Seiberg-Witten Equations on R 8 Ayse Humeyra Bilge Department of Mathematics, Institute for Basic Sciences TUBITAK Marmara Research Center Gebze-Kocae

Size: px
Start display at page:

Download "Seiberg-Witten Equations on R 8 Ayse Humeyra Bilge Department of Mathematics, Institute for Basic Sciences TUBITAK Marmara Research Center Gebze-Kocae"

Transcription

1 Seiberg-Witten Equations on R 8 Ayse Humeyra Bilge Department of Mathematics Institute for Basic Sciences TUBITAK Marmara Research Center Gebze-Kocaeli Turkey E.mail : bilge@mam.gov.tr Tekin Dereli Department ofphysics Middle East Technical University Ankara Turkey E.mail : tekin@dereli.physics.metu.edu.tr Sahin Kocak Department of Mathematics Anadolu University Eskisehir Turkey E.mail : skocak@vm.baum.anadolu.edu.tr Abstract We show that there are no nontrivial solutions of the Seiberg- Witten equations on R 8 with constant standard spin c structure.

2 . Introduction The Seiberg-Witten equations are meaningful on any even-dimensional manifold. To state them let us recall the general set-up adopting the terminology of the forthcoming book by D.Salamon ([]). A spin c -structure on a 2n-dimensional real inner-product space V is a pair (W; ) where W is a 2 n -dimensional complex Hermitian space and :V!End(W) is a linear map satisfying (v) = (v); (v) 2 = kvk 2 for v 2 V.Globalizing this denes the notion of a spin c -structure : TX! End(W)ona2n-dimensional (oriented) manifold X W being a 2 n -dimensional complex Hermitian vector bundle on X. Such a structure exists i w 2 (X) has an integral lift. extends to an isomorphism between the complex Cliord algebra bundle C c (TX) and End(W)). There is a natural splitting W = W + W into the i n eigenspaces of (e 2n e 2n e ) where e ;e 2 ;;e 2n is any positively oriented local orthonormal frame of TX. The extension of to C 2 (X) gives via the identication of 2 (T X) with C 2 (X) a map : 2 (T X)!End(W) given by X X ( ij e i ^ e j)= ij (e i ) (e j ): i<j i<j The bundles W are invariant under () for 2 2 (T X). Denote () = ()j W. The map (and ) extends to : 2 (T X)C!End(W): (If 2 2 (T X) C is real-valued then () is skew-hermitian and if is imaginary-valued then () is Hermitian.) A Hermitian connection r on W is called a spin c connection (compatible with the Levi-Civita connection) if r v ( (w)) = (w)r v + (r v w) where is a spinor (section of W )v and w are vector elds on X and r v w is the Levi-Civita connection on X. r preserves the subbundles W.

3 There is a principal Spin c (2n) =fe i xj 2 R;x2Spin(2n)g C c (R 2n ) bundle P on X such that W and TX can be recovered as the associated bundles W = P Spin c (2n) C 2n ; TX = P Ad R 2n ; Ad being the adjoint action of Spin c (2n) on R 2n.We get then a complex line bundle L = P C using the map : Spin c (2n)! S given by (e i x)=e 2i. There is a one-to-one correspondence between spin c connections on W and spin c (2n) =Lie(Spin c (2n) =spin(2n)ir -valued connection--forms ^A 2 A(P ) (P; spin c (2n)) on P. Now consider the trace-part A of ^A: A = trace( ^A). 2 This is an imaginary valued -form A 2 (P; ir) which is equivariant and n satises A p (p ) = 2 ntrace() for v 2 T p P; g 2 Spin c (2n); 2 spin c (2n)(where p is the innitesimal action). Denote the set of imaginary valued -forms on P satisfying these two properties by A( ). There is a one-to-one correspondence between these -forms and spin c connections on W. Denote the connection corresponding to A by r A. A( ) is an ane space with parallel vector space (X; ir). For A 2 A( ) the -form 2A 2 (P; ir) represents a connection on the line bundle L. Because of this reason A is called a virtual connection on the virtual line bundle L =2. Let F A 2 2 (X; ir) denote the curvature of the -form A. Finally let D A denote the Dirac operator corresponding to A 2 A( ) C (X; W + )! C (X; W ) dened by D A () = 2nX i= (e i )r A;ei () where 2 C (X; W + ) and e ;e 2 ;;e 2n is any local orthonormal frame. The Seiberg-Witten equations can now be expressed as follows. Fix a spin c structure : TX! End(W) on X and consider the pairs (A; ) 2 A( ) C (X; W + ). The SW-equations read D A ()= ; + (F A ) = ( ) where ( ) 2 C (X; End(W + )) is dened by ( )() =<; > for 2 C (X; W + ) and ( ) is the traceless part of ( ). 2

