Jet Substructure In ATLAS

Size: px
Start display at page:

Download "Jet Substructure In ATLAS"

Transcription

1 Jet Substructure In ATLAS INFN Pisa & University of Arizona Parton Showers & Event Structure At The LHC (Northwest Terascale Research Projects Workshop) University of Oregon February 23-27, 2009

2 Overview Motivation and challenges Physics interest in jet mass and substructure General considerations for detector jets The ATLAS detector Brief overview Jet reconstruction sequences in ATLAS Calorimeter signal reconstruction Using tracks in jet reconstruction Experimental environment Pile-up in ATLAS Expectations for experimental sensitivities to jet substructure Conclusions/outlook Slide 2

3 Jet Mass & Substructure Gained interest at LHC Decay products of highly boosted heavy particles all reconstructed as one (narrow) jet E.g. top quark Indication of source from jet mass requires high resolution of spatial structures Jet mass measurement notoriously difficult due to (hadronic( hadronic) shower spread Substructure variables more useful? E.g. y-scaley scale We try to understand sensitivities Dependence on calorimeter signal choice Prominent constituent reconstruction Other sub-structures? structures? 2 light quark jets from W decay and 1 b-jet See Jon Walsh s s talk this afternoon for more physics motivations! Slide 3

4 Image of Particle Jets in Detectors 10 GeV 1 GeV 100 MeV Slide 4 Change of composition Radiation and decay inside detector volume Randomization of original particle content Defocusing changes shape in lab frame Charged particles bend in solenoid field Attenuation changes energy Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material Hadronic and electromagnetic cacades in calorimeters Distribute energy spatially Lateral particle shower overlap

5 Image of Particle Jets in Detectors 10 GeV 1 GeV 100 MeV Slide 5 Change of composition Radiation and decay inside detector volume Randomization of original particle content Defocusing changes shape in lab frame Charged particles bend in solenoid field Attenuation changes energy Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material Hadronic and electromagnetic cacades in calorimeters Distribute energy spatially Lateral particle shower overlap

6 Image of Particle Jets in Detectors 10 GeV 1 GeV 100 MeV Slide 6 Change of composition Radiation and decay inside detector volume Randomization of original particle content Defocusing changes shape in lab frame Charged particles bend in solenoid field Attenuation changes energy Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material Hadronic and electromagnetic cacades in calorimeters Distribute energy spatially Lateral particle shower overlap

7 Image of Particle Jets in Detectors 10 GeV 1 GeV 100 MeV Slide 7 Change of composition Radiation and decay inside detector volume Randomization of original particle content Defocusing changes shape in lab frame Charged particles bend in solenoid field Attenuation changes energy Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material Hadronic and electromagnetic cacades in calorimeters Distribute energy spatially Lateral particle shower overlap

8 Image of Particle Jets in Detectors 10 GeV 1 GeV 100 MeV + c c c c c c c c c c c c + + Slide 8 Change of composition Radiation and decay inside detector volume Randomization of original particle content Defocusing changes shape in lab frame Charged particles bend in solenoid field Attenuation changes energy Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material Hadronic and electromagnetic cacades in calorimeters Distribute energy spatially Lateral particle shower overlap

9 (Experimental) Considerations Jet mass and substructure reconstruction Unfold calorimeter shower shapes as much as possible Use calorimeter signal definition following particles Provide stable estimators for chosen variables Electronic and pile-up noise Control/understand fluctuations in jet signal composition due to UE and PU contributions Reconstruction considerations Physical meaningful substructure linked to certain jet algorithm E.g. y-scale y only meaningful for kt jets kt not a favorite from experimental point of view vacuum cleaner effect,, sensitivity to noise/pile-up But can re-run run kt clustering on constituents of Anti-kT kt, SISCone,, etc. jets!! Y-scale comes from the last n recombinations,, i.e. hardest part of jet! May have to focus on harder part of jets in general Mass from constituents above threshold only (limit from m=2 n hardest constituents) Slide 9

10 The ATLAS Detector Total weight : 7000 t Overall length: 46 m Overall diameter: 23 m Magnetic field: 2T solenoid + toroid Slide 10

11 EM Barrel EMB Hadronic Endcap Tile Barrel EM Endcap EMEC Forward The ATLAS Calorimeters Electromagnetic Barrel η < 1.4 Electromagnetic EndCap < η < 3.2 Hadronic Tile η < 1.7 Hadronic EndCap 1.5 < η < 3.2 Forward Calorimeter 3.2 < η < 4.9 Tile Extended Barrel Varied granularity Varied technologies Overlap/crack regions Slide 11

12 Electromagnetic Calorimetry Highly segmented lead/liquid argon accordion No azimuthal cracks 3 depth segments + pre-sampler (limited coverage) Strip cells in 1 st layer Very high granularity in pseudo- rapidity Δ η Δϕ Deep cells in 2 nd layer High granularity in both directions Δ η Δϕ Shallow cells in 3 rd layer Δ η Δϕ Electromagnetic Barrel Slide 12

13 Hadronic Calorimetry Tile calorimeter Iron/scintillator tiled readout 3 depth segments Quasi-projective readout cells First two layers: Δ η Δ ϕ Third layer Δ η Δ ϕ Very fast light collection ~50 ns Dual fiber readout for each channel Slide 13

14 EndCap Calorimeters Electromagnetic Spanish Fan accordion Highly segmented with up to three longitudinal segments η < 2.5, middle layer Δ η Δ ϕ < η < 3.2 Hadronic liquid argon/copper calorimeter Parallel plate design Four longitudinal segments Quasi-projective cells η < 2.5 Δ η Δ ϕ < η < 3.2 Slide 14

