arxiv:hep-th/ v2 18 Sep 2005

Size: px
Start display at page:

Download "arxiv:hep-th/ v2 18 Sep 2005"

Transcription

1 New developments in the spectral asymptotics of quantum gravity arxiv:hep-th/ v2 18 Sep Introduction Giampiero Esposito, Guglielmo Fucci, Alexander Yu Kamenshchik, Klaus Kirsten INFN, Sezione di Napoli, and Dipartimento di Scienze Fisiche, Complesso Universitario di Monte S. Angelo, Via Cintia, Edificio N, Napoli, Italy Department of Physics, New Mexico Institute of Mining and Technology, Leroy Place 801, Socorro, NM 87801, USA Dipartimento di Fisica and INFN, Sezione di Bologna, Via Irnerio 46, Bologna, Italy; L D Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow, Russia Department of Mathematics, Baylor University, Waco, TX 76798, USA Abstract. A vanishing one-loop wave function of the Universe in the limit of small three-geometry is found, on imposing diffeomorphism-invariant boundary conditions on the Euclidean 4-ball in the de Donder gauge. This result suggests a quantum avoidance of the cosmological singularity driven by full diffeomorphism invariance of the boundary-value problem for one-loop quantum theory. All of this is made possible by a peculiar spectral cancellation on the Euclidean 4-ball, here derived and discussed. The physical motivations of our research result from the following active areas of research: i) Functional integrals and space-time approach to quantum field theory [1]. ii) Attempt to derive the whole set of physical laws from invariance principles [2]. iii) How to derive the early universe evolution from quantum physics; how to make sense of a wave function of the universe and of Hartle Hawking quantum cosmology [3, 4]. iv) Spectral theory and its physical applications, including functional determinants in one-loop quantum theory and hence the first corrections to classical dynamics [5]. The boundary conditions that we study are part of a unified scheme for Maxwell, Yang Mills and Quantized General Relativity at one loop, i.e. [6] [ ] πa = 0, 1) B [ ] ΦA) B = 0, 2)

2 New developments in the spectral asymptotics of quantum gravity 2 [ϕ] B = 0. 3) With our notation, π is a projector acting on the gauge field A, Φ is the gauge-fixing functional, ϕ is the ghost field or full set of ghost fields) [7]. Both equation 1) and 2) are preserved under infinitesimal gauge transformations provided that the ghost obeys homogeneous Dirichlet conditions as in 3). For gravity, we choose Φ so as to have an operator P of Laplace type on metric perturbations in the one-loop Euclidean theory. 2. Eigenvalue conditions for scalar modes On the Euclidean 4-ball, we expand metric perturbations h µν in terms of scalar, transverse vector, transverse-traceless tensor harmonics on S 3. For vector, tensor and ghost modes, boundary conditions reduce to Dirichlet or Robin [8]. For scalar modes, one finds eventually the eigenvalues E = x 2 from the roots x of [8] J nx) ± n x J nx) = 0, 4) J nx) + x 2 ± n ) J n x) = 0. 5) x Note that both x and x solve the same equation. For example, at small n and large x, the roots of Eq. 5) with + sign in front of n read as here s = 0, 1,..., ) x [ xs, n) βs, n) 1 + γ 1 β 2 s, n) + γ 2 β 4 s, n) + γ ] 3 β 6 s, n) + Oβ 8 ), 6) where βs, n) π s + n ), 7) 4 and having defined m 4n 2 ) γ 1 m) m 17), 8) 8 γ 2 m) m1/ m m2, 9) γ 3 m) = m1/ m+ 3 4 m3/ m m3, 10) as we have found in the second item of [9]. 3. Four generalized ζ-functions for scalar modes From Eqs. 4) and 5) we obtain the following integral representations of the resulting ζ-functions [8, 9]: ζ ± sin πs) A,B s) n 2s 2) dz z 2s π z log F ± A,B zn), 11) n=3 0

3 New developments in the spectral asymptotics of quantum gravity 3 where here β + n, β n + 2) ) F ± A zn) z β ± zni n zn) ± ni nzn), 12) F ± B zn) z β ± zni n zn) + zn) 2 2 ) ) ± n I n zn). 13) Regularity at the origin is easily proved in the elliptic sectors, corresponding to ζ ± A s) and ζ B s). 4. Regularity of ζ + B at s = 0 We now define τ 1 + z 2 ) 1/2 and consider the uniform asymptotic expansion away from τ = 1, with notation as in [8, 9]) ) z β + F + B zn) enητ) hn) 1 τ 2 ) r j,+ τ) 1 +, 14) τ τ n j the functions r j,+ being obtained from the Olver polynomials for the uniform asymptotic expansion of I n and I n. On splitting 1 dτ = µ dτ + 1 dτ with µ small, we get an 0 0 µ asymptotic expansion of the l.h.s. by writing, in the first interval on the r.h.s., ) r j,+ τ) R j,+ τ) log 1 +, 15) n j n j and then computing C j τ) R j,+ τ 4j = 1 τ) j 1 a=j 1 K j) a τa. 16) The integral 1 dτ is instead found to yield a vanishing contribution in the µ 1 limit µ [9]. Remarkably, by virtue of the spectral identity gj) 4j a=j which holds j = 1,...,, we find and where lim s 0 sζ+ B s) = 1 6 Γa + 1) Γa j + 1) Kj) a = 0, 17) 12 a=3 ζ + B 0) = aa 1)a 2)K 3) a = 0, 18) 12 a=2 ωa)k 3) a + fj)gj) = , 19) ωa) 1 Γa + 1) [ log2) 6a2 9a + 1) Γa 2) 6 Γa + 2) 4 Γa + 1) ] + 2ψa + 1) ψa 2) ψ4), 20)

