 CHAPTER 3 CHAOTIC MAPS BASED PSEUDO RANDOM NUMBER GENERATORS 3.1 INTRODUCTION Pseudo Random Number Generators (PRNGs) are widely used in many applications, such as numerical analysis, probabilistic

More information

arxiv: v3 [cond-mat.stat-mech] 29 Mar 2019

arxiv: v3 [cond-mat.stat-mech] 29 Mar 2019 Equivalence of position-position auto-correlations in the Slicer Map and the Lévy-Lorentz gas arxiv:709.04980v3 [cond-mat.stat-mech] 29 Mar 209 C. Giberti (a), L. Rondoni (b,c), M. Tayyab (b,d) and J.

More information

Deterministic chaos and diffusion in maps and billiards

Deterministic chaos and diffusion in maps and billiards Deterministic chaos and diffusion in maps and billiards Rainer Klages Queen Mary University of London, School of Mathematical Sciences Mathematics for the Fluid Earth Newton Institute, Cambridge, 14 November

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

No-Slip Billiards in Dimension Two

No-Slip Billiards in Dimension Two No-Slip Billiards in Dimension Two C. Cox, R. Feres Dedicated to the memory of Kolya Chernov Abstract We investigate the dynamics of no-slip billiards, a model in which small rotating disks may exchange

More information

Periodic trajectories in the regular pentagon, II

Periodic trajectories in the regular pentagon, II Periodic trajectories in the regular pentagon, II Dmitry Fuchs, and Serge Tachnikov December 9, 011 1 Introduction and formulation of results In our recent paper [1], we studied periodic billiard trajectories

More information

arxiv: v1 [quant-ph] 27 Mar 2008

arxiv: v1 [quant-ph] 27 Mar 2008 Quantum Control of Ultra-cold Atoms: Uncovering a Novel Connection between Two Paradigms of Quantum Nonlinear Dynamics Jiao Wang 1,2, Anders S. Mouritzen 3,4, and Jiangbin Gong 3,5 arxiv:0803.3859v1 [quant-ph]

More information

Lesson 4: Non-fading Memory Nonlinearities

Lesson 4: Non-fading Memory Nonlinearities Lesson 4: Non-fading Memory Nonlinearities Nonlinear Signal Processing SS 2017 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 22, 2017 NLSP SS

More information

Google Matrix, dynamical attractors and Ulam networks Dima Shepelyansky (CNRS, Toulouse)

Google Matrix, dynamical attractors and Ulam networks Dima Shepelyansky (CNRS, Toulouse) Google Matrix, dynamical attractors and Ulam networks Dima Shepelyansky (CNRS, Toulouse) wwwquantwareups-tlsefr/dima based on: OGiraud, BGeorgeot, DLS (CNRS, Toulouse) => PRE 8, 267 (29) DLS, OVZhirov

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

Aspects of Kicked Quantum Dynamics

Aspects of Kicked Quantum Dynamics Aspects of Kicked Quantum Dynamics Talk given at Meccanica - a Conference in honor of Sandro Graffi, Bologna Aug. 08 Italo Guarneri August 20, 2008 Center for Nonlinear and Complex Systems - Universita

More information

ON THE ARROW OF TIME. Y. Charles Li. Hong Yang

ON THE ARROW OF TIME. Y. Charles Li. Hong Yang DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2014.7.1287 DYNAMICAL SYSTEMS SERIES S Volume 7, Number 6, December 2014 pp. 1287 1303 ON THE ARROW OF TIME Y. Charles Li Department of Mathematics University

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics Roger Temam Infinite-Dimensional Dynamical Systems in Mechanics and Physics Second Edition With 13 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vii ix GENERAL

More information

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee Numerical Methods Exponential and Logarithmic functions Jaesung Lee Exponential Function Exponential Function Introduction We consider how the expression is defined when is a positive number and is irrational.