15 Forward Calorimeters Design features Compact absorbers Small showers Tubular thin gap electrodes Suppress positive charge build-up up (Ar+) in high ionization rate environment Stable calibration Rectangular non-projective readout cells Δ η Δ ϕ Electromagnetic FCal1 Liquid argon/copper Gap ~260 μm Hadronic FCal2 Liquid argon/tungsten Gap ~375 μm Hadronic FCal3 Liquid argon/tungsten Gap ~500 μm FCal1 FCal3 FCal2 Slide 15

16 Collecting Cells: Towers Imposes regular grid view on event ( Δ η Δ ϕ = ) Motivated by event ET flow Natural for trigger! Calorimeter cell signals are summed up in tower bins Default: no cell selection, all cells are included Indiscriminatory signal sum includes cells without any true signal at all Sum typically includes geometrical weight Towers have fixed direction Massless four-momentum representation on electro- magnetic energy scale (,, ) (,,, ) with Slide projective cells E E p p p p E p p p ηϕ ηϕ ηϕ x y z = ηϕ = x + y + z w cell 1.0 w cell non-projective cells E ηϕ = ηϕ w celle 0, 0, cell ηϕ ηϕ ( A cell cell A ηϕ ηϕ) 0 ηϕ ηϕ 1 if A cell Δ η Δ ϕ = ηϕ ηϕ < 1 if A cell >Δ η Δ ϕ

17 Topological Cell Clusters (1) Motivation Attempt reconstruction of individual particle showers Reconstruct 3-dim 3 clusters of cells with correlated signals Use shape of these clusters to locally calibrate them Explore differences between electromagnetic and hadronic shower development and select best suited calibration Supress noise with least bias on physics signals Often less than 50% of all cells in an event with real signal Some implications of jet environment Shower overlap cannot always be resolved Clusters represent merged particle showers in dense jets Clusters have varying sizes No simple jet area as in case of towers Clusters are massless 4-vectors (as towers) No artificial mass due to showering Slide 17

18 Topological Cell Clusters (2) Cluster seeding Cluster seed is cell with significant signal above a primary threshold Significance = signal-over over-noise (may include PU noise) Cluster growth: direct neighbours Neighbouring cells (in 3-d) 3 with cell signal significance above some basic threshold are collected Basic threshold = 0 presently, i.e. all neighbouring cells Cluster growth: control of expansion Collect neighbours of neighbours for cells above secondary signal significance threshold Seconday threshold lower than primary (seed) threshold Cluster splitting Analyze clusters for local signal maxima and split if more than one found In 3-d, 3 again Final energy blob can contain low signal cells Cells survive due to significant neighbouring signal Cells inside blob can have negative signals Slide 18

19 Topological Cell Clusters (3) cluster candidate #1 #3? cluster candidate #2 Slide 19

20 Calorimeter Signal Definition Affects Jet Shape Slide 20

21 Recall Jet Composition Charged particles carry large fraction of total jet energy on average ~60% from charged pions, Kaons,, protons These particles can leave a track in the inner detector Momentum (pt( pt) ) measurement pt fraction carried by reconstructed tracks is observable They are all hadrons Jet with a large fraction of pt carried by charged particles is more hadronic Sensitivity of calibrated calorimeter signal to this fraction? Slide 21

22 Track Jets Aim: relative improvement of the jet energy resolution Jet-by by-jet correction Reconstruct jets from inner detector tracks Match track jets with calorimeter jets Calculate pt fraction carried by tracks Determine correction as function of pt fraction ATLAS MC (preliminary) f trk = p p Ttrack, Tcalo, Slide 22

23 Jets Not From Hard Scatter Dangerous background for W+n jets cross-sections sections etc. Lowest pt jet of final state can be faked or misinterpreted as coming from underlying event or multiple interactions Underlying event: multi-parton interactions Multiple interactions: pile-up Extra jets from UE are hard to handle No real experimental indication of jet source Some correlation with hard scattering No separate vertex Jet-by by-jet handle for multiple interactions Classic indicator for multiple interactions is number of reconstructed vertices in event Tevatron with RMS(z_vertex) ) ~ 30 cm LHC RMS(z_vertex) ) ~ 8 cm If we can attach vertices to reconstructed jets, we can in principle identify jets not from hard scattering Limited to pseudorapidities within 2.5! Slide 23

24 Application of Trackjets Match tracks in track jet with calorimeter jet Calculate pt fraction coming from each vertex for given jet Jets with little pt from primary vertex are likely from multiple interactions (e.g. pile-up) ATLAS MC (preliminary) ATLAS MC (preliminary) Slide 24

25 LHC Environment: Pile-Up Multiple interactions between partons in other protons in the same bunch crossing Consequence of high rate (luminosity) and high proton- proton total cross-section section (~80-~100 ~100 mb) Statistically independent of hard scattering But similar models used for soft physics Signal history in calorimeter increases noise Signal times slower than bunch crossing rate (25 ns) Noise has coherent character Cell signals linked through past shower developments without pile-up E t ~ 81 GeV E t ~ 58 GeV Slide 25