4 In dimension 2n =4; + (F A )= + (F + A )=(F+ A ) (where F + is the selfdual part of F and the second equality understood in the obvious sense) and therefore self-duality comes intimately into play. The rst problem in dimensions 2n >4is that there is not a generally accepted notion of selfduality. Although there are some meaningful denitions ([2][3][4][5][6]) (Equivalence of self-duality notions in [2][3][5][6] has been shown in [7] making them more relevant as they separately are) they do not assign a well-dened self-dual part to a given 2-form. Even though + (F A ) is still meaningful it is apparently less important due to the lack of an intrinsic self-duality of 2-forms in higher dimensions. The other serious problem in dimensions 2n >4is that the SW-equations as they are given above are overdetermined. So it is improbable from the outset to hope for any solutions. We verify below for 2n = 8 that there aren't indeed any solutions. In dimension 2n = 4 it is well-known that there are no nite-energy solutions ([]) but otherwise whole classes of solutions are found which are related to vortex equations ([8]). In the physically interesting case 2n = 8 wewill suggest a modied set of equations which is related to generalized self-duality referred to above. These equations include the 4-dimensional Seiberg-Witten solutions as special cases. 2. Seiberg-Witten Equations on R 8 We x the constant spin c structure : R 8! C 66 given by (e i )= (e i ) (e i ) (e i ;i=;2; :::; 8 being the standard basis for R 8 )where (e )= (e 2 )= i i i i i i i i 3

5 (e 3 )= (e 4 )= (e 5 )= (e 6 )= i i i i i i i i i i i i i i i i 4

6 (e 7 )= (e 8 )= i i i i i i i i (We obtain this spin c structure from the well-known isomorphism of the complex Cliord algebra C c (R 2n ) with End( C n ).) In our case X = R 8 ;W =R 8 C 6 ;W =R 8 C 8 and L = L =2 = R 8 C. Consider the connection -form A = 8X i=. A i dx i 2 (R 8 ;ir) on the line bundle R 8 C. Its curvature is given by F A = X i<j F ij dx i ^ dx j 2 2 (R 8 ;ir) where F ij j. The spin c connection r = r A on W + is given by (i =; :::; 8) where : R 8! C 8. r i + A i is given by + : 2 (T X)C!End(W + ) 5

7 + (F A )= G G 2 G 3 G 4 G 5 G 6 G 7 G 2 G 22 G 23 G 24 G 25 G 26 G 7 G 3 G23 G 33 G 34 G 35 G 26 G 6 G 4 G24 G34 G 44 G 35 G 25 G 5 G 5 G25 G35 G 44 G 34 G 24 G 4 G 6 G26 G35 G34 G 33 G 23 G 3 G 7 G26 G25 G24 G23 G 22 G 2 ; where G7 G6 G5 G4 G3 G2 G G = if 2 + if 34 + if 56 + if 78 ; G 2 = F 3 + if 4 + if 23 F 24 ; G 3 = F 5 + if 6 + if 25 F 26 ; G 4 = F 7 + if 8 + if 27 F 28 ; G 5 = F 35 + if 36 + if 45 F 46 ; G 6 = F 37 + if 38 + if 47 F 48 ; G 7 = F 57 + if 58 + if 67 F 68 ; G 22 = if 2 if 34 + if 56 + if 78 ; G 23 = F 35 if 36 + if 45 F 46 ; G 24 = F 37 if 38 + if 47 F 48 ; G 25 = F 5 + if 6 if 25 + F 26 ; G 26 = F 7 + if 8 if 27 + F 28 ; G 33 = if 2 + if 34 if 56 + if 78 ; G 34 = F 57 if 58 + if 67 F 68 ; G 35 = F 3 if 4 + if 23 F 24 ; G 44 = if 2 + if 34 + if 56 if 78 : For=( ; 2 ; :::; 8 ) 2 C (X; W + )=C (R 8 ;R 8 C 8 ) ( ) = =8 P i i 2 : : : =8 P i i : : : 2 8 : : : : : : : : : : : : : : : : : : : : : 8 8 =8 P i i It was remarked by Salamon([]p.87) that + (F A ) = implies F A =. (i.e.reducible solutions of 8-dim. SW-equations are at.) It can be explicitly veried that all solutions are reducible and at: Proposition: There are no nontrivial solutions of the Seiberg-Witten equations on R 8 with constant standard spin c structurei.e. + (F A ) = ( ) (alone) implies F A =and=. Proof: Trivial but tedious manipulation with the linear system. : Acknowledgement The abovework is based on a talk given at the 5th Gokova Geometry- Topology Conference held at Akyaka-Mugla Turkey during May

8 References [] D.Salamon Spin Geometry and Seiberg-Witten Invariants (April 996 version)(to appear). [2] A.Trautman Int.J.Theo.Phys.6(977)56. [3] D.H.Tchrakian J.Math.Phys.2(98)66. [4] E.Corrigan C.Devchand D.B.Fairlie J.Nuyts Nucl.Phys.B 24(983) 452. [5] B.Grossman T.W.Kephart J.D.Stashe Commun.Math.Phys.96(984)43 Erratum:ibid(985)3. [6] A.H.Bilge T.Dereli S.Kocak Lett.Math.Phys.36(996)3. [7] A.H.Bilge Self-duality in dimensions 2n >4 dg-ga/9642. [8] C.Taubes SW! Gr J. of the A.M.S.93(996). 7

arxiv:hep-th/ v1 21 Jul 1997

arxiv:hep-th/ v1 21 Jul 1997 Seiberg-Witten Equations on R 8 arxiv:hep-th/9707178v1 21 Jul 1997 Ayşe Hümeyra Bilge Department of Mathematics Institute for Basic Sciences TUBITAK Marmara Research Center Gebze-Kocaeli Turkey E.mail