4 New developments in the spectral asymptotics of quantum gravity 4 [ ] fj) 1)j j + ζ R j 2)1 δ j,3 ) + γδ j,3. 21) j! The spectral cancellation 17) achieves three goals: i) Vanishing of log 2 coefficient in Eq. 19); ii) Vanishing of fj)gj) in Eq. 19); iii) Regularity at the origin of ζ + B. To cross-check our analysis, we evaluate r j,+τ) r j, τ) and hence obtain R j,+ τ) R j, τ) for all j. Only j = 3 contributes to ζ ± B 0), and we find ζ + B 0) = ζ B 0) 1 4 [ Γl + 1) ψl + 2) 1 ] κ 3) 2l+1 24 Γl 2) l + 1) l=1 = = , 22) in agreement with Eq. 19), where κ 3) 2l+1 are the four coefficients on the right-hand side of τ R 3,+ R 3, ) = 1 τ 2 ) 4 80τ 3 24τ τ 7 8τ ). 9 23) Within this framework, the spectral cancellation reads as 4 l=1 which is a particular case of Γl + 1) Γl 2) κ3) 2l+1 = 0, 24) a=a maxj) a=a min j) Γa + 1)/2) Γa + 1)/2 j) κj) a = 0. 25) Interestingly, the full ζ0) value for pure gravity is then found to be positive: ζ0) = [9], which suggests a quantum avoidance of the cosmological singularity driven by full diffeomorphism invariance of the boundary-value problem for one-loop quantum theory [9]. 5. Open problems Several open problems should be brought to the attention of the reader. Some key points are as follows. i) We have encountered a boundary-value problem where the generalized ζ-function remains well defined, even though the Mellin transform relating ζ-function to heat kernel does not exist, since strong ellipticity is violated [6]. Are the spectral cancellations 17) and 25) a peculiar property of the Euclidean 4-ball, or can they be extended to more general Riemannian manifolds with non-empty boundary? ii) What is the deeper underlying reason for finding ζ + B 0) ζ B 0) = 2? Is it possible to foresee a geometrical or topological or group-theoretical origin of this result?

5 New developments in the spectral asymptotics of quantum gravity 5 iii) Is it correct to say that our positive ζ0) value for pure gravity engenders a quantum avoidance of the cosmological singularity at one-loop level? [9, 10] Does the result remain true in higher-loop calculations or on using other regularization techniques for the oneloop correction? iv) The whole scheme might be relevant for AdS/CFT in light of a profound link between AdS/CFT and the Hartle Hawking wave function of the universe [11]. v) What happens if one considers instead non-local boundary data, e.g. those giving rise to surface states for the Laplacian? [2, 12, 13] As far as item i) is concerned, we should add what follows. The integral representation 11) of the generalized ζ-function is legitimate because, for any fixed n, there is a countable infinity of roots x j and x j of Eqs. 4) and 5), and they grow approximately linearly with the integer j counting such roots. The functions F ± A and F ± B admit therefore a canonical-product representation which ensures that the integral representation 11) reproduces the standard definition of generalized ζ-function [8]. Furthermore, even though the Mellin transform relating ζ-function to integrated heat kernel cannot be exploited when strong ellipticity is not fulfilled, it remains possible to define a generalized ζ-function. For this purpose, a weaker assumption provides a sufficient condition, i.e. the existence of a sector in the complex plane free of eigenvalues of the leading symbol of the differential operator under consideration [8, 9]. To make sure we have not overlooked some properties of the spectrum, we have been looking for negative eigenvalues or zero-modes, but finding none. Indeed, negative eigenvalues E would imply purely imaginary roots x = iy of Eq. 5), but such roots do not exist, as one can check both numerically and analytically; zero-modes would be non-trivial eigenfunctions belonging to zero-eigenvalues, but all modes tensor, vector, scalar and ghost modes) are combinations of Bessel functions [8] for which this is impossible. As far as we can see, we still find sources of singularities at the origin in the generalized ζ-function resulting from lack of strong ellipticity, but the particular symmetries of the Euclidean 4-ball background reduce them to the four terms in Eq. 24), which add up to zero despite two of them are non-vanishing. The years to come will hopefully tell us whether our calculations may be viewed as a first step towards finding under which conditions a quantum theory of gravity is singularity free in cosmology [14]. Acknowledgments We are grateful to Gerald Dunne, Dmitri Fursaev, Mariel Santangelo and Antonello Scardicchio for stimulating questions, and to Emilio Elizalde for having organized such a beautiful Conference. The work of G Esposito has been partially supported by PRIN SINTESI. K Kirsten is grateful to the Baylor University Research Committee, to the Max-Planck-Institute for Mathematics in the Sciences Leipzig, Germany) and to the INFN for financial support. The work of A Yu Kamenshchik was partially supported