26 LHC Environment: Pile-Up Multiple interactions with design luminosity between partons in other pile-up E t ~ 81 GeV protons in the same bunch Calorimeter crossing signal effected by PU in Consequence of high rate a window (luminosity) of ~625 and ns, high i.e. proton- ~25 bunch Xings proton (23 total history, cross-section section 1 in-time, 1 E t ~ 58 GeV following) (~80-~100 ~100 mb) need about Statistically independent of 25*(~20-~24) hard ~24) scattering (poisson-distributed) But similar statistically models used for soft independent physics Signal history in fully calorimeter simulated min increases bias events noise to simulate Signal the detector times effect slower of PU on than bunch crossing rate (25 1 signal ns) event at 10 34! (and Noise need has lots of coherent those to avoid long range character correlations in PU between signal Cell signals events!) linked through past shower developments Slide 26

27 LHC Environment: Pile-Up Multiple interactions between partons in other protons in the same bunch RMS( p T ) (GeV) crossing Consequence of high rate (luminosity) and high proton- proton total cross-section section (~80-~100 ~100 mb) Statistically independent of hard scattering But similar models used for soft physics Signal history in calorimeter increases noise Signal times slower than bunch crossing rate (25 ns) Noise has coherent character Cell signals linked through past shower developments L = 10 cm s 8 GeV = cm 2 s 1 18 GeV R 0.4 R 0.7 π ( ) R Slide 27

28 Jet Masses Mass measurement challenging Particle jet level mass is reference Simulations only! Mass of calorimeter jet is affected by shower spreads Enters: signal definition dependence, cluster shapes/overlap, noise, Sensitivity to losses of soft particles in unbiased mass reconstruction Magnetic field, dead material, Can we reconstruct jet masses from principal constituents? Instead of all constituents cluster jets tower jets cluster jets tower jets cluster jets tower jets ATLAS MC (preliminary) y < < y < < y < 4.2 ( ) M M M jet jet jet rec true true Slide 28

29 Mass Reconstruction Sensitivities (1) Contribution from low energetic particles lost Overall effect depends on signal definition How about effect on mass? Exercise: remove particles below pt threshold from jet and re-calculate mass Remember: towers are not calibrated More severe effect of cut in tower jets Clusters are calibrated More similar to particle selection in jets Slide 29

30 Mass Reconstruction Sensitivities (2) change of mass QCD kt jets, D = 0.6 Slide 30 log 10 (least biased reconstructed mass/gev)

31 Jet Composition (1) 1 st question: any relation between number of particles, towers, clusters in jets? Most interesting for kt D = 0.6 here Look at matching callorimeter/truth jets Note: not the most important variable! We already expect change of jet picture by detector signal definition Hints on resolution power for jet shape variables and mass Slide 31

32 Jet Composition (2) We expected clusters to represent indivdual particles Cannot be perfect in busy jet environment! Shower overlap in finite calorimeter granularity Some resolution power, though Much better than for tower jets! ~1.6:1 particles:clusters in central region ~1:1 in endcap region Best match of readout granularity, shower size and jet particle energy flow Happy coincidence, not a design feature of the ATLAS calorimeter! Slide 32

33 Cluster-Particle Matching (1) Jet of dispersed particles Many clusters Lateral jet structure well resolved Substructure reconstruction should be possible No significant shower overlap in calorimeter Full simulation, QCD 2-to2 to-2, EM calorimeter central layer Slide 33

34 Cluster-Particle Matching (2) Jet of close-by particles Most energy in one cell cluster Cluster is rather narrow in itself Little to no substructure reconstruction possible Shower overlap cannot be resolved in calorimeter granularity Full simulation, QCD 2-to2 to-2, EM calorimeter central layer Slide 34

35 Cluster-Particle Matching (3) Jet of close-by particles Energy shared in clusters staggered in depth due to hadronic shower development Indication of good resolution power Can reconstruct some substructure? Each cluster is a 4-vector! 4 Full simulation, QCD 2-to2 to-2, EM calorimeter central layer Slide 35

36 Sidetrack: UE With Clusters I. Vivarelli Immediate enhancement: Look at TransMIN, TransMAX separately! Slide 36

37 Jet Energy Density Slide 37

38 Jet Substructure Mass too complex? Can be too sensitive to small signals in jets UE, pile-up, other noise Use YSplitter to detect substructure Determines scale y for splitting a giving jet into 2,3, subjects, as determined by y cut, from y = y p jet cut jet T More stable as only significant constituents are used? At least additional information to mass Other option: Look at mass of 2 n 2 n hardest constituents (Ben Lillie,ANL) Not very sensitive to calorimeter signal details! Slide 38

39 Conclusions Slide 39

40 Conclusion/Outlook Determination of jet origin from experimental (calorimeter) observables feasible Systematic evaluation of boosted heavy particle missing Not high on the list right now? Clear preference for cluster signal for jet constituent based quantities Seems to better follow jet composition Principal constituents based reconstruction of jet shapes needs studied Good chance of increased stability in the presence of pile- up Loss/gain of sensitivity for y-scale, y mass, to be explored Need to include track jets into picture! Slide 40

Reconstruction in Collider Experiments (Part IX)

Reconstruction in Collider Experiments (Part IX) Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments (Part IX) Peter Loch University of Arizona Tucson,

More information

Jet Reconstruction and Energy Scale Determination in ATLAS

Jet Reconstruction and Energy Scale Determination in ATLAS Jet Reconstruction and Energy Scale Determination in ATLAS Ariel Schwartzman 3 rd Top Workshop: from the Tevatron to ATLAS Grenoble, 23-Oct-2008 1 Outline ATLAS Calorimeters Calorimeter signal reconstruction:

More information

ATLAS Hadronic Calorimeters 101

ATLAS Hadronic Calorimeters 101 ATLAS Hadronic Calorimeters 101 Hadronic showers ATLAS Hadronic Calorimeters Tile Calorimeter Hadronic Endcap Calorimeter Forward Calorimeter Noise and Dead Material First ATLAS Physics Meeting of the

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

Jet energy measurement in the ATLAS detector

Jet energy measurement in the ATLAS detector Jet energy measurement in the ATLAS detector Jet energy scale uncertainties are usually among largest experimental uncertainties Need precise jet energy measurements and provide uncertainties and theit

More information

Jet Calibration Issues in t t Events

Jet Calibration Issues in t t Events Jet Calibration Issues in t t Events Andreas Jantsch Max-Planck-Institut für Physik Munich 39. Herbstschule für Hochenergiephysik Maria Laach A. Jantsch (MPI für Physik) Jet Calibration Issues in t t Events

More information

Jet Data Quality at ATLAS. Ian Moult IPP Summer Student May 2010-September 2010

Jet Data Quality at ATLAS. Ian Moult IPP Summer Student May 2010-September 2010 Jet Data Quality at ATLAS Ian Moult IPP Summer Student May 2010-September 2010 Abstract The application of automated checks for offline jet data quality based on the comparison of jet variables with reference

More information

Jet Results in pp and Pb-Pb Collisions at ALICE

Jet Results in pp and Pb-Pb Collisions at ALICE Jet Results in pp and Pb-Pb Collisions at ALICE Oliver Busch for the ALICE Collaboration Motivation Jet reconstruction in ALICE Jets in pp Jets in Pb-Pb Hadron triggered recoil jets Motivation Jets originate

More information

ATLAS Calorimetry (Geant)

ATLAS Calorimetry (Geant) signature for New Physics (e.g. compositness, jet multiplicity in SUSY) high of E miss in LHC physics: Importance used in invariant mass reconstruction in decays neutrinos: A=H! fifi, t! lνb, etc. involving

More information

Jet reconstruction with first data in ATLAS

Jet reconstruction with first data in ATLAS University of Victoria, Victoria, BC, Canada E-mail: damir.lelas@cern.ch The algorithms used for jet reconstruction in ATLAS are presented. General performance aspects like jet signal linearity and the

More information

Jet Energy Scale in ATLAS

Jet Energy Scale in ATLAS Jet Energy Scale in ATLAS Pierre Antoine Delsart LAPP (Annecy) Top workshop, Grenoble, october 2007 Introduction Brief intro to atlas calorimeter Key difficulties concerning jets in Atlas and LHC Atlas

More information

Future prospects for the measurement of direct photons at the LHC

Future prospects for the measurement of direct photons at the LHC Future prospects for the measurement of direct photons at the LHC David Joffe on behalf of the and CMS Collaborations Southern Methodist University Department of Physics, 75275 Dallas, Texas, USA DOI:

More information

Jet Energy Calibration. Beate Heinemann University of Liverpool

Jet Energy Calibration. Beate Heinemann University of Liverpool Jet Energy Calibration Beate Heinemann University of Liverpool Fermilab, August 14th 2006 1 Outline Introduction CDF and D0 calorimeters Response corrections Multiple interactions η-dependent corrections

More information

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2 PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2 M.M. Morgenstern On behalf of the ATLAS collaboration Nikhef, National institute for subatomic physics, Amsterdam, The Netherlands E-mail: a marcus.matthias.morgenstern@cern.ch

More information

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations QCD Jets at the LHC Leonard Apanasevich University of Illinois at Chicago on behalf of the ATLAS and CMS collaborations Outline Physics at the LHC Jet Reconstruction and Performance Clustering Algorithms

More information

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Leptons and Photons at the (S)LHC Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Outline: Introduction. e/γ. Muons. Tau leptons. SLHC. Summary. Leptons

More information

Performance of muon and tau identification at ATLAS

Performance of muon and tau identification at ATLAS ATL-PHYS-PROC-22-3 22/2/22 Performance of muon and tau identification at ATLAS On behalf of the ATLAS Collaboration University of Oregon E-mail: mansoora.shamim@cern.ch Charged leptons play an important

More information

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group Introduction Construction, Integration and Commissioning on the Surface Installation

More information

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2 Prepared for submission to JINS International Conference on Instrumentation for Colliding Beam Physics 7 February - March, 7 Budker Institute of Nuclear Physics, Novosibirsk, Russia ALAS jet and missing

More information

Atlas results on diffraction

Atlas results on diffraction Atlas results on diffraction Alessia Bruni INFN Bologna, Italy for the ATLAS collaboration Rencontres du Viet Nam 14th Workshop on Elastic and Diffractive Scattering Qui Nhon, 16/12/2011 EDS 2011 Alessia

More information

Upgrade of the CMS Forward Calorimetry

Upgrade of the CMS Forward Calorimetry Upgrade of the CMS Forward Calorimetry Riccardo Paramatti Cern & INFN Roma IPMLHC2013 Tehran 9 th October Credits to Francesca Cavallari and Pawel de Barbaro Outline Radiation damage at HL-LHC ECAL and

More information

Commissioning of the ATLAS LAr Calorimeter

Commissioning of the ATLAS LAr Calorimeter Commissioning of the ATLAS LAr Calorimeter S. Laplace (CNRS/LAPP) on behalf of the ATLAS Liquid Argon Calorimeter Group Outline: ATLAS in-situ commissioning steps Introduction to the ATLAS LAr Calorimeter