More information

arxiv:hep-th/ v1 17 Nov 1998

arxiv:hep-th/ v1 17 Nov 1998 arxiv:hep-th/9811161v1 17 Nov 1998 Monopole Equations on 8-Manifolds with Spin(7) Holonomy Ayşe Hümeyra Bilge Department of Mathematics İstanbul Technical University İstanbul, Turkey E.mail : bilge@hidiv.cc.itu.edu.tr

More information

Self-Dual Yang-Mills Fields in Eight Dimensions

Self-Dual Yang-Mills Fields in Eight Dimensions arxiv:hep-th/9603001v1 1 ar 1996 Self-Dual Yang-ills Fields in Eight Dimensions Ayşe Hümeyra Bilge, Tekin Dereli, Şahin Koçak Department of athematics, Anadolu University, Eskişehir, Turkey e.mail: bilge@yunus.mam.tubitak.gov.tr

More information

Donaldson and Seiberg-Witten theory and their relation to N = 2 SYM

Donaldson and Seiberg-Witten theory and their relation to N = 2 SYM Donaldson and Seiberg-Witten theory and their relation to N = SYM Brian Williams April 3, 013 We ve began to see what it means to twist a supersymmetric field theory. I will review Donaldson theory and

More information

Index Theory and Spin Geometry

Index Theory and Spin Geometry Index Theory and Spin Geometry Fabian Lenhardt and Lennart Meier March 20, 2010 Many of the familiar (and not-so-familiar) invariants in the algebraic topology of manifolds may be phrased as an index of

More information

CHAPTER 1. Principal bundles and connections. 1. Motivation: Gauge theory. The simplest example of a gauge theory in physics is electromagnetism.

CHAPTER 1. Principal bundles and connections. 1. Motivation: Gauge theory. The simplest example of a gauge theory in physics is electromagnetism. CHAPTER 1 Principal bundles and connections 1. Motivation: Gauge theory The simplest example of a gauge theory in physics is electromagnetism. Maxwell's equations for an electromagentic eld, Recall (1)

More information

Note that for a, b G, we have L a R b = R b L a, by the associative law. We'll use e to denote the identity element of G.

Note that for a, b G, we have L a R b = R b L a, by the associative law. We'll use e to denote the identity element of G. NOTES ON PRINCIPAL BUNDLES, CONNECTIONS, AND HOMOGENEOUS SPACES LANCE D. DRAGER 1. Introduction These notes are meant to accompany talks in the Geometry Seminar at Texas Tech during the Spring Semester

More information

Pin (2)-monopole theory I

Pin (2)-monopole theory I Intersection forms with local coefficients Osaka Medical College Dec 12, 2016 Pin (2) = U(1) j U(1) Sp(1) H Pin (2)-monopole equations are a twisted version of the Seiberg-Witten (U(1)-monopole) equations.

More information

Quantising noncompact Spin c -manifolds

Quantising noncompact Spin c -manifolds Quantising noncompact Spin c -manifolds Peter Hochs University of Adelaide Workshop on Positive Curvature and Index Theory National University of Singapore, 20 November 2014 Peter Hochs (UoA) Noncompact

More information

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi

Abstract. Jacobi curves are far going generalizations of the spaces of \Jacobi Principal Invariants of Jacobi Curves Andrei Agrachev 1 and Igor Zelenko 2 1 S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy and Steklov Mathematical Institute, ul. Gubkina 8, 117966 Moscow, Russia; email:

More information

something on spin structures sven-s. porst

something on spin structures sven-s. porst something on spin structures sven-s. porst spring 2001 abstract This will give a brief introduction to spin structures on vector bundles to pave the way for the definition and introduction of Dirac operators.

More information

Complex manifolds, Kahler metrics, differential and harmonic forms

Complex manifolds, Kahler metrics, differential and harmonic forms Complex manifolds, Kahler metrics, differential and harmonic forms Cattani June 16, 2010 1 Lecture 1 Definition 1.1 (Complex Manifold). A complex manifold is a manifold with coordinates holomorphic on

More information

THE SYMMETRY OF spin C DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS

THE SYMMETRY OF spin C DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS J. Korean Math. Soc. 52 (2015), No. 5, pp. 1037 1049 http://dx.doi.org/10.4134/jkms.2015.52.5.1037 THE SYMMETRY OF spin C DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS Kyusik Hong and Chanyoung Sung

More information

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang

Mathematical Research Letters 2, (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS. Shuguang Wang Mathematical Research Letters 2, 305 310 (1995) A VANISHING THEOREM FOR SEIBERG-WITTEN INVARIANTS Shuguang Wang Abstract. It is shown that the quotients of Kähler surfaces under free anti-holomorphic involutions

More information

Chern characters via connections up to homotopy. Marius Crainic. Department of Mathematics, Utrecht University, The Netherlands

Chern characters via connections up to homotopy. Marius Crainic. Department of Mathematics, Utrecht University, The Netherlands Chern characters via connections up to homotopy Marius Crainic Department of Mathematics, Utrecht University, The Netherlands 1 Introduction: The aim of this note is to point out that Chern characters

More information

arxiv:math/ v1 [math.dg] 4 Feb 2003 Nikolay Tyurin

arxiv:math/ v1 [math.dg] 4 Feb 2003 Nikolay Tyurin 1 TWO LECTURES ON LOCAL RIEMANNIAN GEOMETRY, Spin C - STRUCTURES AND SEIBERG - WITTEN EQUATION arxiv:math/0302034v1 [math.dg] 4 Feb 2003 Nikolay Tyurin Introduction The mathematical part of Seiberg - Witten