6 New developments in the spectral asymptotics of quantum gravity 6 by the Russian Foundation for Basic Research under the Grant No and by the Scientific School Grant No References [1] DeWitt B S 2003 The Global Approach to Quantum Field Theory Clarendon Press, Oxford) [2] Esposito G 2000 Int. J. Mod. Phys. A [3] Hartle J B and Hawking S W 1983 Phys. Rev. D [4] Hawking S W 1984 Nucl. Phys. B [5] Esposito G 1994 Quantum Gravity, Quantum Cosmology and Lorentzian Geometries, Lecture Notes in Physics, New Series m, Vol. m12 Springer, Berlin) [6] Avramidi I G and Esposito G 1999 Commun. Math. Phys [7] Esposito G, Kamenshchik A Yu and Pollifrone G 1997 Euclidean Quantum Gravity on Manifolds with Boundary, Vol. 85 of Fundamental Theories of Physics Kluwer, Dordrecht) [8] Esposito G, Fucci G, Kamenshchik A Yu and Kirsten K 2005 Class. Quantum Grav [9] Esposito G, Fucci G, Kamenshchik A Yu and Kirsten K 2005 hep-th/ , hep-th/ ) [10] Hawking S W 2005 Phys. Scripta T [11] Horowitz G T and Maldacena J 2004 JHEP [12] Schröder M 1989 Rep. Math. Phys [13] Esposito G 1999 Class. Quantum Grav [14] Kiefer C 2005 Quantum gravity: general introduction and recent developments gr-qc/ )

EUCLIDEAN QUANTUM GRAVITY: FIELD THEORETICAL AND COSMOLOGICAL ASPECTS

EUCLIDEAN QUANTUM GRAVITY: FIELD THEORETICAL AND COSMOLOGICAL ASPECTS EUCLIDEAN QUANTUM GRAVITY: FIELD THEORETICAL AND COSMOLOGICAL ASPECTS Giampiero Esposito, INFN, Napoli Problemi Attuali di Fisica Teorica Vietri, 3 Aprile 2004 1 1. PHYSICAL MOTIVATIONS FOR QUANTUM GRAVITY

More information

Mostra d'oltremare Padiglione 20, Napoli, Italy; Mostra d'oltremare Padiglione 19, Napoli, Italy; Russian Academy of Sciences

Mostra d'oltremare Padiglione 20, Napoli, Italy; Mostra d'oltremare Padiglione 19, Napoli, Italy; Russian Academy of Sciences COULOMB GAUGE IN ONE-LOOP QUANTUM COSMOLOGY Giampiero Esposito 1;; and Alexander Yu Kamenshchik 3; 1 Istituto Nazionale di Fisica Nucleare PostScript processed by the SLAC/DESY Libraries on 7 Jun 1995.

More information

On the Zero-Point Energy of a Conducting Spherical Shell. Abstract

On the Zero-Point Energy of a Conducting Spherical Shell. Abstract On the Zero-Point Energy of a Conducting Spherical Shell Giampiero Esposito, 1,2 Alexander Yu. Kamenshchik 3,4 and Klaus Kirsten 5 1 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Mostra d Oltremare

More information

The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization.

The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization. The Mandelstam Leibbrandt prescription and the Discretized Light Front Quantization. Roberto Soldati Dipartimento di Fisica A. Righi, Università di Bologna via Irnerio 46, 40126 Bologna, Italy Abstract

More information

arxiv:hep-th/ v1 1 Sep 2003

arxiv:hep-th/ v1 1 Sep 2003 Classical brackets for dissipative systems Giuseppe Bimonte, Giampiero Esposito, Giuseppe Marmo and Cosimo Stornaiolo arxiv:hep-th/0309020v1 1 Sep 2003 Dipartimento di Scienze Fisiche, Università di Napoli,

