Chaotic diffusion in randomly perturbed dynamical systems

Size: px
Start display at page:

Download "Chaotic diffusion in randomly perturbed dynamical systems"

Transcription

1 Chaotic diffusion in randomly perturbed dynamical systems Rainer Klages Queen Mary University of London, School of Mathematical Sciences Max Planck Institute for Mathematics in the Sciences Leipzig, 30 November 00 Chaotic diffusion and random perturbations Rainer Klages (QMUL)

2 Outline Motivation: random walk, deterministic diffusion and fractal diffusion coefficients Deterministic diffusion and random perturbations: four different types of perturbations; computer simulations in comparison to simple analytical approximations 3 Theoretical details: derivation and discussion of the approximate formulas Chaotic diffusion and random perturbations Rainer Klages (QMUL)

3 The drunken sailor at a lamppost random walk in one dimension (K. Pearson, 905): steps of length s with probability p(±s) = / to the left/right time steps position single steps uncorrelated: Markov process define diffusion coefficient as D := lim n n < (x n x 0 ) > with discrete time step n N and average over the initial density <... > := dx (x)... of positions x = x 0, x R for sailor: D = s / Chaotic diffusion and random perturbations Rainer Klages (QMUL) 3

4 A deterministic random walk study diffusion on the basis of dynamical systems theory piecewise linear deterministic map { ax, 0 < x M a (x) = ax + a, < x lifted onto the real line by M a (x + ) = M a (x) + with control parameter a equation of motion: x n+ = M a (x n ) Lyapunov exponent λ = ln a > 0: map is chaotic y=m a(x) 3 a n 0 3 x Grossmann/Geisel/Kapral (98) Chaotic diffusion and random perturbations Rainer Klages (QMUL) 4

5 Fractal diffusion coefficient and random walks D(a) exists and is a fractal function of the control parameter.5 D(a) random walk approximation for a<3 D(a) a a 0.5 random walk approximation for a> a exact results (R.K., Dorfman, 995; Groeneveld, R.K., 00) proof: D(a) is Lipschitz continuous up to quadratic logarithmic corrections (Keller, Howard, R.K., 008) cp. random walk with exact results (R.K., Dorfman, 997) Chaotic diffusion and random perturbations Rainer Klages (QMUL) 5

6 Deterministic diffusion and random perturbations What happens to D(a) by imposing random perturbations onto the map? Four basic types: M a (x) = (a + a(i, n)) x + b(i, n) with random shifts and random slopes in discrete space i Z and/or discrete time n N b(i,n) a(i,n) () b(i) : quenched shifts () a(i) : quenched slopes (3) a(n) : noisy slopes (4) b(n) : noisy shifts Chaotic diffusion and random perturbations Rainer Klages (QMUL) 6

7 Deterministic diffusion and quenched disorder (): quenched random shifts b(i); Radons (996ff): Golosov localization/sinai diffusion: no normal diffusion (): quenched random slopes a(i) random walk in disordered lattices like random barrier model transition rates Γ i,i+ = Γ i+,i Γ i ; exact diffusion coefficient d =< /Γ > Γ s Alexander et al (98), Derrida (983),... disorder average < /Γ > Γ = /N N i=0 /Γ i, distance of sites s Haus, Kehr (987) Chaotic diffusion and random perturbations Rainer Klages (QMUL) 7

8 Quenched slopes: theory apply formula to deterministic diffusion with quenched slopes: rewrite d =< /Γ > Γ s =< /d(s,γ) > Γ with d(s,γ) = Γs but for the map M a (x) we have d(s,γ) = d(s,γ(s)) approximation: identify d(s, Γ(s)) with D(a + a), where D( ) is the unperturbed deterministic diffusion coefficient D(a) with random variable a sampled from pdf χ da ( a) at perturbation strength da 0, da a da [ ] da χ D app (a, da) = d( a) da ( a) da D(a + a) Chaotic diffusion and random perturbations Rainer Klages (QMUL) 8

9 Quenched slopes: simulations D da (a) a(i) uniformly distributed on [ da, da]: continuous perturbations, da=0.,0.4, D da (a) D da (a) a a oscillatory structure persists under small perturbations dynamical phase transition for small parameters Chaotic diffusion and random perturbations Rainer Klages (QMUL) 9