More information

TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES

TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES KEN RICHARDSON Abstract. In these lectures, we investigate generalizations of the ordinary Dirac operator to manifolds

More information

REAL INSTANTONS, DIRAC OPERATORS AND QUATERNIONIC CLASSIFYING SPACES PAUL NORBURY AND MARC SANDERS Abstract. Let M(k; SO(n)) be the moduli space of ba

REAL INSTANTONS, DIRAC OPERATORS AND QUATERNIONIC CLASSIFYING SPACES PAUL NORBURY AND MARC SANDERS Abstract. Let M(k; SO(n)) be the moduli space of ba REAL INSTANTONS, DIRAC OPERATORS AND QUATERNIONIC CLASSIFYING SPACES PAUL NORBURY AND MARC SANDERS Abstract. Let M(k; SO(n)) be the moduli space of based gauge equivalence classes of SO(n) instantons on

More information

INTRO TO SUBRIEMANNIAN GEOMETRY

INTRO TO SUBRIEMANNIAN GEOMETRY INTRO TO SUBRIEMANNIAN GEOMETRY 1. Introduction to subriemannian geometry A lot of this tal is inspired by the paper by Ines Kath and Oliver Ungermann on the arxiv, see [3] as well as [1]. Let M be a smooth

More information

The Spinor Representation

The Spinor Representation The Spinor Representation Math G4344, Spring 2012 As we have seen, the groups Spin(n) have a representation on R n given by identifying v R n as an element of the Clifford algebra C(n) and having g Spin(n)

More information

CHARACTERISTIC CLASSES

CHARACTERISTIC CLASSES 1 CHARACTERISTIC CLASSES Andrew Ranicki Index theory seminar 14th February, 2011 2 The Index Theorem identifies Introduction analytic index = topological index for a differential operator on a compact

More information

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2 1 A Good Spectral Theorem c1996, Paul Garrett, garrett@math.umn.edu version February 12, 1996 1 Measurable Hilbert bundles Measurable Banach bundles Direct integrals of Hilbert spaces Trivializing Hilbert

More information

LECTURE 26: THE CHERN-WEIL THEORY

LECTURE 26: THE CHERN-WEIL THEORY LECTURE 26: THE CHERN-WEIL THEORY 1. Invariant Polynomials We start with some necessary backgrounds on invariant polynomials. Let V be a vector space. Recall that a k-tensor T k V is called symmetric if

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

A PRIMER ON SESQUILINEAR FORMS

A PRIMER ON SESQUILINEAR FORMS A PRIMER ON SESQUILINEAR FORMS BRIAN OSSERMAN This is an alternative presentation of most of the material from 8., 8.2, 8.3, 8.4, 8.5 and 8.8 of Artin s book. Any terminology (such as sesquilinear form

More information

L 2 Geometry of the Symplectomorphism Group

L 2 Geometry of the Symplectomorphism Group University of Notre Dame Workshop on Innite Dimensional Geometry, Vienna 2015 Outline 1 The Exponential Map on D s ω(m) 2 Existence of Multiplicity of Outline 1 The Exponential Map on D s ω(m) 2 Existence

More information

Quantising proper actions on Spin c -manifolds

Quantising proper actions on Spin c -manifolds Quantising proper actions on Spin c -manifolds Peter Hochs University of Adelaide Differential geometry seminar Adelaide, 31 July 2015 Joint work with Mathai Varghese (symplectic case) Geometric quantization

More information

Generalized complex structures on 4-manifolds

Generalized complex structures on 4-manifolds Generalized complex structures on 4-manifolds A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Haojie Chen IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY

TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY TWISTOR AND KILLING FORMS IN RIEMANNIAN GEOMETRY Andrei Moroianu CNRS - Ecole Polytechnique Palaiseau Prague, September 1 st, 2004 joint work with Uwe Semmelmann Plan of the talk Algebraic preliminaries

More information

Non-Relativistic Quantum Mechanics as a Gauge Theory

Non-Relativistic Quantum Mechanics as a Gauge Theory Non-Relativistic Quantum Mechanics as a Gauge Theory Sungwook Lee Department of Mathematics, University of Southern Mississippi LA/MS Section of MAA Meeting, March 1, 2013 Outline Lifted Quantum Mechanics

More information

Higgs Bundles and Character Varieties

Higgs Bundles and Character Varieties Higgs Bundles and Character Varieties David Baraglia The University of Adelaide Adelaide, Australia 29 May 2014 GEAR Junior Retreat, University of Michigan David Baraglia (ADL) Higgs Bundles and Character

More information

Fractional Index Theory

Fractional Index Theory Fractional Index Theory Index a ( + ) = Z Â(Z ) Q Workshop on Geometry and Lie Groups The University of Hong Kong Institute of Mathematical Research 26 March 2011 Mathai Varghese School of Mathematical

More information

1. Affine Grassmannian for G a. Gr Ga = lim A n. Intuition. First some intuition. We always have to rst approximation

1. Affine Grassmannian for G a. Gr Ga = lim A n. Intuition. First some intuition. We always have to rst approximation PROBLEM SESSION I: THE AFFINE GRASSMANNIAN TONY FENG In this problem we are proving: 1 Affine Grassmannian for G a Gr Ga = lim A n n with A n A n+1 being the inclusion of a hyperplane in the obvious way