More information

Pseudo-Chaotic Orbits of Kicked Oscillators

Pseudo-Chaotic Orbits of Kicked Oscillators Dynamical Chaos and Non-Equilibrium Statistical Mechanics: From Rigorous Results to Applications in Nano-Systems August, 006 Pseudo-Chaotic Orbits of Kicked Oscillators J. H. Lowenstein, New York University

More information

Dynamics and Geometry of Flat Surfaces

Dynamics and Geometry of Flat Surfaces IMPA - Rio de Janeiro Outline Translation surfaces 1 Translation surfaces 2 3 4 5 Abelian differentials Abelian differential = holomorphic 1-form ω z = ϕ(z)dz on a (compact) Riemann surface. Adapted local

More information

Thermodynamics and complexity of simple transport phenomena

Thermodynamics and complexity of simple transport phenomena Thermodynamics and complexity of simple transport phenomena Owen G. Jepps Lagrange Fellow, Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 29 Torino, Italy Lamberto Rondoni

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations p. 1/37 Outline Motivation: ballistic quantum

More information

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos Introduction Knot Theory Nonlinear Dynamics Open Questions Summary A tangled tale about knot, link, template, and strange attractor Centre for Chaos & Complex Networks City University of Hong Kong Email:

More information

Statistical mechanics of random billiard systems

Statistical mechanics of random billiard systems Statistical mechanics of random billiard systems Renato Feres Washington University, St. Louis Banff, August 2014 1 / 39 Acknowledgements Collaborators: Timothy Chumley, U. of Iowa Scott Cook, Swarthmore

More information

Lecture 1: Derivatives

Lecture 1: Derivatives Lecture 1: Derivatives Steven Hurder University of Illinois at Chicago www.math.uic.edu/ hurder/talks/ Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 1 / 19 Some basic examples Many talks on with

More information

Deterministic chaos, fractals and diffusion: From simple models towards experiments

Deterministic chaos, fractals and diffusion: From simple models towards experiments Deterministic chaos, fractals and diffusion: From simple models towards experiments Rainer Klages Queen Mary University of London, School of Mathematical Sciences Université Pierre et Marie Curie Paris,

More information

Lecture 1: Derivatives

Lecture 1: Derivatives Lecture 1: Derivatives Steven Hurder University of Illinois at Chicago www.math.uic.edu/ hurder/talks/ Steven Hurder (UIC) Dynamics of Foliations May 3, 2010 1 / 19 Some basic examples Many talks on with

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics CHAPTER 2 Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics Luis Barreira Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal E-mail: barreira@math.ist.utl.pt url:

More information

arxiv: v2 [nlin.cd] 29 Jul 2015

arxiv: v2 [nlin.cd] 29 Jul 2015 A finite-time exponent for random Ehrenfest gas arxiv:1409.1488v2 [nlin.cd] 29 Jul 2015 Sanjay Moudgalya 1, Sarthak Chandra 1, Sudhir R. Jain 2 1 Indian Institute of Technology, Kanpur 208016, India 2

More information

On the Work and Vision of Dmitry Dolgopyat

On the Work and Vision of Dmitry Dolgopyat On the Work and Vision of Dmitry Dolgopyat Carlangelo Liverani Penn State, 30 October 2009 1 I believe it is not controversial that the roots of Modern Dynamical Systems can be traced back to the work

More information

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Department of Mathematics, University of Wisconsin Madison Venue: van Vleck Hall 911 Monday,

More information

Dynamical localization and partial-barrier localization in the Paul trap

Dynamical localization and partial-barrier localization in the Paul trap PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000 Dynamical localization and partial-barrier localization in the Paul trap Sang Wook Kim Nonlinear and Complex Systems Laboratory, Department of Physics, Pohang

More information

Fractal uncertainty principle and quantum chaos

Fractal uncertainty principle and quantum chaos Fractal uncertainty principle and quantum chaos Semyon Dyatlov (UC Berkeley/MIT) July 23, 2018 Semyon Dyatlov FUP and eigenfunctions July 23, 2018 1 / 11 Overview This talk presents two recent results