10 Quenched slopes: simulations D a (da) a(i) uniformly and δ-distributed on [ da, da]: continuous perturbations, a= discrete perturbations, a= D a (da) 0.88 D a (da) da da.5 discrete perturbations, a= discrete perturbations, a= D a (da) D a (da) da da excellent match theory and simulations for small da multiple suppression and enhancement with da Chaotic diffusion and random perturbations Rainer Klages (QMUL) 0

11 Deterministic diffusion and noise approximate the diffusion coefficient by the unperturbed D(a) (cp. to Geisel et al. (98), Reimann (994ff)): basic idea for slopes with iid dichotomous noise ±da: D(a+da) D(a) 0.5 D(a-da) D(a) da a D app (a, da) = (D(a da) + D(a + da))/ for a general disorder distribution χ da ( a) D app (a, da) = da da d( a) χ da ( a)d(a + a) cp. to quenched diffusion formula expanded for da 0 Chaotic diffusion and random perturbations Rainer Klages (QMUL)

12 Noisy slopes: simulations D da (a) a(n) δ-distributed with ±da: discrete perturbations, da=0.,0.4,.0.5 D da (a) a shift of fractal structure under perturbations Chaotic diffusion and random perturbations Rainer Klages (QMUL)

13 Noisy slopes: simulations D a (da) a(n) and b(n) δ- and uniformly distributed on [ da, da]: discrete perturbations, a= discrete perturbations, a= D a (db) db D a (db) D a (da) da D a (da) db da. continuous perturbations, a= continuous perturbations, a= D a (db) D a (db) D a (da) D a (da) da db db da transitions from deterministic to stochastic diffusion by suppression and enhancement Chaotic diffusion and random perturbations Rainer Klages (QMUL) 3

14 Theoretical aspects: precise definition of D(a,da) Let n be iid random variables with pdf χ d ( n ) of perturbation strength d 0. Let (x) be the initial pdf of points x. Then with ) D(a, d) = lim (< x n n n >,χ d < x n >,χd < x k n >,χd = dx d( 0 )d( )... d( n ) (x)χ d ( 0 )χ d ( )... χ d ( n )x k n special case: noisy slopes as an example (wlog), d = da, n = a n < x n >,χd = 0 Chaotic diffusion and random perturbations Rainer Klages (QMUL) 4

15 Deriving approximations in terms of the exact D(a) Let a n be uniformly distributed in [ da, da] and a = a 0. It holds: a n = a + ǫ, da ǫ da notation: x n,a+ an = M a+ an (x n ) step : da ǫ a n a < xn >,χda = dx d( a)d( a )... d( a n ) = ρ 0 (x)χ da ( a)χ da ( a )... χ da ( a n )x n,a+ a n dx d( a) (x)χ da ( a)xn,a+ a step : exchange time limit with integration D app (a, da) = lim < x n n >,χda /(n) = d( a)χ da ( a) lim dx (x)x n n,a+ a /(n) = d( a)χ da ( a)d(a + a, 0) Chaotic diffusion and random perturbations Rainer Klages (QMUL) 5

16 Validity of this approximation note: This approximation needs to be handled with much care! does not work for quenched shifts works for noisy shifts, but only in the limit of very small perturbations, because current; cp. to numerical results works well for noisy slopes in the limit of small perturbations Chaotic diffusion and random perturbations Rainer Klages (QMUL) 6

17 Random walk approximation unperturbed diffusion coefficient D(a) = lim n n 0 dx a (x)(x n x) with invariant density a(x) of map M a (x) mod random walk approximation:. no memory in jumps: replace x n = x n x by single jump at time n = over distance x = x. no memory in invariant density: assume ρ a (x) D rw (a) = 0 dx x Chaotic diffusion and random perturbations Rainer Klages (QMUL) 7

18 Deriving random walk approximations D rw (a) = dx x 0 consider two limiting cases of jumps: random walk I: a 3; set x = 0 if 0 M a (x) and x = otherwise, D rwi (a) = / 0, x= dx = (a )/(a) (a )/4 (a ) random walk II: a 3; set x = M a (x) x exactly, D rwii (a) = / 0 dx(m a(x) x) = (a ) /4 feed back results into perturbed random walk approximation D app (a, da) = d( a)χ da ( a)d(a + a) by replacing D(a + a) D rw (a + a) Chaotic diffusion and random perturbations Rainer Klages (QMUL) 8