More information

9. The Lie group Lie algebra correspondence

9. The Lie group Lie algebra correspondence 9. The Lie group Lie algebra correspondence 9.1. The functor Lie. The fundamental theorems of Lie concern the correspondence G Lie(G). The work of Lie was essentially local and led to the following fundamental

More information

lines, and isolated singular points where these arcs meet. One knows that the arcs meeting at a singular point form an equiangular conguration, see []

lines, and isolated singular points where these arcs meet. One knows that the arcs meeting at a singular point form an equiangular conguration, see [] On Nodal Sets for Dirac and Laplace Operators Christian Bar October, 996 Abstract We prove that the nodal set (zero set) of a solution of a generalized Dirac equation on a Riemannian manifold has codimension

More information

Invariants of Normal Surface Singularities

Invariants of Normal Surface Singularities Rényi Institute of Mathematics, Budapest June 19, 2009 Notations Motivation. Questions. Normal surface singularities (X, o) = a normal surface singularity M = its link (oriented 3manifold) assume: M is

More information

7 Curvature of a connection

7 Curvature of a connection [under construction] 7 Curvature of a connection 7.1 Theorema Egregium Consider the derivation equations for a hypersurface in R n+1. We are mostly interested in the case n = 2, but shall start from the

More information

The spectral action for Dirac operators with torsion

The spectral action for Dirac operators with torsion The spectral action for Dirac operators with torsion Christoph A. Stephan joint work with Florian Hanisch & Frank Pfäffle Institut für athematik Universität Potsdam Tours, ai 2011 1 Torsion Geometry, Einstein-Cartan-Theory

More information

Deformations of trianalytic subvarieties nal version, Oct Deformations of trianalytic subvarieties of. hyperkahler manifolds.

Deformations of trianalytic subvarieties nal version, Oct Deformations of trianalytic subvarieties of. hyperkahler manifolds. Deformations of trianalytic subvarieties of hyperkahler manifolds. Misha Verbitsky, 1 verbit@thelema.dnttm.rssi.ru, verbit@math.ias.edu Contents Let M be a compact complex manifold equipped with a hyperkahler

More information

Orientation transport

Orientation transport Orientation transport Liviu I. Nicolaescu Dept. of Mathematics University of Notre Dame Notre Dame, IN 46556-4618 nicolaescu.1@nd.edu June 2004 1 S 1 -bundles over 3-manifolds: homological properties Let

More information

An observation concerning uniquely ergodic vector fields on 3-manifolds. Clifford Henry Taubes

An observation concerning uniquely ergodic vector fields on 3-manifolds. Clifford Henry Taubes /24/08 An observation concerning uniquely ergodic vector fields on 3-manifolds Clifford Henry Taubes Department of athematics Harvard University Cambridge, A 0238 Supported in part by the National Science

More information

OVERDETERMINED SYSTEMS, CONFORMAL DIFFERENTIAL GEOMETRY, AND THE BGG COMPLEX

OVERDETERMINED SYSTEMS, CONFORMAL DIFFERENTIAL GEOMETRY, AND THE BGG COMPLEX OVERDETERMINED SYSTEMS, CONFORMAL DIFFERENTIAL GEOMETRY, AND THE BGG COMPLEX ANDREAS ČAP Dedicated to the memory of Tom Branson Abstract. This is an expanded version of a series of two lectures given at

More information

THE NEWLANDER-NIRENBERG THEOREM. GL. The frame bundle F GL is given by x M Fx

THE NEWLANDER-NIRENBERG THEOREM. GL. The frame bundle F GL is given by x M Fx THE NEWLANDER-NIRENBERG THEOREM BEN MCMILLAN Abstract. For any kind of geometry on smooth manifolds (Riemannian, Complex, foliation,...) it is of fundamental importance to be able to determine when two

More information

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES NILAY KUMAR In these lectures I want to introduce the Chern-Weil approach to characteristic classes on manifolds, and in particular, the Chern classes.

More information

TALBOT 2010 TALK 2: MORE K-THEORY, INDEX THEORY

TALBOT 2010 TALK 2: MORE K-THEORY, INDEX THEORY TALBOT 2010 TALK 2: ORE K-THEORY, INDEX THEORY CHRIS KOTTKE From the point of view of an analyst, one of the most delightful things about complex K-theory is that it has a nice realization by analytical

More information

EQUIVARIANT AND FRACTIONAL INDEX OF PROJECTIVE ELLIPTIC OPERATORS. V. Mathai, R.B. Melrose & I.M. Singer. Abstract

EQUIVARIANT AND FRACTIONAL INDEX OF PROJECTIVE ELLIPTIC OPERATORS. V. Mathai, R.B. Melrose & I.M. Singer. Abstract j. differential geometry x78 (2008) 465-473 EQUIVARIANT AND FRACTIONAL INDEX OF PROJECTIVE ELLIPTIC OPERATORS V. Mathai, R.B. Melrose & I.M. Singer Abstract In this note the fractional analytic index,

More information

Reduction of Homogeneous Riemannian structures

Reduction of Homogeneous Riemannian structures Geometric Structures in Mathematical Physics, 2011 Reduction of Homogeneous Riemannian structures M. Castrillón López 1 Ignacio Luján 2 1 ICMAT (CSIC-UAM-UC3M-UCM) Universidad Complutense de Madrid 2 Universidad

More information

K-Homology, Assembly and Rigidity Theorems for Relative Eta Invariants

K-Homology, Assembly and Rigidity Theorems for Relative Eta Invariants K-Homology, Assembly and Rigidity Theorems for Relative Eta Invariants Department of Mathematics Pennsylvania State University Potsdam, May 16, 2008 Outline K-homology, elliptic operators and C*-algebras.