More information

Status of the physics validation studies using Geant4 in ATLAS

Status of the physics validation studies using Geant4 in ATLAS Status of the physics validation studies using Geant4 in ATLAS On behalf of the ATLAS Geant4 Validation Team A.Dell Acqua CERN EP/SFT, Geneva, CH dellacqu@mail.cern.ch The new simulation for the ATLAS

More information

Reconstruction in Collider Experiments (Part XI)

Reconstruction in Collider Experiments (Part XI) Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments (Part XI) Peter Loch University of Arizona Tucson,

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

QCD dijet analyses at DØ

QCD dijet analyses at DØ QCD dijet analyses at DØ Pavel Demine for the DØ collaboration DAPNIA-SPP, CEA Saclay, France Contents: DØ detector Jet reconstruction at DØ Dijet mass spectrum Dijet azimuthal angle decorrelation XII

More information

Jet reconstruction in W + jets events at the LHC

Jet reconstruction in W + jets events at the LHC Jet reconstruction in W + jets events at the LHC Ulrike Schnoor Michigan State University High Energy Physics Institutsseminar IKTP TU Dresden, Nov 4, 010 Jet reconstruction in W + jets events at the LHC

More information

Recent Results of + c + X and + b + X Production Cross Sections at DØ

Recent Results of + c + X and + b + X Production Cross Sections at DØ Recent Results of + c + X and + b + X Production Cross Sections at DØ Florida State University Wednesday March 18th Virginia HEP Seminar 1 The Standard Model (SM) The Standard Model (SM) describes the

More information

Don Lincoln. QCD Results from the Tevatron

Don Lincoln. QCD Results from the Tevatron Recent Don Lincoln Fermilab DØ Calorimeter Uranium-Liquid Argon Calorimeter stable, uniform response, radiation hard Compensating: e/π 1 Uniform hermetic coverage η 4.2, recall η ln[tan(θ/2)] Longitudinal

More information

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 Risultati dell esperimento ATLAS dopo il run 1 di LHC C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 1 LHC physics Standard Model is a gauge theory based on the following

More information

Nikos Varelas. University of Illinois at Chicago. CTEQ Collaboration Meeting Northwestern November 20, Nikos Varelas. CTEQ Meeting Nov 20, 2009

Nikos Varelas. University of Illinois at Chicago. CTEQ Collaboration Meeting Northwestern November 20, Nikos Varelas. CTEQ Meeting Nov 20, 2009 QCD Physics at CMS University of Illinois at Chicago CTEQ Collaboration Meeting Northwestern November 0, 009 1 QCD Physics at CMS University of Illinois at Chicago CTEQ Collaboration Meeting Northwestern

More information

Early physics with Atlas at LHC

Early physics with Atlas at LHC Early physics with Atlas at LHC Bellisario Esposito (INFN-Frascati) On behalf of the Atlas Collaboration Outline Atlas Experiment Physics goals Next LHC run conditions Physics processes observable with

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

Matt Nguyen Rencontres QGP-France September 13 th, 2013

Matt Nguyen Rencontres QGP-France September 13 th, 2013 Matt Nguyen Rencontres QGP-France September 13 th, 2013 Review of jets in heavy ions 2 The Usual Disclaimers Not a comprehensive review, rather mostly a summary of experimental talks at July Jussieu workshop*

More information

arxiv: v3 [hep-ex] 23 Aug 2017

arxiv: v3 [hep-ex] 23 Aug 2017 EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) Eur. Phys. J. C77 (07) 490 DOI:.40/epjc/s05-07-5004-5 CERN-PH-EP-05-04 4th August 07 arxiv:60.094v [hep-ex] Aug 07 Topological tering in the calorimeters

More information

Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector

Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector EUROPEAN ORGANISAION FOR NUCLEAR RESEARCH (CERN) Submitted to: EPJC CERN-EP-207-055 8th May 207 arxiv:705.022v [hep-ex] 5 May 207 Identification and rejection of pile-up s at high pseudorapidity with the

More information

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek

A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING. Qun Fan & Arie Bodek A NEW TECHNIQUE FOR DETERMINING CHARGE AND MOMENTUM OF ELECTRONS AND POSITRONS USING CALORIMETRY AND SILICON TRACKING Qun Fan & Arie Bodek Department of Physics and Astronomy University of Rochester Rochester,

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

FYST17 Lecture 6 LHC Physics II

FYST17 Lecture 6 LHC Physics II FYST17 Lecture 6 LHC Physics II 1 Today & Monday The LHC accelerator Challenges The experiments (mainly CMS and ATLAS) Important variables Preparations Soft physics EWK physics Some recent results Focus

More information

Studies of the diffractive photoproduction of isolated photons at HERA

Studies of the diffractive photoproduction of isolated photons at HERA Studies of the diffractive photoproduction of isolated photons at HERA P. J. Bussey School of Physics and Astronomy University of Glasgow Glasgow, United Kingdom, G12 8QQ E-mail: peter.bussey@glasgow.ac.uk

More information

Calorimetry at Future Particle Colliders Technologies & Reconstruction Techniques

Calorimetry at Future Particle Colliders Technologies & Reconstruction Techniques Calorimetry at Future Particle Colliders Technologies & Reconstruction Techniques Department of Physics University of Arizona Tucson, Arizona, USA Preliminaries This talk is not intended to give a comprehensive

More information

Physics object reconstruction in the ATLAS experiment

Physics object reconstruction in the ATLAS experiment Physics object reconstruction in the ALAS experiment, on behalf of the ALAS Collaboration Niels Bohr Institute, Copenhagen University Blegdamsvej 7, Denmark E-mail: xella@nbi.dk his document presents a