19 Perturbed random walk approximations example: Let random slopes a be δ-distributed, random walk approximation I linear limit a --> D(a) D(a+da) 0.5 D(a) 0. D(a-da) for a 3 random walk I yields suppression of diffusion due to concavity (Reimann, 994ff) for a random walk I yields no change at all in the diffusion coefficient due to linearity for 3 a random walk II yields enhancement of diffusion due to convexity, D rwii (a, da) = D rwii (a) + a /4 in simulations random walk II well seen but not I Chaotic diffusion and random perturbations Rainer Klages (QMUL) 9 a

20 Summary simple model with diffusion due to deterministic chaos under random perturbations:. in three of four cases of random perturbations the diffusion coefficient exists. the unperturbed fractal diffusion coefficient is quite stable against perturbations 3. simple approximations for the perturbed diffusion coefficient in terms of the unperturbed diffusion coefficient 4. multiple (irregular) suppression and enhancement of deterministic diffusion by stochastic perturbations 5. transitions from deterministic to stochastic diffusion via suppresion and enhancement Chaotic diffusion and random perturbations Rainer Klages (QMUL) 0

21 Literature spatial disorder: R.K., PRE 65, 05503(R) (00) noise: R.K., EPL 57, 796 (00) all together: see Part ; file of this talk, details and taster sections on klages note: conference on Weak Chaos, Infinite Ergodic Theory, and Anomalous Dynamics at MPIPKS Dresden in 0! Chaotic diffusion and random perturbations Rainer Klages (QMUL)

Deterministic chaos, fractals and diffusion: From simple models towards experiments

Deterministic chaos, fractals and diffusion: From simple models towards experiments Deterministic chaos, fractals and diffusion: From simple models towards experiments Rainer Klages Queen Mary University of London, School of Mathematical Sciences Université Pierre et Marie Curie Paris,

More information

Microscopic chaos, fractals and diffusion: From simple models towards experiments

Microscopic chaos, fractals and diffusion: From simple models towards experiments Microscopic chaos, fractals and diffusion: From simple models towards experiments Rainer Klages 1,2 1 Max Planck Institute for the Physics of Complex Systems, Dresden 2 Queen Mary University of London,

More information

Deterministic chaos and diffusion in maps and billiards

Deterministic chaos and diffusion in maps and billiards Deterministic chaos and diffusion in maps and billiards Rainer Klages Queen Mary University of London, School of Mathematical Sciences Mathematics for the Fluid Earth Newton Institute, Cambridge, 14 November

More information

Weak chaos, infinite ergodic theory, and anomalous diffusion

Weak chaos, infinite ergodic theory, and anomalous diffusion Weak chaos, infinite ergodic theory, and anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Marseille, CCT11, 24 May 2011 Weak chaos, infinite ergodic theory,

More information

How does a diffusion coefficient depend on size and position of a hole?

How does a diffusion coefficient depend on size and position of a hole? How does a diffusion coefficient depend on size and position of a hole? G. Knight O. Georgiou 2 C.P. Dettmann 3 R. Klages Queen Mary University of London, School of Mathematical Sciences 2 Max-Planck-Institut

More information

Search for Food of Birds, Fish and Insects

Search for Food of Birds, Fish and Insects Search for Food of Birds, Fish and Insects Rainer Klages Max Planck Institute for the Physics of Complex Systems, Dresden Queen Mary University of London, School of Mathematical Sciences Diffusion Fundamentals

More information

Irregular diffusion in the bouncing ball billiard

Irregular diffusion in the bouncing ball billiard Irregular diffusion in the bouncing ball billiard Laszlo Matyas 1 Rainer Klages 2 Imre F. Barna 3 1 Sapientia University, Dept. of Technical and Natural Sciences, Miercurea Ciuc, Romania 2 Queen Mary University

More information

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Anomalous Transport and Fluctuation Relations: From Theory to Biology Anomalous Transport and Fluctuation Relations: From Theory to Biology Aleksei V. Chechkin 1, Peter Dieterich 2, Rainer Klages 3 1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Institute for Physiology,

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

Applied Dynamical Systems

Applied Dynamical Systems Applied Dynamical Systems London Taught Course Centre, Lectures 5 0 From Deterministic Chaos to Deterministic Diffusion Version.3, 9/03/200 Rainer Klages Queen Mary University of London School of Mathematical

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Environmental Physics Computer Lab #8: The Butterfly Effect

Environmental Physics Computer Lab #8: The Butterfly Effect Environmental Physics Computer Lab #8: The Butterfly Effect The butterfly effect is the name coined by Lorenz for the main feature of deterministic chaos: sensitivity to initial conditions. Lorenz has