More information

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES 1. Introduction Until now we have been considering homogenous spaces G/H where G is a Lie group and H is a closed subgroup. The natural

More information

EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms

EQUIVARIANT COHOMOLOGY. p : E B such that there exist a countable open covering {U i } i I of B and homeomorphisms EQUIVARIANT COHOMOLOGY MARTINA LANINI AND TINA KANSTRUP 1. Quick intro Let G be a topological group (i.e. a group which is also a topological space and whose operations are continuous maps) and let X be

More information

Deformations of calibrated D-branes in flux generalized complex manifolds

Deformations of calibrated D-branes in flux generalized complex manifolds Deformations of calibrated D-branes in flux generalized complex manifolds hep-th/0610044 (with Luca Martucci) Paul Koerber koerber@mppmu.mpg.de Max-Planck-Institut für Physik Föhringer Ring 6 D-80805 München

More information

THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES

THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES Denis Bell 1 Department of Mathematics, University of North Florida 4567 St. Johns Bluff Road South,Jacksonville, FL 32224, U. S. A. email: dbell@unf.edu This

More information

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS SHOO SETO Abstract. These are the notes to an expository talk I plan to give at MGSC on Kähler Geometry aimed for beginning graduate students in hopes to motivate

More information

B-FIELDS, GERBES AND GENERALIZED GEOMETRY

B-FIELDS, GERBES AND GENERALIZED GEOMETRY B-FIELDS, GERBES AND GENERALIZED GEOMETRY Nigel Hitchin (Oxford) Durham Symposium July 29th 2005 1 PART 1 (i) BACKGROUND (ii) GERBES (iii) GENERALIZED COMPLEX STRUCTURES (iv) GENERALIZED KÄHLER STRUCTURES

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Noncommutative Contact Algebras Hideki Omori Yoshiaki Maeda Naoya Miyazaki Akira Yoshioka

More information

LECTURE 2: SYMPLECTIC VECTOR BUNDLES

LECTURE 2: SYMPLECTIC VECTOR BUNDLES LECTURE 2: SYMPLECTIC VECTOR BUNDLES WEIMIN CHEN, UMASS, SPRING 07 1. Symplectic Vector Spaces Definition 1.1. A symplectic vector space is a pair (V, ω) where V is a finite dimensional vector space (over

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

Lifting to non-integral idempotents

Lifting to non-integral idempotents Journal of Pure and Applied Algebra 162 (2001) 359 366 www.elsevier.com/locate/jpaa Lifting to non-integral idempotents Georey R. Robinson School of Mathematics and Statistics, University of Birmingham,

More information

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky Homogeneous para-kähler Einstein manifolds Dmitri V. Alekseevsky Hamburg,14-18 July 2008 1 The talk is based on a joint work with C.Medori and A.Tomassini (Parma) See ArXiv 0806.2272, where also a survey

More information

SOME EXERCISES IN CHARACTERISTIC CLASSES

SOME EXERCISES IN CHARACTERISTIC CLASSES SOME EXERCISES IN CHARACTERISTIC CLASSES 1. GAUSSIAN CURVATURE AND GAUSS-BONNET THEOREM Let S R 3 be a smooth surface with Riemannian metric g induced from R 3. Its Levi-Civita connection can be defined

More information

Simple Lie subalgebras of locally nite associative algebras

Simple Lie subalgebras of locally nite associative algebras Simple Lie subalgebras of locally nite associative algebras Y.A. Bahturin Department of Mathematics and Statistics Memorial University of Newfoundland St. John's, NL, A1C5S7, Canada A.A. Baranov Department

More information

The eta invariant and the equivariant spin. bordism of spherical space form 2 groups. Peter B Gilkey and Boris Botvinnik

The eta invariant and the equivariant spin. bordism of spherical space form 2 groups. Peter B Gilkey and Boris Botvinnik The eta invariant and the equivariant spin bordism of spherical space form 2 groups Peter B Gilkey and Boris Botvinnik Mathematics Department, University of Oregon Eugene Oregon 97403 USA Abstract We use

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

MATHEMATICS 217 NOTES

MATHEMATICS 217 NOTES MATHEMATICS 27 NOTES PART I THE JORDAN CANONICAL FORM The characteristic polynomial of an n n matrix A is the polynomial χ A (λ) = det(λi A), a monic polynomial of degree n; a monic polynomial in the variable

More information

HYPERKÄHLER MANIFOLDS

HYPERKÄHLER MANIFOLDS HYPERKÄHLER MANIFOLDS PAVEL SAFRONOV, TALK AT 2011 TALBOT WORKSHOP 1.1. Basic definitions. 1. Hyperkähler manifolds Definition. A hyperkähler manifold is a C Riemannian manifold together with three covariantly