More information

Chaotic diffusion in randomly perturbed dynamical systems

Chaotic diffusion in randomly perturbed dynamical systems Chaotic diffusion in randomly perturbed dynamical systems Rainer Klages Queen Mary University of London, School of Mathematical Sciences Max Planck Institute for Mathematics in the Sciences Leipzig, 30

More information

P-adic Properties of Time in the Bernoulli Map

P-adic Properties of Time in the Bernoulli Map Apeiron, Vol. 10, No. 3, July 2003 194 P-adic Properties of Time in the Bernoulli Map Oscar Sotolongo-Costa 1, Jesus San-Martin 2 1 - Cátedra de sistemas Complejos Henri Poincaré, Fac. de Fisica, Universidad

More information

Hamiltonian Chaos and the standard map

Hamiltonian Chaos and the standard map Hamiltonian Chaos and the standard map Outline: What happens for small perturbation? Questions of long time stability? Poincare section and twist maps. Area preserving mappings. Standard map as time sections

More information

The Zorich Kontsevich Conjecture

The Zorich Kontsevich Conjecture The Zorich Kontsevich Conjecture Marcelo Viana (joint with Artur Avila) IMPA - Rio de Janeiro The Zorich Kontsevich Conjecture p.1/27 Translation Surfaces Compact Riemann surface endowed with a non-vanishing

More information

Abstracts. Furstenberg The Dynamics of Some Arithmetically Generated Sequences

Abstracts. Furstenberg The Dynamics of Some Arithmetically Generated Sequences CHAOS AND DISORDER IN MATHEMATICS AND PHYSICS Monday 10:00-11:00 Okounkov Algebraic geometry of random surfaces 11:30-12:30 Furstenberg Dynamics of Arithmetically Generated Sequences 12:30-14:30 lunch

More information

Leaking dynamical systems: a fresh view on Poincaré recurrences

Leaking dynamical systems: a fresh view on Poincaré recurrences Leaking dynamical systems: a fresh view on Poincaré recurrences Tamás Tél Eötvös University Budapest tel@general.elte.hu In collaboration with J. Schneider, Z. Neufeld, J. Schmalzl, E. G. Altmann Two types

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Article history: Received 22 April 2016; last revision 30 June 2016; accepted 12 September 2016 FORECASTING ECONOMIC GROWTH USING CHAOS THEORY Mihaela Simionescu Institute for Economic Forecasting of the

More information

Eigenvalue statistics and lattice points

Eigenvalue statistics and lattice points Eigenvalue statistics and lattice points Zeév Rudnick Abstract. One of the more challenging problems in spectral theory and mathematical physics today is to understand the statistical distribution of eigenvalues

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Time-reversed imaging as a diagnostic of wave and particle chaos

Time-reversed imaging as a diagnostic of wave and particle chaos PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998 Time-reversed imaging as a diagnostic of wave and particle chaos R. K. Snieder 1,2,* and J. A. Scales 1,3 1 Center for Wave Phenomena, Colorado School

More information

By Nadha CHAOS THEORY

By Nadha CHAOS THEORY By Nadha CHAOS THEORY What is Chaos Theory? It is a field of study within applied mathematics It studies the behavior of dynamical systems that are highly sensitive to initial conditions It deals with

More information

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi Arithmetic quantum chaos and random wave conjecture 9th Mathematical Physics Meeting Goran Djankovi University of Belgrade Faculty of Mathematics 18. 9. 2017. Goran Djankovi Random wave conjecture 18.