More information

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London

MTH4100 Calculus I. Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London MTH4100 Calculus I Week 8 (Thomas Calculus Sections 4.1 to 4.4) Rainer Klages School of Mathematical Sciences Queen Mary, University of London Autumn 2008 R. Klages (QMUL) MTH4100 Calculus 1 Week 8 1 /

More information

A FAMILY OF PIECEWISE EXPANDING MAPS HAVING SINGULAR MEASURE AS A LIMIT OF ACIM S

A FAMILY OF PIECEWISE EXPANDING MAPS HAVING SINGULAR MEASURE AS A LIMIT OF ACIM S A FAMILY OF PIECEWISE EXPANDING MAPS HAVING SINGULAR MEASURE AS A LIMIT OF ACIM S ZHENYANG LI, PAWE L GÓ, ABRAHAM BOYARSKY, HARALD PROPPE, AND PEYMAN ESLAMI Abstract Keller [9] introduced families of W

More information

On oscillating systems of interacting neurons

On oscillating systems of interacting neurons Susanne Ditlevsen Eva Löcherbach Nice, September 2016 Oscillations Most biological systems are characterized by an intrinsic periodicity : 24h for the day-night rhythm of most animals, etc... In other

More information

Ergodicity for Infinite Dimensional Systems

Ergodicity for Infinite Dimensional Systems London Mathematical Society Lecture Note Series. 229 Ergodicity for Infinite Dimensional Systems G. DaPrato Scuola Normale Superiore, Pisa J. Zabczyk Polish Academy of Sciences, Warsaw If CAMBRIDGE UNIVERSITY

More information

Weak Ergodicity Breaking

Weak Ergodicity Breaking Weak Ergodicity Breaking Eli Barkai Bar-Ilan University 215 Ergodicity Ergodicity: time averages = ensemble averages. x = lim t t x(τ)dτ t. x = xp eq (x)dx. Ergodicity out of equilibrium δ 2 (, t) = t

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

Representation of Markov chains. Stochastic stability AIMS 2014

Representation of Markov chains. Stochastic stability AIMS 2014 Markov chain model Joint with J. Jost and M. Kell Max Planck Institute for Mathematics in the Sciences Leipzig 0th July 204 AIMS 204 We consider f : M! M to be C r for r 0 and a small perturbation parameter

More information

From Determinism to Stochasticity

From Determinism to Stochasticity From Determinism to Stochasticity Reading for this lecture: (These) Lecture Notes. Lecture 8: Nonlinear Physics, Physics 5/25 (Spring 2); Jim Crutchfield Monday, May 24, 2 Cave: Sensory Immersive Visualization

More information

MTH4100 Calculus I. Lecture notes for Week 4. Thomas Calculus, Sections 2.4 to 2.6. Rainer Klages

MTH4100 Calculus I. Lecture notes for Week 4. Thomas Calculus, Sections 2.4 to 2.6. Rainer Klages MTH4100 Calculus I Lecture notes for Week 4 Thomas Calculus, Sections 2.4 to 2.6 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 One-sided its and its at infinity

More information

Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

More information

A Family of Piecewise Expanding Maps having Singular Measure as a limit of ACIM s

A Family of Piecewise Expanding Maps having Singular Measure as a limit of ACIM s Ergod. Th. & Dynam. Sys. (,, Printed in the United Kingdom c Cambridge University Press A Family of Piecewise Expanding Maps having Singular Measure as a it of ACIM s Zhenyang Li,Pawe l Góra, Abraham Boyarsky,

More information

MTH4100 Calculus I. Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London

MTH4100 Calculus I. Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages. School of Mathematical Sciences Queen Mary, University of London MTH4100 Calculus I Week 6 (Thomas Calculus Sections 3.5 to 4.2) Rainer Klages School of Mathematical Sciences Queen Mary, University of London Autumn 2008 R. Klages (QMUL) MTH4100 Calculus 1 Week 6 1 /

More information

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit

A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit A Detailed Look at a Discrete Randomw Walk with Spatially Dependent Moments and Its Continuum Limit David Vener Department of Mathematics, MIT May 5, 3 Introduction In 8.366, we discussed the relationship

More information

A Search for the Simplest Chaotic Partial Differential Equation

A Search for the Simplest Chaotic Partial Differential Equation A Search for the Simplest Chaotic Partial Differential Equation C. Brummitt University of Wisconsin-Madison, Department of Physics cbrummitt@wisc.edu J. C. Sprott University of Wisconsin-Madison, Department