More information

arxiv:quant-ph/ v3 26 Jul 1999

arxiv:quant-ph/ v3 26 Jul 1999 EXACT SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSE-POWER POTENTIAL Shi-Hai Dong 1, Zhong-Qi Ma,1 and Giampiero Esposito 3,4 1 Institute of High Energy Physics, P. O. Box 918(4), Beijing 100039, People

More information

arxiv:hep-th/ v3 24 Apr 2007

arxiv:hep-th/ v3 24 Apr 2007 Anti-de Sitter boundary in Poincaré coordinates C. A. Ballón Bayona and Nelson R. F. Braga Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 Brazil Abstract

More information

arxiv:gr-qc/ v1 31 Jul 2001

arxiv:gr-qc/ v1 31 Jul 2001 SINGULARITY AVOIDANCE BY COLLAPSING SHELLS IN QUANTUM GRAVITY 1 arxiv:gr-qc/0107102v1 31 Jul 2001 Petr Hájíček Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.

More information

arxiv:hep-th/ v1 2 May 1997

arxiv:hep-th/ v1 2 May 1997 Exact Renormalization Group and Running Newtonian Coupling in Higher Derivative Gravity arxiv:hep-th/9705008v 2 May 997 A.A. Bytseno State Technical University, St. Petersburg, 95252, Russia L.N. Granda

More information

Holographic Wilsonian Renormalization Group

Holographic Wilsonian Renormalization Group Holographic Wilsonian Renormalization Group JiYoung Kim May 0, 207 Abstract Strongly coupled systems are difficult to study because the perturbation of the systems does not work with strong couplings.

More information

One Loop Tests of Higher Spin AdS/CFT

One Loop Tests of Higher Spin AdS/CFT One Loop Tests of Higher Spin AdS/CFT Simone Giombi UNC-Chapel Hill, Jan. 30 2014 Based on 1308.2337 with I. Klebanov and 1401.0825 with I. Klebanov and B. Safdi Massless higher spins Consistent interactions

More information

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula Arshad Momen and Tapobrata Sarkar the Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11 4014 Trieste, Italy

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

Covariant Lagrangian Formalism for Chern-Simons Theories

Covariant Lagrangian Formalism for Chern-Simons Theories Covariant Lagrangian Formalism for Chern-Simons Theories by A.Borowiec 1, L.Fatibene 2,3, M.Francaviglia 2,3,4, S.Mercadante 2 1 Institute of Theoretical Physics, University of Wroc law (Poland) 2 Dipartimento

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

arxiv:hep-th/ v2 6 Jan 2004

arxiv:hep-th/ v2 6 Jan 2004 hep-th/0310063 January 2004 arxiv:hep-th/0310063v2 6 Jan 2004 The group approach to AdS space propagators: A fast algorithm Thorsten Leonhardt, Werner Rühl Fachbereich Physik, TU Kaiserslautern Postfach

More information

arxiv:hep-th/ v3 25 Sep 2006

arxiv:hep-th/ v3 25 Sep 2006 OCU-PHYS 46 AP-GR 33 Kaluza-Klein Multi-Black Holes in Five-Dimensional arxiv:hep-th/0605030v3 5 Sep 006 Einstein-Maxwell Theory Hideki Ishihara, Masashi Kimura, Ken Matsuno, and Shinya Tomizawa Department

More information

arxiv:gr-qc/ v1 4 Aug 1995

arxiv:gr-qc/ v1 4 Aug 1995 QUANTUM EFFECTS IN DSF preprint 95/6, revised version FRIEDMANN-ROBERTSON-WALKER COSMOLOGIES Giampiero Esposito, Gennaro Miele, Luigi Rosa, Pietro Santorelli arxiv:gr-qc/9508010v1 4 Aug 1995 Istituto Nazionale

More information

LQG, the signature-changing Poincaré algebra and spectral dimension

LQG, the signature-changing Poincaré algebra and spectral dimension LQG, the signature-changing Poincaré algebra and spectral dimension Tomasz Trześniewski Institute for Theoretical Physics, Wrocław University, Poland / Institute of Physics, Jagiellonian University, Poland

More information

The spectral zeta function

The spectral zeta function The spectral zeta function Bernd Ammann June 4, 215 Abstract In this talk we introduce spectral zeta functions. The spectral zeta function of the Laplace-Beltrami operator was already introduced by Minakshisundaram

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

Graviton contributions to the graviton self-energy at one loop order during inflation

Graviton contributions to the graviton self-energy at one loop order during inflation Graviton contributions to the graviton self-energy at one loop order during inflation PEDRO J. MORA DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA PASI2012 1. Description of my thesis problem. i. Graviton

More information

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations Outline General Relativity from Basic Principles General Relativity as an Extended Canonical Gauge Theory Jürgen Struckmeier GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de,

More information

arxiv:hep-th/ v1 18 Aug 1995

arxiv:hep-th/ v1 18 Aug 1995 preprint - UTF 354 Heat-kernel coefficients and functional determinants for higher-spin fields on the ball Klaus Kirsten 1 arxiv:hep-th/9508088v1 18 Aug 1995 Universität Leipzig, Institut für Theoretische