More information

dynamical zeta functions: what, why and what are the good for?

dynamical zeta functions: what, why and what are the good for? dynamical zeta functions: what, why and what are the good for? Predrag Cvitanović Georgia Institute of Technology November 2 2011 life is intractable in physics, no problem is tractable I accept chaos

More information

Fractional behavior in multidimensional Hamiltonian systems describing reactions

Fractional behavior in multidimensional Hamiltonian systems describing reactions PHYSICAL REVIEW E 76, 565 7 Fractional behavior in multidimensional Hamiltonian systems describing reactions Akira Shojiguchi,, * Chun-Biu Li,, Tamiki Komatsuzaki,, and Mikito Toda Physics Department,

More information

Are chaotic systems dynamically random?

Are chaotic systems dynamically random? Are chaotic systems dynamically random? Karl Svozil Institute for Theoretical Physics, Technical University Vienna, Karlsplatz 13, A 1040 Vienna, Austria. November 18, 2002 Abstract Physical systems can

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: April 06, 2018, at 14 00 18 00 Johanneberg Kristian

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

Ergodic Theory of Interval Exchange Transformations

Ergodic Theory of Interval Exchange Transformations Ergodic Theory of Interval Exchange Transformations October 29, 2017 An interval exchange transformation on d intervals is a bijection T : [0, 1) [0, 1) given by cutting up [0, 1) into d subintervals and

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

Global Attractors in PDE

Global Attractors in PDE CHAPTER 14 Global Attractors in PDE A.V. Babin Department of Mathematics, University of California, Irvine, CA 92697-3875, USA E-mail: ababine@math.uci.edu Contents 0. Introduction.............. 985 1.

More information

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor)

Universality. Why? (Bohigas, Giannoni, Schmit 84; see also Casati, Vals-Gris, Guarneri; Berry, Tabor) Universality Many quantum properties of chaotic systems are universal and agree with predictions from random matrix theory, in particular the statistics of energy levels. (Bohigas, Giannoni, Schmit 84;

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

Periodic Orbits in Generalized Mushroom Billiards SURF Final Report

Periodic Orbits in Generalized Mushroom Billiards SURF Final Report Periodic Orbits in Generalized Mushroom Billiards SURF 6 - Final Report Kris Kazlowski kkaz@caltech.edu (Dated: October 3, 6) Abstract: A mathematical billiard consists of a closed domain of some shape

More information

The Breakdown of KAM Trajectories

The Breakdown of KAM Trajectories The Breakdown of KAM Trajectories D. BENSIMONO ~t L. P. KADANOFF~ OAT& T Bell Laboraiories Murray Hill,New Jersey 07974 bthe James Franck Insrirure Chicago, Illinois 60637 INTRODUCl'ION Hamiltonian systems

More information

Vertical chaos and horizontal diffusion in the bouncing-ball billiard

Vertical chaos and horizontal diffusion in the bouncing-ball billiard Vertical chaos and horizontal diffusion in the bouncing-ball billiard Astrid S. de Wijn and Holger Kantz Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany

More information

TitleQuantum Chaos in Generic Systems.

TitleQuantum Chaos in Generic Systems. TitleQuantum Chaos in Generic Systems Author(s) Robnik, Marko Citation 物性研究 (2004), 82(5): 662-665 Issue Date 2004-08-20 URL http://hdl.handle.net/2433/97885 Right Type Departmental Bulletin Paper Textversion

More information

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text.

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text. 3 hours MATH40512 UNIVERSITY OF MANCHESTER DYNAMICAL SYSTEMS AND ERGODIC THEORY 22nd May 2007 9.45 12.45 Answer ALL four questions in SECTION A (40 marks in total) and THREE of the four questions in SECTION

More information

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Simple approach to the creation of a strange nonchaotic attractor in any chaotic system J. W. Shuai 1, * and K. W. Wong 2, 1 Department of Biomedical Engineering,

More information

Periodic Sinks and Observable Chaos

Periodic Sinks and Observable Chaos Periodic Sinks and Observable Chaos Systems of Study: Let M = S 1 R. T a,b,l : M M is a three-parameter family of maps defined by where θ S 1, r R. θ 1 = a+θ +Lsin2πθ +r r 1 = br +blsin2πθ Outline of Contents:

More information

DYNAMICAL THEORY OF RELAXATION IN CLASSICAL AND QUANTUM SYSTEMS

DYNAMICAL THEORY OF RELAXATION IN CLASSICAL AND QUANTUM SYSTEMS P. Garbaczewski and R. Olkiewicz, Eds., Dynamics of Dissipation, Lectures Notes in Physics 597 (Springer-Verlag, Berlin, 22) pp. 111-164. DYNAMICAL THEORY OF RELAXATION IN CLASSICAL AND QUANTUM SYSTEMS

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 86 19 MARCH 2001 NUMBER 12 Shape of the Quantum Diffusion Front Jianxin Zhong, 1,2,3 R. B. Diener, 1 Daniel A. Steck, 1 Windell H. Oskay, 1 Mark G. Raizen, 1 E. Ward Plummer,

More information

Uni-directional transport properties of a serpent billiard arxiv:nlin/ v1 [nlin.cd] 25 Jan 2006

Uni-directional transport properties of a serpent billiard arxiv:nlin/ v1 [nlin.cd] 25 Jan 2006 Uni-directional transport properties of a serpent billiard arxiv:nlin/060055v [nlin.cd] 25 Jan 2006 Martin Horvat and Tomaž Prosen Physics Department, Faculty of Mathematics and Physics, University of

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations p. 1/29 Outline Motivation: ballistic quantum

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations in Quantum Dots mpipks Dresden March 5-8,

More information

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS UNDERSTANDING BOLTZMANN S ANALYSIS VIA Contents SOLVABLE MODELS 1 Kac ring model 2 1.1 Microstates............................ 3 1.2 Macrostates............................ 6 1.3 Boltzmann s entropy.......................

More information

Deterministic chaos. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit XIII

Deterministic chaos. M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit XIII Deterministic chaos - Determinism and predictability - Deterministic chaos and absolute chaos - Logistic map - Fractals - Measuring chaos - Chaos in classical billiards M. Peressi - UniTS - Laurea Magistrale

More information

An Introduction to Computer Simulation Methods

An Introduction to Computer Simulation Methods An Introduction to Computer Simulation Methods Applications to Physical Systems Second Edition Harvey Gould Department of Physics Clark University Jan Tobochnik Department of Physics Kalamazoo College

More information

arxiv:chao-dyn/ v1 19 Jan 1993

arxiv:chao-dyn/ v1 19 Jan 1993 Symbolic dynamics II The stadium billiard arxiv:chao-dyn/9301004v1 19 Jan 1993 Kai T. Hansen Niels Bohr Institute 1 Blegdamsvej 17, DK-2100 Copenhagen Ø e-mail: khansen@nbivax.nbi.dk ABSTRACT We construct

More information

Minimal nonergodic directions on genus 2 translation surfaces

Minimal nonergodic directions on genus 2 translation surfaces Minimal nonergodic directions on genus 2 translation surfaces Yitwah Cheung Northwestern University Evanston, Illinois email: yitwah@math.northwestern.edu and Howard Masur University of Illinois at Chicago

More information

A genus 2 characterisation of translation surfaces with the lattice property

A genus 2 characterisation of translation surfaces with the lattice property A genus 2 characterisation of translation surfaces with the lattice property (joint work with Howard Masur) 0-1 Outline 1. Translation surface 2. Translation flows 3. SL(2,R) action 4. Veech surfaces 5.