More information

Bifurcations in the Quadratic Map

Bifurcations in the Quadratic Map Chapter 14 Bifurcations in the Quadratic Map We will approach the study of the universal period doubling route to chaos by first investigating the details of the quadratic map. This investigation suggests

More information

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion Rainer Klages Queen Mary University of London, School of Mathematical Sciences Sperlonga, 20-24 September 2010 From normal to

More information

Large Deviations for Small-Noise Stochastic Differential Equations

Large Deviations for Small-Noise Stochastic Differential Equations Chapter 21 Large Deviations for Small-Noise Stochastic Differential Equations This lecture is at once the end of our main consideration of diffusions and stochastic calculus, and a first taste of large

More information

From Determinism to Stochasticity

From Determinism to Stochasticity From Determinism to Stochasticity Reading for this lecture: (These) Lecture Notes. Outline of next few lectures: Probability theory Stochastic processes Measurement theory You Are Here A B C... α γ β δ

More information

A Combinatorial Optimization Problem in Wireless Communications and Its Analysis

A Combinatorial Optimization Problem in Wireless Communications and Its Analysis A Combinatorial Optimization Problem in Wireless Communications and Its Analysis Ralf R. Müller EE Dept, NTNU Benjamin Zaidel Tel Aviv Rodrigo de Miguel SINTEF, Trondheim Vesna Gardašević EE Dept, NTNU

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Chapter 6 - Random Processes

Chapter 6 - Random Processes EE385 Class Notes //04 John Stensby Chapter 6 - Random Processes Recall that a random variable X is a mapping between the sample space S and the extended real line R +. That is, X : S R +. A random process

More information

Random processes and probability distributions. Phys 420/580 Lecture 20

Random processes and probability distributions. Phys 420/580 Lecture 20 Random processes and probability distributions Phys 420/580 Lecture 20 Random processes Many physical processes are random in character: e.g., nuclear decay (Poisson distributed event count) P (k, τ) =

More information

Ergodicity of quantum eigenfunctions in classically chaotic systems

Ergodicity of quantum eigenfunctions in classically chaotic systems Ergodicity of quantum eigenfunctions in classically chaotic systems Mar 1, 24 Alex Barnett barnett@cims.nyu.edu Courant Institute work in collaboration with Peter Sarnak, Courant/Princeton p.1 Classical

More information

Stochastic Gradient Descent in Continuous Time

Stochastic Gradient Descent in Continuous Time Stochastic Gradient Descent in Continuous Time Justin Sirignano University of Illinois at Urbana Champaign with Konstantinos Spiliopoulos (Boston University) 1 / 27 We consider a diffusion X t X = R m

More information

Weak Ergodicity Breaking. Manchester 2016

Weak Ergodicity Breaking. Manchester 2016 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Burov, Froemberg, Garini, Metzler PCCP 16 (44), 24128 (2014) Akimoto, Saito Manchester 2016 Outline Experiments: anomalous diffusion of single molecules

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

Effect of Diffusing Disorder on an. Absorbing-State Phase Transition

Effect of Diffusing Disorder on an. Absorbing-State Phase Transition Effect of Diffusing Disorder on an Absorbing-State Phase Transition Ronald Dickman Universidade Federal de Minas Gerais, Brazil Support: CNPq & Fapemig, Brazil OUTLINE Introduction: absorbing-state phase

More information

Minimization of Quadratic Forms in Wireless Communications

Minimization of Quadratic Forms in Wireless Communications Minimization of Quadratic Forms in Wireless Communications Ralf R. Müller Department of Electronics & Telecommunications Norwegian University of Science & Technology, Trondheim, Norway mueller@iet.ntnu.no

More information

Today: 5 July 2008 ٢

Today: 5 July 2008 ٢ Anderson localization M. Reza Rahimi Tabar IPM 5 July 2008 ١ Today: 5 July 2008 ٢ Short History of Anderson Localization ٣ Publication 1) F. Shahbazi, etal. Phys. Rev. Lett. 94, 165505 (2005) 2) A. Esmailpour,

More information

Scaling Limits of Waves in Convex Scalar Conservation Laws under Random Initial Perturbations

Scaling Limits of Waves in Convex Scalar Conservation Laws under Random Initial Perturbations Scaling Limits of Waves in Convex Scalar Conservation Laws under Random Initial Perturbations Jan Wehr and Jack Xin Abstract We study waves in convex scalar conservation laws under noisy initial perturbations.