More information

arxiv:gr-qc/ v1 28 Apr 2006

arxiv:gr-qc/ v1 28 Apr 2006 Complex Lagrangians and phantom cosmology arxiv:gr-qc/0604126v1 28 Apr 2006 A.A. Andrianov 1, F. Cannata 2 and A. Y. Kamenshchik 2,3 1 V.A. Fock Department of Theoretical Physics, Saint Petersburg State

More information

arxiv:hep-th/ v1 29 Nov 2001

arxiv:hep-th/ v1 29 Nov 2001 Scalar fluctuations in dilatonic brane worlds February 1, 2008 Valerio Bozza arxiv:hep-th/0111268v1 29 Nov 2001 Dipartimento di Fisica E.R. Caianiello, Università di Salerno Via S. Allende, 84081 Baronissi

More information

Spectral Functions for Regular Sturm-Liouville Problems

Spectral Functions for Regular Sturm-Liouville Problems Spectral Functions for Regular Sturm-Liouville Problems Guglielmo Fucci Department of Mathematics East Carolina University May 15, 13 Regular One-dimensional Sturm-Liouville Problems Let I = [, 1 R, and

More information

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

One-loop renormalization in a toy model of Hořava-Lifshitz gravity 1/0 Università di Roma TRE, Max-Planck-Institut für Gravitationsphysik One-loop renormalization in a toy model of Hořava-Lifshitz gravity Based on (hep-th:1311.653) with Dario Benedetti Filippo Guarnieri

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

arxiv:gr-qc/ v1 26 Aug 1997

arxiv:gr-qc/ v1 26 Aug 1997 Action and entropy of lukewarm black holes SNUTP 97-119 Rong-Gen Cai Center for Theoretical Physics, Seoul National University, Seoul, 151-742, Korea arxiv:gr-qc/9708062v1 26 Aug 1997 Jeong-Young Ji and

More information

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times p. 1/2 Asymptotically safe Quantum Gravity Nonperturbative renormalizability and fractal space-times Frank Saueressig Institute for Theoretical Physics & Spinoza Institute Utrecht University Rapporteur

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

arxiv:hep-th/ v1 15 Mar 1996

arxiv:hep-th/ v1 15 Mar 1996 RUSSIAN GRAVITATIONAL SOCIETY INSTITUTE OF METROLOGICAL SERVICE CENTER OF GRAVITATION AND FUNDAMENTAL METROLOGY RGS-CSVR-002/96 hep-th/9603xxx arxiv:hep-th/9603107v1 15 Mar 1996 Multidimensional Extremal

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

Helicity conservation in Born-Infeld theory

Helicity conservation in Born-Infeld theory Helicity conservation in Born-Infeld theory A.A.Rosly and K.G.Selivanov ITEP, Moscow, 117218, B.Cheryomushkinskaya 25 Abstract We prove that the helicity is preserved in the scattering of photons in the

More information

Black hole entropy of gauge fields

Black hole entropy of gauge fields Black hole entropy of gauge fields William Donnelly (University of Waterloo) with Aron Wall (UC Santa Barbara) September 29 th, 2012 William Donnelly (UW) Black hole entropy of gauge fields September 29

More information

Noncommutative geometry, Grand Symmetry and twisted spectral triple

Noncommutative geometry, Grand Symmetry and twisted spectral triple Journal of Physics: Conference Series PAPER OPEN ACCESS Noncommutative geometry, Grand Symmetry and twisted spectral triple To cite this article: Agostino Devastato 2015 J. Phys.: Conf. Ser. 634 012008

More information

Multiple reflection expansion and heat kernel coefficients

Multiple reflection expansion and heat kernel coefficients Multiple reflection expansion and heat kernel coefficients arxiv:hep-th/0103037v1 6 Mar 001 M. Bordag D. Vassilevich University of Leipzig, Institute for Theoretical Physics Augustusplatz 10/11, 04109

More information

On quasi-normal modes, area quantization and Bohr correspondence principle

On quasi-normal modes, area quantization and Bohr correspondence principle On quasi-normal modes, area quantization and Bohr correspondence principle October 27, 2014 Dipartimento di Scienze, Istituto Universitario di Ricerca "Santa Rita", 59100 Prato, Italy Institute for Theoretical

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

arxiv:gr-qc/ v2 1 Oct 1998

arxiv:gr-qc/ v2 1 Oct 1998 Action and entropy of black holes in spacetimes with cosmological constant Rong-Gen Cai Center for Theoretical Physics, Seoul National University, Seoul, 151-742, Korea Jeong-Young Ji and Kwang-Sup Soh