More information

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY

HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY HAMILTONIAN ACTIONS IN GENERALIZED COMPLEX GEOMETRY TIMOTHY E. GOLDBERG These are notes for a talk given in the Lie Groups Seminar at Cornell University on Friday, September 25, 2009. In retrospect, perhaps

More information

ERRATA FOR INTRODUCTION TO SYMPLECTIC TOPOLOGY

ERRATA FOR INTRODUCTION TO SYMPLECTIC TOPOLOGY ERRATA FOR INTRODUCTION TO SYMPLECTIC TOPOLOGY DUSA MCDUFF AND DIETMAR A. SALAMON Abstract. These notes correct a few typos and errors in Introduction to Symplectic Topology (2nd edition, OUP 1998, reprinted

More information

The Seiberg-Witten equations and the Weinstein conjecture II: More closed integral curves for the Reeb vector field. Clifford Henry Taubes

The Seiberg-Witten equations and the Weinstein conjecture II: More closed integral curves for the Reeb vector field. Clifford Henry Taubes 2/15/07 The Seiberg-Witten equations and the Weinstein conjecture II: More closed integral curves for the Reeb vector field Clifford Henry Taubes Department of Mathematics Harvard University Cambridge

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Tractor Calculi for Parabolic Geometries Andreas Cap A. Rod Gover Vienna, Preprint ESI 792

More information

Representations of Lorentz Group

Representations of Lorentz Group Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: How do we find the smallest (irreducible) representations of the

More information

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES ASIAN J. MATH. c 2008 International Press Vol. 12, No. 3, pp. 289 298, September 2008 002 ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES RAUL QUIROGA-BARRANCO Abstract.

More information

Categorical techniques for NC geometry and gravity

Categorical techniques for NC geometry and gravity Categorical techniques for NC geometry and gravity Towards homotopical algebraic quantum field theory lexander Schenkel lexander Schenkel School of Mathematical Sciences, University of Nottingham School

More information

Geometry of Twistor Spaces

Geometry of Twistor Spaces Geometry of Twistor Spaces Claude LeBrun Simons Workshop Lecture, 7/30/04 Lecture Notes by Jill McGowan 1 Twistor Spaces Twistor spaces are certain complex 3-manifolds which are associated with special

More information

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem PETER B. GILKEY Department of Mathematics, University of Oregon Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem Second Edition CRC PRESS Boca Raton Ann Arbor London Tokyo Contents

More information

Introduction to Group Theory

Introduction to Group Theory Chapter 10 Introduction to Group Theory Since symmetries described by groups play such an important role in modern physics, we will take a little time to introduce the basic structure (as seen by a physicist)

More information

Infinitesimal Einstein Deformations. Kähler Manifolds

Infinitesimal Einstein Deformations. Kähler Manifolds on Nearly Kähler Manifolds (joint work with P.-A. Nagy and U. Semmelmann) Gemeinsame Jahrestagung DMV GDM Berlin, March 30, 2007 Nearly Kähler manifolds Definition and first properties Examples of NK manifolds

More information

Published as: J. Geom. Phys. 10 (1993)

Published as: J. Geom. Phys. 10 (1993) HERMITIAN STRUCTURES ON HERMITIAN SYMMETRIC SPACES F. Burstall, O. Muškarov, G. Grantcharov and J. Rawnsley Published as: J. Geom. Phys. 10 (1993) 245-249 Abstract. We show that an inner symmetric space

More information

CHAPTER 1 PRELIMINARIES

CHAPTER 1 PRELIMINARIES CHAPTER 1 PRELIMINARIES 1.1 Introduction The aim of this chapter is to give basic concepts, preliminary notions and some results which we shall use in the subsequent chapters of the thesis. 1.2 Differentiable

More information

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009 THE GEOMETRY OF B-FIELDS Nigel Hitchin (Oxford) Odense November 26th 2009 THE B-FIELD IN PHYSICS B = i,j B ij dx i dx j flux: db = H a closed three-form Born-Infeld action: det(g ij + B ij ) complexified

More information

Lecture 22 - F 4. April 19, The Weyl dimension formula gives the following dimensions of the fundamental representations:

Lecture 22 - F 4. April 19, The Weyl dimension formula gives the following dimensions of the fundamental representations: Lecture 22 - F 4 April 19, 2013 1 Review of what we know about F 4 We have two definitions of the Lie algebra f 4 at this point. The old definition is that it is the exceptional Lie algebra with Dynkin

More information

SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY

SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY M. F. ATIYAH, V. K. PATODI AND I. M. SINGER 1 Main Theorems If A is a positive self-adjoint elliptic (linear) differential operator on a compact manifold then

More information

2 G. D. DASKALOPOULOS AND R. A. WENTWORTH general, is not true. Thus, unlike the case of divisors, there are situations where k?1 0 and W k?1 = ;. r;d

2 G. D. DASKALOPOULOS AND R. A. WENTWORTH general, is not true. Thus, unlike the case of divisors, there are situations where k?1 0 and W k?1 = ;. r;d ON THE BRILL-NOETHER PROBLEM FOR VECTOR BUNDLES GEORGIOS D. DASKALOPOULOS AND RICHARD A. WENTWORTH Abstract. On an arbitrary compact Riemann surface, necessary and sucient conditions are found for the