More information

Discovery of the W and Z 0 Bosons

Discovery of the W and Z 0 Bosons Discovery of the W and Z 0 Bosons Status of the Standard Model ~1980 Planning the Search for W ± and Z 0 SppS, UA1 and UA2 The analyses and the observed events First measurements of W ± and Z 0 masses

More information

ATLAS Jet Physics Results and Jet Substructure in 2010 Data from the LHC

ATLAS Jet Physics Results and Jet Substructure in 2010 Data from the LHC ATLAS Jet Physics Results and Jet Substructure in 20 Data from the LHC With a particular focus on experimental issues and effects David W. Miller On behalf of The ATLAS Experiment SLAC National Accelerator

More information

JET FRAGMENTATION DENNIS WEISER

JET FRAGMENTATION DENNIS WEISER JET FRAGMENTATION DENNIS WEISER OUTLINE Physics introduction Introduction to jet physics Jets in heavy-ion-collisions Jet reconstruction Paper discussion The CMS experiment Data selection and track/jet

More information

Underlying Event Measurements at the LHC

Underlying Event Measurements at the LHC 14th EDS Blois Workshop Underlying Event Measurements at the LHC Michael Heinrich for the ATLAS and CMS collaborations INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (EKP) PHYSICS FACULTY KIT University of

More information

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration Luminosity measurement and K-short production with first LHCb data Sophie Redford University of Oxford for the LHCb collaboration 1 Introduction Measurement of the prompt Ks production Using data collected

More information

Jet quenching in PbPb collisions in CMS

Jet quenching in PbPb collisions in CMS Jet quenching in PbPb collisions in CMS Bolek Wyslouch École Polytechnique Massachusetts Institute of Technology arxiv:1102.1957 Orsay, February 18, 2011 1 Heavy Ions at the LHC Huge energy jump from RHIC:

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

FYST17 Lecture 6 LHC Physics II

FYST17 Lecture 6 LHC Physics II FYST17 Lecture 6 LHC Physics II 1 Today, (tomorrow) & Next week The LHC accelerator Challenges The experiments (mainly CMS and ATLAS) Important variables Preparations Soft physics minímum bias, underlying

More information

Measurement of multi-jet cross sections in proton proton collisions at a 7 TeV center-of-mass energy

Measurement of multi-jet cross sections in proton proton collisions at a 7 TeV center-of-mass energy Eur. Phys. J. C (2011) 71:1763 DOI 10.1140/epjc/s10052-011-1763-6 Regular Article - Experimental Physics Measurement of multi-jet cross sections in proton proton collisions at a 7 TeV center-of-mass energy

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Top Quark Mass Reconstruction from High Pt Jets at LHC

Top Quark Mass Reconstruction from High Pt Jets at LHC Top Quark Mass Reconstruction from High Pt Jets at LHC IJAZ AHMED National Centre for Physics Islamabad, Pakistan Signaling the Arrival of the LHC Era, ICTP, Italy Outlines o o o o o o o o o o Motivations

More information

Mini-Bias and Underlying Event Studies at CMS

Mini-Bias and Underlying Event Studies at CMS Yuan Chao Department of Physics National Taiwan University 1617 Taipei, TAIWAN 1 Introduction The Tevatron experiments provide us very good information for the quantum chromodynamics (QCD) modelings of

More information

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC Matthias Hamer on behalf of the ATLAS collaboration Introduction The ATLAS Phase II Inner Tracker Expected Tracking Performance

More information

Atlas Status and Perspectives

Atlas Status and Perspectives Atlas Status and Perspectives Bruno Mansoulié (IRFU-Saclay) On behalf of the Topics The hot news: Heavy Ion analysis Data taking in 2010 Luminosity, Data taking & quality, trigger Detector performance

More information

Prospective of gamma hadron correlation. study in CMS experiment

Prospective of gamma hadron correlation. study in CMS experiment Prospective of gamma hadron correlation. study in CMS experiment Yeonju Go (Korea University) for the CMS collaboration 5-6 Dec. 2014 HIM meeting Contents Physics Motivation Direct gamma-hadron correlation

More information

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Christof Roland/ MIT For the CMS Collaboration Rencontres de Moriond QCD Session 14 th March, 2010 Moriond

More information

How to Measure Top Quark Mass with CMS Detector??? Ijaz Ahmed Comsats Institute of Information Technology, Islamabad

How to Measure Top Quark Mass with CMS Detector??? Ijaz Ahmed Comsats Institute of Information Technology, Islamabad How to Measure Top Quark Mass with CMS Detector??? Ijaz Ahmed Comsats Institute of Information Technology, Islamabad Outlines o o o o o o o High Pt top basic idea Methods for jets selection Top quark mass

More information

Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide

Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide Des muons cosmiques aux premières collisions S. Laplace, P. Iengo Pour le groupe ATLAS-LAPP Plan: Introduction Commissioning du calo Lar

More information

Charged particle multiplicity in proton-proton collisions with ALICE

Charged particle multiplicity in proton-proton collisions with ALICE Charged particle multiplicity in proton-proton collisions with ALICE Introduction on the motivations for a pp physics programme with ALICE A short review on the detectors used to reconstruct charged particle

More information

ATLAS Results on Pb+Pb Collisions

ATLAS Results on Pb+Pb Collisions ATLAS Results on Pb+Pb Collisions Helena Santos, LIP-Lisbon for the ATLAS Collaboration International Europhysics Conference on High Energy Physiscs, 21 27 July 2011, Grenoble Heavy Ion Physics Systematic