More information

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999 Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/9909323v1 [cond-mat.stat-mech] 22 Sep 1999 B. Zheng FB Physik, Universität Halle, 06099 Halle, Germany Abstract Numerically we

More information

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45 ESSE 4020 3.0 - Mid-Term Test 207 Tuesday 7 October 207. 08:30-09:45 Symbols have their usual meanings. All questions are worth 0 marks, although some are more difficult than others. Answer as many questions

More information

Fast-slow systems with chaotic noise

Fast-slow systems with chaotic noise Fast-slow systems with chaotic noise David Kelly Ian Melbourne Courant Institute New York University New York NY www.dtbkelly.com May 12, 215 Averaging and homogenization workshop, Luminy. Fast-slow systems

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

A source model for ISDN packet data traffic *

A source model for ISDN packet data traffic * 1 A source model for ISDN packet data traffic * Kavitha Chandra and Charles Thompson Center for Advanced Computation University of Massachusetts Lowell, Lowell MA 01854 * Proceedings of the 28th Annual

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

ON DIFFERENT WAYS OF CONSTRUCTING RELEVANT INVARIANT MEASURES

ON DIFFERENT WAYS OF CONSTRUCTING RELEVANT INVARIANT MEASURES UNIVERSITY OF JYVÄSKYLÄ DEPARTMENT OF MATHEMATICS AND STATISTICS REPORT 106 UNIVERSITÄT JYVÄSKYLÄ INSTITUT FÜR MATHEMATIK UND STATISTIK BERICHT 106 ON DIFFERENT WAYS OF CONSTRUCTING RELEVANT INVARIANT

More information

A diamagnetic inequality for semigroup differences

A diamagnetic inequality for semigroup differences A diamagnetic inequality for semigroup differences (Irvine, November 10 11, 2001) Barry Simon and 100DM 1 The integrated density of states (IDS) Schrödinger operator: H := H(V ) := 1 2 + V ω =: H(0, V

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 8 Sep 1999

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 8 Sep 1999 BARI-TH 347/99 arxiv:cond-mat/9907149v2 [cond-mat.stat-mech] 8 Sep 1999 PHASE ORDERING IN CHAOTIC MAP LATTICES WITH CONSERVED DYNAMICS Leonardo Angelini, Mario Pellicoro, and Sebastiano Stramaglia Dipartimento

More information

Homogenization for chaotic dynamical systems

Homogenization for chaotic dynamical systems Homogenization for chaotic dynamical systems David Kelly Ian Melbourne Department of Mathematics / Renci UNC Chapel Hill Mathematics Institute University of Warwick November 3, 2013 Duke/UNC Probability

More information

The parabolic Anderson model on Z d with time-dependent potential: Frank s works

The parabolic Anderson model on Z d with time-dependent potential: Frank s works Weierstrass Institute for Applied Analysis and Stochastics The parabolic Anderson model on Z d with time-dependent potential: Frank s works Based on Frank s works 2006 2016 jointly with Dirk Erhard (Warwick),

More information

Large Deviations for Small-Noise Stochastic Differential Equations

Large Deviations for Small-Noise Stochastic Differential Equations Chapter 22 Large Deviations for Small-Noise Stochastic Differential Equations This lecture is at once the end of our main consideration of diffusions and stochastic calculus, and a first taste of large

More information

Scaling Limits of Waves in Convex Scalar Conservation Laws Under Random Initial Perturbations

Scaling Limits of Waves in Convex Scalar Conservation Laws Under Random Initial Perturbations Journal of Statistical Physics, Vol. 122, No. 2, January 2006 ( C 2006 ) DOI: 10.1007/s10955-005-8006-x Scaling Limits of Waves in Convex Scalar Conservation Laws Under Random Initial Perturbations Jan

More information

where r n = dn+1 x(t)

where r n = dn+1 x(t) Random Variables Overview Probability Random variables Transforms of pdfs Moments and cumulants Useful distributions Random vectors Linear transformations of random vectors The multivariate normal distribution

More information

Gradient Estimation for Attractor Networks

Gradient Estimation for Attractor Networks Gradient Estimation for Attractor Networks Thomas Flynn Department of Computer Science Graduate Center of CUNY July 2017 1 Outline Motivations Deterministic attractor networks Stochastic attractor networks