More information

Complex General Relativity

Complex General Relativity Complex General Relativity Complex General Relativity by Giampiero Esposito National Institute for Nuclear Physics, Naples, Italy KLUWER ACADEMIC PUBLISHERS NEW YORK / BOSTON / /M OSCOW ebook ISBN: 0-306-47118-3

More information

γγ αβ α X µ β X µ (1)

γγ αβ α X µ β X µ (1) Week 3 Reading material from the books Zwiebach, Chapter 12, 13, 21 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 Green, Schwartz, Witten, chapter 2 1 Polyakov action We have found already

More information

arxiv: v1 [gr-qc] 11 Sep 2014

arxiv: v1 [gr-qc] 11 Sep 2014 Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 arxiv:1409.3370v1 [gr-qc] 11 Sep 2014 OPEN PROBLEMS IN GRAVITATIONAL PHYSICS S. Capozziello

More information

arxiv:gr-qc/ v2 18 Feb 2003

arxiv:gr-qc/ v2 18 Feb 2003 arxiv:gr-qc/0205129v2 18 Feb 2003 BULK SHAPE OF BRANE-WORLD BLACK HOLES ROBERTO CASADIO Dipartimento di Fisica, Università di Bologna and I.N.F.N., Sezione di Bologna, via Irnerio 46, 40126 Bologna, Italy

More information

On the geometric properties of AdS instantons

On the geometric properties of AdS instantons Journal of High Energy Physics On the geometric properties of AdS instantons To cite this article: Ali Kaya JHEP06(999)026 View the article online for updates and enhancements. This content was downloaded

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

arxiv: v2 [gr-qc] 26 May 2011

arxiv: v2 [gr-qc] 26 May 2011 UdeM-GPP-TH-08-173 arxiv:0812.2491[gr-qc] Monochromatic plane-fronted waves in conformal gravity are pure gauge Luca Fabbri 1,2 and M. B. Paranjape 1 1 Groupe de physique des particules, Département de

More information

HIGHER SPIN PROBLEM IN FIELD THEORY

HIGHER SPIN PROBLEM IN FIELD THEORY HIGHER SPIN PROBLEM IN FIELD THEORY I.L. Buchbinder Tomsk I.L. Buchbinder (Tomsk) HIGHER SPIN PROBLEM IN FIELD THEORY Wroclaw, April, 2011 1 / 27 Aims Brief non-expert non-technical review of some old

More information

Polynomial form of the Hilbert Einstein action

Polynomial form of the Hilbert Einstein action 1 Polynomial form of the Hilbert Einstein action M. O. Katanaev Steklov Mathematical Institute, Gubkin St. 8, Moscow, 119991, Russia arxiv:gr-qc/0507026v1 7 Jul 2005 6 July 2005 Abstract Configuration

More information

Higgs inflation: dark matter, detectability and unitarity

Higgs inflation: dark matter, detectability and unitarity Higgs inflation: dark matter, detectability and unitarity Rose Lerner University of Helsinki and Helsinki Institute of Physics In collaboration with John McDonald (Lancaster University) 0909.0520 (Phys.

More information

BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric

BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric BFK-gluing formula for zeta-determinants of Laplacians and a warped product metric Yoonweon Lee (Inha University, Korea) Geometric and Singular Analysis Potsdam University February 20-24, 2017 (Joint work

More information

Intrinsic Time Quantum Geometrodynamics (ITQG)

Intrinsic Time Quantum Geometrodynamics (ITQG) Intrinsic Time Quantum Geometrodynamics (ITQG) Assistant Professor Eyo Ita Eyo Eyo Ita Physics Department LQG International Seminar United States Naval Academy Annapolis, MD 27 October, 2015 Outline of

More information

Inflation in Flatland

Inflation in Flatland Inflation in Flatland Austin Joyce Center for Theoretical Physics Columbia University Kurt Hinterbichler, AJ, Justin Khoury, 1609.09497 Theoretical advances in particle cosmology, University of Chicago,

More information

List of Symbols, Notations and Data

List of Symbols, Notations and Data List of Symbols, Notations and Data, : Binomial distribution with trials and success probability ; 1,2, and 0, 1, : Uniform distribution on the interval,,, : Normal distribution with mean and variance,,,

More information

arxiv: v2 [hep-th] 3 Sep 2016

arxiv: v2 [hep-th] 3 Sep 2016 D quantum gravity on compact Riemann surfaces with non-conformal matter arxiv:166.191v [hep-th] 3 Sep 16 del Bilal and Lætitia Leduc Laboratoire de Physique Théorique de l École Normale Supérieure PSL

More information

Correlation Functions of Conserved Currents in Four Dimensional Conformal Field Theory with Higher Spin Symmetry

Correlation Functions of Conserved Currents in Four Dimensional Conformal Field Theory with Higher Spin Symmetry Bulg. J. Phys. 40 (2013) 147 152 Correlation Functions of Conserved Currents in Four Dimensional Conformal Field Theory with Higher Spin Symmetry Ya.S. Stanev INFN Sezione di Roma Tor Vergata, 00133 Rome,