More information

Electronic calibration of the ATLAS LAr calorimeter and commissioning with cosmic muon signals

Electronic calibration of the ATLAS LAr calorimeter and commissioning with cosmic muon signals Journal of Physics: Conference Series Electronic calibration of the ATLAS LAr calorimeter and commissioning with cosmic muon signals To cite this article: Carolina Gabaldón and the Atlas LAr Collaboration

More information

Measurement of inclusive charged jet production in pp and Pb-Pb

Measurement of inclusive charged jet production in pp and Pb-Pb Measurement of inclusive charged jet production in pp and Pb-Pb collisions at S NN 5. 02TeV with ALICE Run2 Data Yan Li for the ALICE collaboration Central China Normal University CLHCP 2016 18/12/2016

More information

Testing QCD at the LHC and the Implications of HERA DIS 2004

Testing QCD at the LHC and the Implications of HERA DIS 2004 Testing QCD at the LHC and the Implications of HERA DIS 2004 Jon Butterworth Impact of the LHC on QCD Impact of QCD (and HERA data) at the LHC Impact of the LHC on QCD The LHC will have something to say

More information

Electron Identification

Electron Identification Chapter 7 Electron Identification The identification of electrons is of fundamental importance to the ATLAS physics program. Leptons are the primary signature of electro-weak processes. They are used in

More information

Particle Flow Algorithms

Particle Flow Algorithms Particle Flow Algorithms Daniel Jeans, KEK IAS Program on High Energy Physics HKUST Hong Kong January, 2018 introduction and motivation bias towards e+ e- collisions general features of detectors and reconstruction

More information

2 ATLAS operations and data taking

2 ATLAS operations and data taking The ATLAS experiment: status report and recent results Ludovico Pontecorvo INFN - Roma and CERN on behalf of the ATLAS Collaboration 1 Introduction The ATLAS experiment was designed to explore a broad

More information

Electron Identification

Electron Identification Chapter 7 Electron Identification The identification of electrons is of fundamental importance to the ATLAS physics program. Leptons are the primary signature of electro-weak processes. They are used in

More information

Results from combined CMS-TOTEM data

Results from combined CMS-TOTEM data Department of Physics Engineering, Hacettepe University, Ankara, Turkey The University of Iowa, Iowa City, USA E-mail: Sercan.Sen@cern.ch The combined data taking of the CMS and TOTEM experiments allows

More information

Jet physics in ATLAS. Paolo Francavilla. IFAE-Barcelona. Summer Institute LNF , QCD, Heavy Flavours and Higgs physics

Jet physics in ATLAS. Paolo Francavilla. IFAE-Barcelona. Summer Institute LNF , QCD, Heavy Flavours and Higgs physics Jet physics in ATLAS IFAE-Barcelona Summer Institute LNF-2012-2, QCD, Heavy Flavours and Higgs physics Frascati National Laboratories 27 June 2012 Jets in the LHC era At the Large Hadron Collider (LHC),

More information

Aad, G. et al. (2010) Performance of the ATLAS detector using first collision data. Journal of High Energy Physics 2010 (9). p. 1.

Aad, G. et al. (2010) Performance of the ATLAS detector using first collision data. Journal of High Energy Physics 2010 (9). p. 1. Aad, G. et al. (2) Performance of the detector using first collision data. Journal of High Energy Physics 2 (9). p. 1. ISSN 29-8479 BBhttp://eprints.gla.ac.uk/64327/ Deposited on: 16 May 212 Enlighten

More information

Top quarks objects definition and performance at ATLAS

Top quarks objects definition and performance at ATLAS 5th International Workshop on op Quark Physics (OP) doi:.88/74-6596/45// op quarks objects definition and performance at ALAS V. Boisvert on behalf of the ALAS Collaboration Royal Holloway University of

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE

Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE 1 Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE Hiroki Yokoyama for the ALICE collaboration LPSC, Université Grenoble-Alpes, CNRS/IN2P3 University

More information

Excited Electron Search in the e eeγ Channel in ATLAS at S = 7 TeV

Excited Electron Search in the e eeγ Channel in ATLAS at S = 7 TeV Excited Electron Search in the e eeγ Channel in ATLAS at S = 7 TeV Juliana Cherston August 5, 11 Abstract The discovery of an excited electron would provide evidence for the theory of compositeness. In

More information

Hadron Collider Physics, HCP2004, June 14-18

Hadron Collider Physics, HCP2004, June 14-18 ) " % "" ' & % % " ) " % '% &* ' ) * ' + " ' ) ( $#! ' "") ( * " ) +% % )( (. ' + -, '+ % &* ' ) ( 021 % # / ( * *' 5 4* 3 %( '' ' " + +% Hadron Collider Physics, HCP2004, June 14-18 The Run II DØ Detector

More information

arxiv: v1 [hep-ex] 6 Jul 2007

arxiv: v1 [hep-ex] 6 Jul 2007 Muon Identification at ALAS and Oliver Kortner Max-Planck-Institut für Physik, Föhringer Ring, D-005 München, Germany arxiv:0707.0905v1 [hep-ex] Jul 007 Abstract. Muonic final states will provide clean

More information

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF of the Inclusive Isolated Cross at IFAE Barcelona HEP Seminar University of Virginia Outline Theoretical introduction Prompt photon production The The Photon detection prediction The pqcd NLO prediction