More information

Anomalies and SPT phases

Anomalies and SPT phases Anomalies and SPT phases Kazuya Yonekura, Kavli IPMU Based on A review of [1508.04715] by Witten [1607.01873] KY [1609.?????] Yuji Tachikawa and KY Introduction One of the motivations: What is the most

More information

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition) Lecture 0: A (Brief) Introduction to Group heory (See Chapter 3.3 in Boas, 3rd Edition) Having gained some new experience with matrices, which provide us with representations of groups, and because symmetries

More information

Triple product p-adic L-functions for balanced weights and arithmetic properties

Triple product p-adic L-functions for balanced weights and arithmetic properties Triple product p-adic L-functions for balanced weights and arithmetic properties Marco A. Seveso, joint with Massimo Bertolini, Matthew Greenberg and Rodolfo Venerucci 2013 Workshop on Iwasawa theory and

More information

Geometric Modelling Summer 2016

Geometric Modelling Summer 2016 Geometric Modelling Summer 2016 Exercises Benjamin Karer M.Sc. http://gfx.uni-kl.de/~gm Benjamin Karer M.Sc. Geometric Modelling Summer 2016 1 Dierential Geometry Benjamin Karer M.Sc. Geometric Modelling

More information

Transparent connections

Transparent connections The abelian case A definition (M, g) is a closed Riemannian manifold, d = dim M. E M is a rank n complex vector bundle with a Hermitian metric (i.e. a U(n)-bundle). is a Hermitian (i.e. metric) connection

More information

I. Why Quantum K-theory?

I. Why Quantum K-theory? Quantum groups and Quantum K-theory Andrei Okounkov in collaboration with M. Aganagic, D. Maulik, N. Nekrasov, A. Smirnov,... I. Why Quantum K-theory? mathematical physics mathematics algebraic geometry

More information

Topics in Representation Theory: Roots and Weights

Topics in Representation Theory: Roots and Weights Topics in Representation Theory: Roots and Weights 1 The Representation Ring Last time we defined the maximal torus T and Weyl group W (G, T ) for a compact, connected Lie group G and explained that our

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

2 VLADIMIR I. CHERNOUSOV AND VLADIMIR P. PLATONOV For any m which is not squarefree and any l, there exists a division algebra D of index m over K = Q

2 VLADIMIR I. CHERNOUSOV AND VLADIMIR P. PLATONOV For any m which is not squarefree and any l, there exists a division algebra D of index m over K = Q THE RATIONALITY PROBLEM FOR SEMISIMPLE GROUP VARIETIES VLADIMIR I. CHERNOUSOV AND VLADIMIR P. PLATONOV 1. Introduction An irreducible algebraic variety X dened over a eld K is called K- rational (resp.

More information

Connection Variables in General Relativity

Connection Variables in General Relativity Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008

More information

Plan for the rest of the semester. ψ a

Plan for the rest of the semester. ψ a Plan for the rest of the semester ϕ ψ a ϕ(x) e iα(x) ϕ(x) 167 Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: and

More information

c Igor Zelenko, Fall

c Igor Zelenko, Fall c Igor Zelenko, Fall 2017 1 18: Repeated Eigenvalues: algebraic and geometric multiplicities of eigenvalues, generalized eigenvectors, and solution for systems of differential equation with repeated eigenvalues

More information

spinor derivative r S with the projection p onto the kernel of the Cliord multiplication D :?(S)?! rs?(t M S) g p?(t M S)?!?(Ker ): The elememts of th

spinor derivative r S with the projection p onto the kernel of the Cliord multiplication D :?(S)?! rs?(t M S) g p?(t M S)?!?(Ker ): The elememts of th Strictly pseudoconvex spin manifolds, Feerman spaces and Lorentzian twistor spinors Helga Baum January 1, 1997 Abstract We prove that there exist global solutions of the twistor equation on the Fefferman

More information

J.F. Cari~nena structures and that of groupoid. So we will nd topological groupoids, Lie groupoids, symplectic groupoids, Poisson groupoids and so on.

J.F. Cari~nena structures and that of groupoid. So we will nd topological groupoids, Lie groupoids, symplectic groupoids, Poisson groupoids and so on. Lie groupoids and algebroids in Classical and Quantum Mechanics 1 Jose F. Cari~nena Departamento de Fsica Teorica. Facultad de Ciencias. Universidad de Zaragoza, E-50009, Zaragoza, Spain. Abstract The

More information

Dirac Operator. Göttingen Mathematical Institute. Paul Baum Penn State 6 February, 2017

Dirac Operator. Göttingen Mathematical Institute. Paul Baum Penn State 6 February, 2017 Dirac Operator Göttingen Mathematical Institute Paul Baum Penn State 6 February, 2017 Five lectures: 1. Dirac operator 2. Atiyah-Singer revisited 3. What is K-homology? 4. The Riemann-Roch theorem 5. K-theory

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

Choice of Riemannian Metrics for Rigid Body Kinematics

Choice of Riemannian Metrics for Rigid Body Kinematics Choice of Riemannian Metrics for Rigid Body Kinematics Miloš Žefran1, Vijay Kumar 1 and Christopher Croke 2 1 General Robotics and Active Sensory Perception (GRASP) Laboratory 2 Department of Mathematics

More information

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture)

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) Building Geometric Structures: Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) A geometric structure on a manifold is a cover

More information