More information

Scaling exponents for certain 1+1 dimensional directed polymers

Scaling exponents for certain 1+1 dimensional directed polymers Scaling exponents for certain 1+1 dimensional directed polymers Timo Seppäläinen Department of Mathematics University of Wisconsin-Madison 2010 Scaling for a polymer 1/29 1 Introduction 2 KPZ equation

More information

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters

Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Scale-Free Enumeration of Self-Avoiding Walks on Critical Percolation Clusters Niklas Fricke and Wolfhard Janke Institut für Theoretische Physik, Universität Leipzig November 29, 2013 Self-avoiding walk

More information

AY Term 1 Examination November 2013 ECON205 INTERMEDIATE MATHEMATICS FOR ECONOMICS

AY Term 1 Examination November 2013 ECON205 INTERMEDIATE MATHEMATICS FOR ECONOMICS AY203-4 Term Examination November 203 ECON205 INTERMEDIATE MATHEMATICS FOR ECONOMICS INSTRUCTIONS TO CANDIDATES The time allowed for this examination paper is TWO hours 2 This examination paper contains

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

Spatial analysis. 0 move the objects and the results change

Spatial analysis. 0 move the objects and the results change 0 Outline: Roadmap 0 What is spatial analysis? 0 Transformations 0 Introduction to spatial interpolation 0 Classification of spatial interpolation methods 0 Interpolation methods 0 Areal interpolation

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

arxiv: v3 [cond-mat.stat-mech] 29 Mar 2019

arxiv: v3 [cond-mat.stat-mech] 29 Mar 2019 Equivalence of position-position auto-correlations in the Slicer Map and the Lévy-Lorentz gas arxiv:709.04980v3 [cond-mat.stat-mech] 29 Mar 209 C. Giberti (a), L. Rondoni (b,c), M. Tayyab (b,d) and J.

More information

Invisible Random Media And Diffraction Gratings That Don't Diffract

Invisible Random Media And Diffraction Gratings That Don't Diffract Invisible Random Media And Diffraction Gratings That Don't Diffract 29/08/2017 Christopher King, Simon Horsley and Tom Philbin, University of Exeter, United Kingdom, email: cgk203@exeter.ac.uk webpage:

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

The Chaotic Character of the Stochastic Heat Equation

The Chaotic Character of the Stochastic Heat Equation The Chaotic Character of the Stochastic Heat Equation March 11, 2011 Intermittency The Stochastic Heat Equation Blowup of the solution Intermittency-Example ξ j, j = 1, 2,, 10 i.i.d. random variables Taking

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

Roberto Artuso. Caos e diffusione (normale e anomala)

Roberto Artuso. Caos e diffusione (normale e anomala) Roberto Artuso Caos e diffusione (normale e anomala) Lucia Cavallasca, Giampaolo Cristadoro, Predrag Cvitanović, Per Dahlqvist, Gregor Tanner Damiano Belluzzo, Fausto Borgonovi, Giulio Casati, Shmuel Fishman,

More information

Propagation of longitudinal waves in a random binary rod

Propagation of longitudinal waves in a random binary rod Downloaded By: [University of North Carolina, Charlotte At: 7:3 2 May 28 Waves in Random and Complex Media Vol. 6, No. 4, November 26, 49 46 Propagation of longitudinal waves in a random binary rod YURI

More information

SAMPLE PATH PROPERIES OF RANDOM TRANSFORMATIONS.

SAMPLE PATH PROPERIES OF RANDOM TRANSFORMATIONS. SAMPLE PATH PROPERIES OF RANDOM TRANSFORMATIONS. DMITRY DOLGOPYAT 1. Models. Let M be a smooth compact manifold of dimension N and X 0, X 1... X d, d 2, be smooth vectorfields on M. (I) Let {w j } + j=

More information

Interaction Matrix Element Fluctuations

Interaction Matrix Element Fluctuations Interaction Matrix Element Fluctuations in Quantum Dots Lev Kaplan Tulane University and Yoram Alhassid Yale University Interaction Matrix Element Fluctuations in Quantum Dots mpipks Dresden March 5-8,

More information

On the fast convergence of random perturbations of the gradient flow.