More information

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University Jet Physics at ALICE Oliver Busch University of Tsukuba Heidelberg University 1 2 Outline Introduction Results from pp collisions Identified jet fragmentation in pp Jets in heavy-ion collisions Jet shapes

More information

Z 0 /γ +Jet via electron decay mode at s = 7TeV in

Z 0 /γ +Jet via electron decay mode at s = 7TeV in PRAMANA c Indian Academy of Sciences Vol. 86, No. 2 journal of February 2016 physics pp. 487 491 Z 0 /γ +Jet via electron decay mode at s = 7TeV in CMS@LHC U BHAWANDEEP and SUMAN B BERI for CMS Collaboration

More information

Physics with Tau Lepton Final States in ATLAS. Felix Friedrich on behalf of the ATLAS Collaboration

Physics with Tau Lepton Final States in ATLAS. Felix Friedrich on behalf of the ATLAS Collaboration Physics with Tau Lepton Final States in ATLAS on behalf of the ATLAS Collaboration HEP 2012, Valparaiso (Chile), 06.01.2012 The Tau Lepton m τ = 1.8 GeV, heaviest lepton cτ = 87 μm, short lifetime hadronic

More information

QCD Studies at LHC with the Atlas detector

QCD Studies at LHC with the Atlas detector QCD Studies at LHC with the Atlas detector Introduction Sebastian Eckweiler - University of Mainz (on behalf of the ATLAS Collaboration) Examples of QCD studies Minimum bias & underlying event Jet-physics

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Physics potential of ATLAS upgrades at HL-LHC

Physics potential of ATLAS upgrades at HL-LHC M.Testa on behalf of the ATLAS Collaboration INFN LNF, Italy E-mail: marianna.testa@lnf.infn.it ATL-PHYS-PROC-207-50 22 September 207 The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start

More information

Boosted Top Resonance Searches at CMS

Boosted Top Resonance Searches at CMS Boosted Top Resonance Searches at CMS Justin Pilot, UC Davis on behalf of the CMS Collaboration Northwest Terascale Workshop, Using Jet Substructure University of Oregon 5 April 013 Introduction Many new

More information

Analyses with photons or electrons with early LHC data at the CMS experiment

Analyses with photons or electrons with early LHC data at the CMS experiment Analyses with photons or electrons with early LHC data at the CMS experiment Dottorando: Daniele Franci Relatori: Prof. Egidio Longo Dott. Daniele del Re Prof. Shahram Rahatlou Seminario progetto di tesi,

More information

Validation of Geant4 Physics Models Using Collision Data from the LHC

Validation of Geant4 Physics Models Using Collision Data from the LHC Journal of Physics: Conference Series Validation of Geant4 Physics Models Using Collision from the LHC To cite this article: S Banerjee and CMS Experiment 20 J. Phys.: Conf. Ser. 33 032003 Related content

More information

Status and Performance of the ATLAS Experiment

Status and Performance of the ATLAS Experiment Status and Performance of the ATLAS Experiment P. Iengo To cite this version: P. Iengo. Status and Performance of the ATLAS Experiment. 15th International QCD Conference (QCD 10), Jun 2010, Montpellier,

More information

The Heavy Quark Search at the LHC

The Heavy Quark Search at the LHC The Heavy Quark Search at the LHC The Heavy Quark Search at the LHC Backgrounds: estimating and suppressing tt, multijets,... jet mass technique NLO effects matrix elements for extra jets initial state

More information

Measurement of the baryon number transport with LHCb

Measurement of the baryon number transport with LHCb Measurement of the baryon number transport with LHCb Marco Adinolfi University of Bristol On behalf of the LHCb Collaboration 13 April 2011 / DIS 2011 Marco Adinolfi DIS 2011-13 April 2011 - Newport News

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/168600

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Review of LHCb results on MPI, soft QCD and diffraction

Review of LHCb results on MPI, soft QCD and diffraction Review of LHCb results on MPI, soft QCD and diffraction Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow EDS Blois 2015, Borgo (Corse), 30.06.2015 Outline LHCb - general purpose forward experiment

More information

QCD Jet Physics with CMS LHC

QCD Jet Physics with CMS LHC QCD Jet Physics with CMS Detector @ LHC Y.Chao for the CMS Collaboration (National Taiwan University, Taipei, Taiwan) QCD10 (25th annivervary) 2010/06/28-07/03 The Large Hadron Collider Four major experiments

More information

Electroweak Physics at the Tevatron

Electroweak Physics at the Tevatron Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004 Outline Importance Methodology Single Boson Measurements

More information

High Pt Top Quark Mass Reconstruction in CMS

High Pt Top Quark Mass Reconstruction in CMS High Pt Top Quark Mass Reconstruction in CMS IJAZ AHMED National Centre for Physics (NCP), Islamabad First IPM meeting on LHC Physics, April 20-24 24 2009 Isfahan,, Iran Outlines o o o o o o o o o o Introduction

More information

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector ATLAS Geneva physics meeting Andrée Robichaud-Véronneau Outline Motivation Theoretical background for J/ψ hadroproduction

More information

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration Recent CMS results on heavy quarks and hadrons Alice Bean Univ. of Kansas for the CMS Collaboration July 25, 2013 Outline CMS at the Large Hadron Collider Cross section measurements Search for state decaying

More information

ATLAS: Status and First Results

ATLAS: Status and First Results ATLAS: Status and First Results, University of Sheffield, on behalf of the ATLAS Collaboration 1 Overview of the ATLAS detector Status of the experiment Performance and physics results in the first six

More information