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 Noname manuscript No. (will be inserted by the editor) Thermodynamics of Asymptotically Flat Black Holes in Lovelock Background N. Abbasvandi M. J. Soleimani Shahidan Radiman W.A.T. Wan Abdullah G. Gopir

More information

A note on Global Gauge Anomalies

A note on Global Gauge Anomalies A note on Global Gauge Anomalies Roberto Catenacci Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale A.Avogadro - Alessandria - Italy Sezione I.N.F.N. di Pavia - Pavia - Italy

More information

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT

THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION. S. Monni and M. Cadoni ABSTRACT INFNCA-TH9618 September 1996 THE 2D ANALOGUE OF THE REISSNER-NORDSTROM SOLUTION S. Monni and M. Cadoni Dipartimento di Scienze Fisiche, Università di Cagliari, Via Ospedale 72, I-09100 Cagliari, Italy.

More information

Dynamical compactification from higher dimensional de Sitter space

Dynamical compactification from higher dimensional de Sitter space Dynamical compactification from higher dimensional de Sitter space Matthew C. Johnson Caltech In collaboration with: Sean Carroll Lisa Randall 0904.3115 Landscapes and extra dimensions Extra dimensions

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

arxiv:hep-th/ v1 24 Sep 1998

arxiv:hep-th/ v1 24 Sep 1998 ICTP/IR/98/19 SISSA/EP/98/101 Quantum Integrability of Certain Boundary Conditions 1 arxiv:hep-th/9809178v1 24 Sep 1998 M. Moriconi 2 The Abdus Salam International Centre for Theoretical Physics Strada

More information

The Erlangen Program and General Relativity

The Erlangen Program and General Relativity The Erlangen Program and General Relativity Derek K. Wise University of Erlangen Department of Mathematics & Institute for Quantum Gravity Colloquium, Utah State University January 2014 What is geometry?

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

and the seeds of quantisation

and the seeds of quantisation noncommutative spectral geometry algebra doubling and the seeds of quantisation m.s.,.,, stabile, vitiello, PRD 84 (2011) 045026 mairi sakellariadou king s college london noncommutative spectral geometry

More information

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS Bendikov, A. and Saloff-Coste, L. Osaka J. Math. 4 (5), 677 7 ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS ALEXANDER BENDIKOV and LAURENT SALOFF-COSTE (Received March 4, 4)

More information

REMARKS ON THE MEMBRANE AND BUCKLING EIGENVALUES FOR PLANAR DOMAINS. Leonid Friedlander

REMARKS ON THE MEMBRANE AND BUCKLING EIGENVALUES FOR PLANAR DOMAINS. Leonid Friedlander REMARKS ON THE MEMBRANE AND BUCKLING EIGENVALUES FOR PLANAR DOMAINS Leonid Friedlander Abstract. I present a counter-example to the conjecture that the first eigenvalue of the clamped buckling problem

More information

[1] On the measure problem in slow roll inflation and loop quantum cosmology, A. Corichi and A. Karami. Preprint arxiv: [gr-qc].

[1] On the measure problem in slow roll inflation and loop quantum cosmology, A. Corichi and A. Karami. Preprint arxiv: [gr-qc]. Alejandro Corichi Publication List [1] On the measure problem in slow roll inflation and loop quantum cosmology, A. Corichi and A. Karami. Preprint arxiv:1010.4249 [gr-qc]. [2] Surface terms, asymptotics

More information

Microscopic entropy of the charged BTZ black hole

Microscopic entropy of the charged BTZ black hole Microscopic entropy of the charged BTZ black hole Mariano Cadoni 1, Maurizio Melis 1 and Mohammad R. Setare 2 1 Dipartimento di Fisica, Università di Cagliari and INFN, Sezione di Cagliari arxiv:0710.3009v1

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

arxiv:hep-th/ v3 12 May 1998

arxiv:hep-th/ v3 12 May 1998 Four-Dimensional Yang Mills Theory as a Deformation of Topological BF Theory arxiv:hep-th/9705123v3 12 May 1998 A. S. Cattaneo, 1 P. Cotta-Ramusino, 2 3 F. Fucito, 4 M. Martellini, 3 5 6 M. Rinaldi, 7

More information

Spectral theory of first order elliptic systems

Spectral theory of first order elliptic systems Spectral theory of first order elliptic systems Dmitri Vassiliev (University College London) 24 May 2013 Conference Complex Analysis & Dynamical Systems VI Nahariya, Israel 1 Typical problem in my subject

More information

Black Hole Entropy from Near Horizon Microstates

Black Hole Entropy from Near Horizon Microstates hep-th/9712251 HUTP-97/A106 Black Hole Entropy from Near Horizon Microstates Andrew Strominger Jefferson Laboratory of Physics Harvard University Cambridge, MA 02138 Abstract Black holes whose near horizon