More information

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3)

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3) The standard or Taylor Chirikov map is a family of area-preserving maps, z = f(z)where z = (x, y) is the original position and z = (x,y ) the new position after application of the map, which is defined

More information

Chaotic transport through the solar system

Chaotic transport through the solar system The Interplanetary Superhighway Chaotic transport through the solar system Richard Taylor rtaylor@tru.ca TRU Math Seminar, April 12, 2006 p. 1 The N -Body Problem N masses interact via mutual gravitational

More information

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

GENERAL INSTRUCTIONS FOR COMPLETING SF 298 GENERAL INSTRUCTIONS FOR COMPLETING SF 298 The Report Documentation Page (RDP) is used for announcing and cataloging reports. It is important that this information be consistent with the rest of the report,

More information

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz

Regular & Chaotic. collective modes in nuclei. Pavel Cejnar. ipnp.troja.mff.cuni.cz Pavel Cejnar Regular & Chaotic collective modes in nuclei Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University, Prague, Czech Republic cejnar @ ipnp.troja.mff.cuni.cz

More information

On the Birkhoff Conjecture for Convex Billiards. Alfonso Sorrentino

On the Birkhoff Conjecture for Convex Billiards. Alfonso Sorrentino On the Birkhoff Conjecture for Convex Billiards (An analyst, a geometer and a probabilist walk into a bar... And play billiards!) Alfonso Sorrentino Cardiff (UK), 26th June 2018 Mathematical Billiards

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

A Model of Evolutionary Dynamics with Quasiperiodic Forcing

A Model of Evolutionary Dynamics with Quasiperiodic Forcing paper presented at Society for Experimental Mechanics (SEM) IMAC XXXIII Conference on Structural Dynamics February 2-5, 205, Orlando FL A Model of Evolutionary Dynamics with Quasiperiodic Forcing Elizabeth

More information

New Quantum Algorithm Solving the NP Complete Problem

New Quantum Algorithm Solving the NP Complete Problem ISSN 070-0466, p-adic Numbers, Ultrametric Analysis and Applications, 01, Vol. 4, No., pp. 161 165. c Pleiades Publishing, Ltd., 01. SHORT COMMUNICATIONS New Quantum Algorithm Solving the NP Complete Problem

More information

Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas I: The One Particle System

Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas I: The One Particle System Journal of Statistical Physics, Vol. 11, Nos. 12, 2 Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas I: The One Particle System F. Bonetto, 1 D. Daems, 2 and J.

More information

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond.

What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Include Only If Paper Has a Subtitle Department of Mathematics and Statistics What s more chaotic than chaos itself? Brownian Motion - before, after, and beyond. Math Graduate Seminar March 2, 2011 Outline

More information

Research Statement. Jayadev S. Athreya. November 7, 2005

Research Statement. Jayadev S. Athreya. November 7, 2005 Research Statement Jayadev S. Athreya November 7, 2005 1 Introduction My primary area of research is the study of dynamics on moduli spaces. The first part of my thesis is on the recurrence behavior of

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Quantum symbolic dynamics

Quantum symbolic dynamics Quantum symbolic dynamics Stéphane Nonnenmacher Institut de Physique Théorique, Saclay Quantum chaos: routes to RMT and beyond Banff, 26 Feb. 2008 What do we know about chaotic eigenstates? Hamiltonian

More information

Vered Rom-Kedar a) The Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel

Vered Rom-Kedar a) The Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel CHAOS VOLUME 9, NUMBER 3 SEPTEMBER 1999 REGULAR ARTICLES Islands of accelerator modes and homoclinic tangles Vered Rom-Kedar a) The Department of Applied Mathematics and Computer Science, The Weizmann

More information

The Transition to Chaos

The Transition to Chaos Linda E. Reichl The Transition to Chaos Conservative Classical Systems and Quantum Manifestations Second Edition With 180 Illustrations v I.,,-,,t,...,* ', Springer Dedication Acknowledgements v vii 1

More information

arxiv: v2 [math.ds] 11 Jun 2009

arxiv: v2 [math.ds] 11 Jun 2009 Bifurcations of periodic and chaotic attractors in pinball billiards with focusing boundaries arxiv:0902.1563v2 [math.ds] 11 Jun 2009 1. Introduction Aubin Arroyo 1, Roberto Markarian 2 and David P. Sanders

More information