On the fast convergence of random perturbations of the gradient flow. On the fast convergence of random perturbations of the gradient flow. Wenqing Hu. 1 (Joint work with Chris Junchi Li 2.) 1. Department of Mathematics and Statistics, Missouri S&T. 2. Department of Operations

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

Renormalization Group for Quantum Walks

Renormalization Group for Quantum Walks Renormalization Group for Quantum Walks CompPhys13 Stefan Falkner, Stefan Boettcher and Renato Portugal Physics Department Emory University November 29, 2013 arxiv:1311.3369 Funding: NSF-DMR Grant #1207431

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

Knudsen Diffusion and Random Billiards

Knudsen Diffusion and Random Billiards Knudsen Diffusion and Random Billiards R. Feres http://www.math.wustl.edu/ feres/publications.html November 11, 2004 Typeset by FoilTEX Gas flow in the Knudsen regime Random Billiards [1] Large Knudsen

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

dynamical zeta functions: what, why and what are the good for?

dynamical zeta functions: what, why and what are the good for? dynamical zeta functions: what, why and what are the good for? Predrag Cvitanović Georgia Institute of Technology November 2 2011 life is intractable in physics, no problem is tractable I accept chaos

More information

Vertex Routing Models and Polyhomeostatic Optimization. Claudius Gros. Institute for Theoretical Physics Goethe University Frankfurt, Germany

Vertex Routing Models and Polyhomeostatic Optimization. Claudius Gros. Institute for Theoretical Physics Goethe University Frankfurt, Germany Vertex Routing Models and Polyhomeostatic Optimization Claudius Gros Institute for Theoretical Physics Goethe University Frankfurt, Germany 1 topics in complex system theory Vertex Routing Models modelling

More information

ALMOST SURE CONVERGENCE OF RANDOM GOSSIP ALGORITHMS

ALMOST SURE CONVERGENCE OF RANDOM GOSSIP ALGORITHMS ALMOST SURE CONVERGENCE OF RANDOM GOSSIP ALGORITHMS Giorgio Picci with T. Taylor, ASU Tempe AZ. Wofgang Runggaldier s Birthday, Brixen July 2007 1 CONSENSUS FOR RANDOM GOSSIP ALGORITHMS Consider a finite

More information

New Physical Principle for Monte-Carlo simulations

New Physical Principle for Monte-Carlo simulations EJTP 6, No. 21 (2009) 9 20 Electronic Journal of Theoretical Physics New Physical Principle for Monte-Carlo simulations Michail Zak Jet Propulsion Laboratory California Institute of Technology, Advance

More information

Noisy Lévy walk analog of two-dimensional DNA walks for chromosomes of S. cerevisiae

Noisy Lévy walk analog of two-dimensional DNA walks for chromosomes of S. cerevisiae PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998 Noisy Lévy walk analog of two-dimensional DNA walks for chromosomes of S. cerevisiae Guillermo Abramson, 1, * Pablo A. Alemany, 1,2 and Hilda A. Cerdeira

More information

ANTICORRELATIONS AND SUBDIFFUSION IN FINANCIAL SYSTEMS. K.Staliunas Abstract

ANTICORRELATIONS AND SUBDIFFUSION IN FINANCIAL SYSTEMS. K.Staliunas   Abstract ANICORRELAIONS AND SUBDIFFUSION IN FINANCIAL SYSEMS K.Staliunas E-mail: Kestutis.Staliunas@PB.DE Abstract Statistical dynamics of financial systems is investigated, based on a model of a randomly coupled

More information

ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT

ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT Elect. Comm. in Probab. 10 (2005), 36 44 ELECTRONIC COMMUNICATIONS in PROBABILITY ON THE ZERO-ONE LAW AND THE LAW OF LARGE NUMBERS FOR RANDOM WALK IN MIXING RAN- DOM ENVIRONMENT FIRAS RASSOUL AGHA Department

More information

The KPZ line ensemble: a marriage of integrability and probability

The KPZ line ensemble: a marriage of integrability and probability The KPZ line ensemble: a marriage of integrability and probability Ivan Corwin Clay Mathematics Institute, Columbia University, MIT Joint work with Alan Hammond [arxiv:1312.2600 math.pr] Introduction to

More information

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA

On Stochastic Adaptive Control & its Applications. Bozenna Pasik-Duncan University of Kansas, USA On Stochastic Adaptive Control & its Applications Bozenna Pasik-Duncan University of Kansas, USA ASEAS Workshop, AFOSR, 23-24 March, 2009 1. Motivation: Work in the 1970's 2. Adaptive Control of Continuous

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

Limit theorems for dependent regularly varying functions of Markov chains

Limit theorems for dependent regularly varying functions of Markov chains Limit theorems for functions of with extremal linear behavior Limit theorems for dependent regularly varying functions of In collaboration with T. Mikosch Olivier Wintenberger wintenberger@ceremade.dauphine.fr

More information