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem

Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem PETER B. GILKEY Department of Mathematics, University of Oregon Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem Second Edition CRC PRESS Boca Raton Ann Arbor London Tokyo Contents

More information

arxiv:hep-th/ v1 31 Jan 2006

arxiv:hep-th/ v1 31 Jan 2006 hep-th/61228 arxiv:hep-th/61228v1 31 Jan 26 BTZ Black Hole with Chern-Simons and Higher Derivative Terms Bindusar Sahoo and Ashoke Sen Harish-Chandra Research Institute Chhatnag Road, Jhusi, Allahabad

More information

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

0 T (L int (x 1 )...L int (x n )) = i

0 T (L int (x 1 )...L int (x n )) = i LORENTZ INVARIANT RENORMALIZATION IN CAUSAL PERTURBATION THEORY K. BRESSER, G. PINTER AND D. PRANGE II. Institut für Theoretische Physik Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany e-mail:

More information

Department of Physics

Department of Physics Department of Physics Early time dynamics in heavy ion collisions from AdS/CFT correspondence Anastasios Taliotis taliotis.1@osu.edu based on work done with Yuri Kovchegov arxiv: 0705.1234[hep-ph] The

More information

Virasoro hair on locally AdS 3 geometries

Virasoro hair on locally AdS 3 geometries Virasoro hair on locally AdS 3 geometries Kavli Institute for Theoretical Physics China Institute of Theoretical Physics ICTS (USTC) arxiv: 1603.05272, M. M. Sheikh-Jabbari and H. Y Motivation Introduction

More information

arxiv:hep-th/ v2 26 Nov 1998

arxiv:hep-th/ v2 26 Nov 1998 Large N-wormhole approach to spacetime foam Remo Garattini Mécanique et Gravitation, Université de Mons-Hainaut, Faculté des Sciences, 15 Avenue Maistriau, B-7000 Mons, Belgium arxiv:hep-th/9811187v2 26

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY arxiv:gr-qc/9806038v1 8 Jun 1998 EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY METÍN GÜRSES Mathematics department, Bilkent University, 06533 Ankara-TURKEY E-mail: gurses@fen.bilkent.edu.tr

More information

3-dimensional topological σ-model

3-dimensional topological σ-model 3-dimensional topological σ-model arxiv:hep-th/0201006v1 2 Jan 2002 Bogus law Broda Department of Theoretical Physics University of Lódź Pomorska 149/153 PL 90-236 Lódź Poland February 28, 2008 Abstract

More information

Radial balanced metrics on the unit disk

Radial balanced metrics on the unit disk Radial balanced metrics on the unit disk Antonio Greco and Andrea Loi Dipartimento di Matematica e Informatica Università di Cagliari Via Ospedale 7, 0914 Cagliari Italy e-mail : greco@unica.it, loi@unica.it

More information

Limite di Campo Debole per una Gravitazione del Quarto Ordine

Limite di Campo Debole per una Gravitazione del Quarto Ordine Gravitazione del Quarto Ordine A. Stabile 1, S. Capozziello 2 1 Dipartimento di Ingegneria Universita' del Sannio, Benevento 2 Dipartimento di Scienze Fisiche Universita' Federico II, Napoli SOCIETÀ ITALIANA

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

Plenty of Nothing: Black Hole Entropy in Induced Gravity

Plenty of Nothing: Black Hole Entropy in Induced Gravity J. Astrophys. Astr. (1999) 20, 121 129 Plenty of Nothing: Black Hole Entropy in Induced Gravity V. P. Frolov, Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, Canada

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Bulk versus brane running couplings. Abstract

Bulk versus brane running couplings. Abstract OKHEP-01-08 Bulk versus brane running couplings Kimball A. Milton Department of Physics and Astronomy, The University of Oklahoma, Norman 73019 USA Sergei D. Odintsov Instituto de Fisica de la Universidad

More information

Quantum gravity and aspects of relativity

Quantum gravity and aspects of relativity Quantum gravity and aspects of relativity Branislav Nikolic Institute for Theoretical Physics, University of Cologne Bonn-Cologne Graduate School in Physics and Astronomy who are we??? Gravitation and

More information

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis Symmetries, Horizons, and Black Hole Entropy Steve Carlip U.C. Davis UC Davis June 2007 Black holes behave as thermodynamic objects T = κ 2πc S BH = A 4 G Quantum ( ) and gravitational (G) Does this thermodynamic

More information

Ricci-flat metrics on complex cones

Ricci-flat metrics on complex cones Ricci-flat metrics on complex cones Steklov Mathematical Institute, Moscow & Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam-Golm, Germany Quarks 2014, Suzdal, 3 June 2014 arxiv:1405.2319 1/20

More information